GENOME GYM NASTICS: UNIQUE M ODES OF DNA EVOLUTION AND PROCESSING IN CILIATES

David M . Prescott

In some ciliates, the DNA sequences of the germline genomes have been profoundly modified during evolution, providing unprecedented examples of germline DNA malleability. Although the significance of the modifications and malleability is unclear, they may reflect the evolution of mechanisms that facilitate evolution. Because of the modifications, these ciliates must perform remarkable feats of cutting, splicing, rearrangement and elimination of DNA sequences to convert the chromosomal DNA in the germline genome (micronuclear genome) into gene-sized DNA molecules in the somatic genome (macronuclear genome). How these manipulations of DNA are guided and carried out is largely unknown. However, the organization and manipulation of ciliate DNA sequences are new phenomena that expand a general appreciation for the flexibility of DNA in evolution and development.

CILIATES

Single-celled organisms containing a micronucleus (germlinenucleus), a macronucleus (somatic nucleus) and cilia for swimming and food capture.

RNA SELF-SPLICING
Removal of the intron sequence from precursor RNA and splicing of the mature RNA by catalytic action of the intron RNA, showing the enzyme like activity of RNA.

Department of M olecular,
Cellular and Developmental Biology, University of Colorado, Boulder,
Colorado 80309-0347,
USA. e-mail:
prescotd@spot.Colorado.edu

Ciliates make up the phylum Ciliophora, an ancient group of organisms that originated perhaps as long as 2×10^{9} years ago ${ }^{1}$. These organisms have evolved into many widely divergent lineages consisting of at least 8,000 species, with undoubtedly thousands more remaining to be discovered. In recent years, ciliates have becomeincreasingly important in molecular genetic research. Their general mode of development, which generates many thousands of individual DNA molecules, and thereforetelomeres, per cell has made them particularly useful for studying telomeres. The repeat structure of telomeric DNA ${ }^{2}$ and the enzymetelomerase ${ }^{3}$ were first discovered in the ciliate Tetrahymena thermophila. Ciliates of thehypotrichous group (class Polyhymenophora, subclass Spirotricha, order Hypotrichida) werethe first organisms in which the protein-DNA structure of telomeres was extensively analysed ${ }^{4,5}$. The solution to the5' primer problem how to replicate the end of a linear DNA moleculewas also first proposed from the study of ciliate telomeres ${ }^{6}$. Another important genetic mechanism discovered first in ciliates (Tetrahymena) was rna SELF-SPLICING ${ }^{7}$.

Hypotrichous ciliates also possess extraordinary
organizational features in their micronuclear and macronuclear genomes and carry out extensive developmental manipulations of their genomic DNA. These DNA phenomena, which considerably expand our view of genetic versatility, arethe subject of this review.

Germline and somatic nuclear DNA

A single ciliate organism has two kinds of nuclei: a germlinediploid nucleus(micronucleus) and a somatic nucleus (macronucleus). Thenumber of nuclei per cell varies in different ciliates - Oxytricha trifallax has two micronuclei and two macronuclei, whereas 0 xytricha nova has four micronuclei and two macronuclei (FIG.1). Themicronucleus undergoes meiosis during cell mating, haploid micronuclei are exchanged between the two cells in a mating pair, and a new diploid micronucleus is formed in each cell (FIG. 1). The mating cells separate, and a macronucleus develops from a copy of thenew diploid micronucleus. Simultaneously, unused haploid micronucle and theold macronucleus aredestroyed.
Micronuclear DNA consists of extremely long molecules typical of eukaryotic chromosomes. Genes are scattered along this DNA and are separated by large

Figure 1 |The behaviour of ciliate nuclei. a |The life cycle of Oxytricha trifallax (two macronuclei (cream) and two micronuclei (blue)). When food organisms (usually the alga Chlorogonium) are available, ciliates proliferate continuously. Starvation induces cyst formation or cell mating. Only one macronucleus and one micronucleus are retained in a cyst. Dried, frozen cysts remain viable for decades; cysts hatch in water containing food organisms and resume proliferation. In mating, two cells join, undergo meiosis of micronuclei (eight haploid micronuclei are shown in each cell in a mating pair) and exchange haploid micronuclei. A diploid micronucleus is formed by the fusion of two haploid micronuclei. The new diploid micronucleus divides mitotically and one of them develops into a new macronucleus. The unused haploid micronuclei (not shown) and old macronuclei (X's) degenerate. The remaining new diploid micronucleus divides again to give two micronuclei. At the end of development, the macronucleus divides so that the nuclear complement of two macronuclei and two micronuclei is reconstituted. The cells resume proliferation if food is present or otherwise form cysts. b|Light micrograph of Oxytricha nova, stained to show the four micronuclei (mi) and the two macronuclei (ma).

POLYTENE CHROMOSOME A giant chromosomeformed by many replications of the DNA. The replicated DNA molecules tightly align side by-side in parallel register, creating a nonmitotic chromosome visibleby light microscopy.

SEQUENCE COMPLEXITY Thenumber of different DNA sequences in a genome, originally measured by the rate of reassociation of heatdenatured DNA.

PARITY RULE 2
This rulederives from parity rule 1. In the absence of strand bias for mutation or selection, A $=\mathrm{T}$ and $\mathrm{C}=\mathrm{G}$ within a strand of the doublehelix.

PARITY RULE 1
In the absence of strand bias for mutation or selection, the 12 substitution rates between all four bases reduce to six rates, that is $A \rightarrow T=T \rightarrow A, G \rightarrow C=$ $\mathrm{C} \rightarrow \mathrm{G}, \mathrm{A} \rightarrow \mathrm{G}=\mathrm{T} \rightarrow \mathrm{C}, \mathrm{G} \rightarrow \mathrm{A}=$ $\mathrm{C} \rightarrow \mathrm{T}, \mathrm{C} \rightarrow \mathrm{A}=\mathrm{G} \rightarrow \mathrm{T}$ and $\mathrm{A} \rightarrow \mathrm{C}$ $=T \rightarrow G$.
stretches of spacer DNA (FIG. 2). The telomeres of micronuclear DNA aremadeup of hundreds of repeats of the sequence 5^{\prime}-CCCCAAAA- 3^{\prime} and end with a tloop ${ }^{8,9}$. Thet-loop is formed by a foldback of a singlestranded 3 ' tail that invades a short stretch of the dou-ble-stranded telomereregion.

M acronuclear DNA, in sharp contrast to micronuclear DNA, exists as short molecules that range in size from a few hundred base pairs (bp) to around 15,000 bp , with an average of about 2,000 bp. With few exceptions, each of thethousands of macronuclear molecules comprises a singlegene, and has a consistent structure - a 5' non-coding leader, an open reading frame and a 3 ' non-coding trailer. Theends consist of a repetitive $20-$ bp telomere sequence ($5^{\prime}-\mathrm{C}_{4} \mathrm{~A}_{4} \mathrm{C}_{4} \mathrm{~A}_{4} \mathrm{C}_{4}-3^{\prime}$) and a singlestranded 3^{\prime} tail. A heterodimeric protein bindstightly to thesingle-stranded tail, forming a protective telomere cap. So micronuclear and macronuclear DNAs use two very different mechanisms to form the telomere: atloop for thelong micronuclear DNA molecules and a protein cap for the short macronuclear DNA molecules.

From chromosomal DNA to gene-sized DNA

The gene-sized molecules in the macronucleus are derived from micronuclear DNA when a copy of the new diploid micronucleus formed during cell mating develops a new macronucleus. A micronucleus begins this development by forming polytene chromosomes. The polytene chromosomes are subsequently destroyed to
yield gene-sized macronuclear DNA moleculesto which telomeric repeats areadded by telomerase. This release of macronuclear moleculesis accompanied by elimination of the long spacers between genes in the micronuclear DNA. Spacer DNA accounts for around 95\% of the SEQUENCE COMPLEXITY of micronuclear DNA (in O. nova); thegene-sized macronuclear molecules, which encode all nuclear RNA, have around 5\% of the sequencecomplexity present in micronuclear DNA. In the final stage of macronuclear development, each gene-sized molecule is amplified to giveoneto several thousand copies. The mature macronucleus contains about 25×10^{6} short DNA molecules(in O. nova); thesearethesmallest DNA moleculesknown to occur in nature. The 25×10^{6} molecules provide 50×10^{6} telomeres per macronucleus, which makes hypotrichs particularly useful for studying telomerestructure.

In hypotrichous species from the Euplotes genus, excision of macronuclear moleculesfrom micronuclear DNA seemsto beguided by a 10-bp sequencethat is 17 bp upstream or, more usually, 17 or 18 bp downstream of thecutting points for excision ${ }^{10,11}$. No such consensus sequence is present in other hypotrichs (such as Oxytricha, Stylonychia, Gastrostyla, Pleurotricha, Paraurostyla and Uroleptus), which are distantly related to Euplotes. This implies that the specificity of gene excision is achieved by different molecular mechanisms in thetwo groups of organism.

In the Oxytricha/Stylonychia group (but not in Euplotes), the ends of macronuclear molecules just insidethetelomeres have an anomalous basecomposition. The 50 bp at thetwo ends (excluding thetelomere repeats) violate 'parity rule z' (seealso parity rule 1). This rule, which is borneout by extensive observationson DNA base composition ${ }^{13}$, statesthat $A=T$ and $G=C$ within a strand of DNA ${ }^{12}$, and follows logically if the substitution rate for each base is equal in the two strands. Violation of parity rule 2 occurs, for example, when codon usage is biased towards codons rich in a particular base - commonly A or G. In the 50 bases at thetwo 5' ends of macronuclear DNA molecules, which are part of the non-coding 5^{\prime} leaders and 3^{\prime} trailers, $A>$ T and G > C (D.M.P. and S.J. Dizick, unpublished observations). This anomaly is not observed in the rest of the 5^{\prime} leaders and 3^{\prime} trailers, or in DNA immediately flanking a macronuclear sequence, as it resides in a micronuclear chromosome. So theends of macronuclear molecules in micronuclear DNA arecharacterized by 50-bp islands of anomalous base composition and may function to direct excision of macronuclear genes from micronuclear chromosomes.

These DNA-processing events raise fundamental questions. How is the excision of the thousands of genesized macronuclear sequences from micronuclear DNA achieved? H ow isthe spacer DNA between the excised genes marked for elimination? Furthermore, micronuclear versions of genes are generally transcriptionally silent and become activated during macronuclear development. How is this achieved? How isthe amplification of gene-sized molecules regulated? What controls and directs destruction of superfluoushaploid micronuclei

Figure 2 |Ciliate genome organization. a |Arrangement of genes in micronuclear DNA. b |Excision of a gene and telomere addition during macronuclear development. (Adapted from REF. 29.)
and theold macronuclei after cell mating?A micronucleus divides by mitosis but a macronucleus divides amitotically. How is this switchover accomplished during macronuclear development? Even without answers to these questions, the strategy seems clear. DNA processing eliminates the burden of non-coding DNA, producing a greatly simplified, stripped-down genome with a high copy number of each gene, which can support rapid vegetative cell proliferation.

Enigmatic interruptions in micronuclear genes

DNA processing in hypotrichs is considerably more complex than elimination of spacer DNA, release of gene-sized molecules and addition of telomere repeats. A comparison of the sequences of macronuclear molecules with their micronuclear precursors reveals that micronuclear versions are interrupted by multiple, short, ($\mathrm{A}+\mathrm{T}$)-rich, non-coding sequences called internal eliminated segments(IESS), which areeliminated during macronuclear development ${ }^{14}$. A typical example of a micronuclear precursor gene is the 0 . trifallax genethat encodes β-telomere-binding protein (β TP) ${ }^{15}$ (FIG.3). Thefirst IES interrupts themicronuclear precursor in

Figure 3 | Interruptions in micronuclear genes. Structure of the non-scrambled gene that encodes β-telomere-binding protein in Oxytricha nova, Stylonychia mytilus and Oxytricha trifallax. Internal eliminated segments (IESs) are lines between gene segments called macronuclear-destined segments (MDSs, purple blocks). The intron (red) interrupts the coding sequence at the same codon in all three species. (Adapted from REF. 18.)
the 5^{\prime} non-coding leader just before the ATG start codon. Five more IESs interrupt the protein-coding region. Extrapolation from 12 micronuclear genes that havebeen sequenced in various hypotrichs (excluding Euplotes) gives an estimate of 100,000 to 200,000 IESs per haploid genome. Somespecies, such as 0 . trifallax, areparticularly rich in IESs. All of theseIESs are spliced out of all genes by an extraordinary amount of recombinational activity in a few hours during macronuclear development, primarily during the polytene chromosomestage ${ }^{16}$. Theexcision of IESS from a particular gene seems to follow a defined temporal programme. For example, of thenineIESs in theactin I genein O. trifallax (FIG. 4), IES6 is always removed first, followed a few hours later by the removal of the remaining eight IESs in rapid succession (D.M .P. and E.A. Hewitt, unpublished observations).

Much is known about the structure and behaviour of IESs in evolution and development, although their significance remains a mystery. M ost IESs in hypotrichs are $<100 \mathrm{bp}$ long, but a few are as large as 600 bp . IESs consist of uniquesequences, containing $70-100 \% \mathrm{~A}+\mathrm{T}$, with no consensus sequence(s) or other shared sequencepatterns. Thenumber and positions of IESs in a particular gene have changed, sometimes greatly, during evolution. Themicronuclear copy of the β TP gene contains two IESs in Stylonychia mytilus, three in 0. nova, and six in O. trifallax (FIG.3). None of the IESs interrupts the β TP gene in the same placein the three species, and none shares any length or sequenceidentity from species to species. Clearly, IESs are gained or lost during speciation. Comparison of thegenethat encodes DNA polymerase α (pol α) in different ciliatespecies provides strong evidence that new IESs may beinserted into a gene during evolution ${ }^{17}$, but there is no clear evidence that they may be lost. In keeping with their noncoding property, I ESs accumulate mutations at a high rate and, oddly, at a higher rate than introns. CorrespondingIESs in a particular gene in two ciliate species are almost always totally non-identical in sequence, in contrast to the coding regions of the gene, which arehighly conserved in nucleotide and predicted protein sequences. Even the two alleles of a micronuclear genein a cloned organism may differ substantially in their corresponding IES sequences, whereas the coding regions in the alleles are almost identical in nucleotide sequence.

It isdifficult to imaginehow IESs could originatede novo within a gene. It seems morelikely that IESs are derived from DNA elsewhere in the genome and are inserted into genes in random events. Spacer DNA between micronuclear genes has the same ($\mathrm{A}+\mathrm{T}$)-rich composition as IESS, so it is possiblethat IESs originate from spacer DNA. It is unclear what drives the insertion of pieces of spacer DNA into genes to form IESs. However, it is clear that insertion of an IES creates a pair of repeats that flanks the ends of the new IES. This might occur through theintroduction of a staggered cut into thetarget gene and ligation of a blunt-ended piece of ($\mathrm{A}+\mathrm{T}$)-rich DNA to the resultant single-stranded overhangs, followed by filling in of thesingle-stranded

b

Figure 4 | Scrambled genes. a |Structure of the scrambled actin I gene in Oxytricha nova and Oxytricha trifallax. Macronuclear-destined segments (MDSs) are blocks; internal eliminated segments (IESs) are lines between blocks. MDS2 is inverted (indicated by the horizontal arrow) in both organisms. (Adapted from REF. 27.) b|Recombination model of unscrambling of the actin I gene in 0 . nova. Folding of micronuclear DNA aligns pairs of repeat sequences at the ends of MDSs. Recombinations between pairs of repeats are indicated by 'X's. The actin I gene is linked by a $15-\mathrm{bp}$ spacer to a $3.3-\mathrm{kb}$ gene. (TAS, telomere addition site.) (Adapted from REF.21.)

Perhaps the repeat sequenceshave no rolein identifying and excisingIESs but only function in the ligation of the ends of gene segments left by IES excision.

In theciliate Paramecium tetraurelia, DNA in theold macronucleus seems to direct correct excision of an IES in the new micronucleus ${ }^{19,20}$. In a key experiment, a DNA construct consisting of part of a non-essential genethat contained an IES was injected into a vegetative macronucleus, wherethat IES is normally absent ${ }^{19}$. The injected P. tetraurelia was allowed to proliferate and then induced to enter thesexual cycle. In theformation of the new macronucleus, the particular IES was not removed during conversion of the micronuclear version of the geneinto the macronuclear version. Removal of other IESs was unaffected. This result indicates that the old macronucleus may influenceIES excision in thenew micronucleus. When a restriction site was added to the IES before injection of the partial gene construct, the IES that was present in the gene after development of thenew macronucleus lacked the restriction site. So the injected construct had not itself become part of the endogenous gene, but seems to have instructed the developing macronucleus to retain the IES in the endogenous gene. A plausible interpretation is that DNA (or RNA) istransferred from theold macronucleusto thenew, developing macronucleus to act as atemplate to guide IES excision, and then the template is eliminated. This experimental design could be applied to hypotrichs to test thegenerality of the hypothesis that IES removal (and possibly excision of genes from micronuclear chromosomes) is guided by the old macronucleus before it is destroyed.

IESs might be mere curiosities that are tolerated because micronuclear genes are not transcribed. It does not matter that IESs di sabletranscription becausethe organisms can remove and destroy IESsefficiently during macronuclear development. But perhapsthe significance of IESs lies in thedivision of genes into multiple blocks, as discussed in thenext section.

Gene segments created by IES insertions

Gene segments created by the insertion of IESs in a gene are called macronuclear-destined segments, or M DSs. Thesix IESs in themicronuclear β TP gene of 0 . trifallax dividethegeneinto seven M DSs (FIG. 3). These M DSs do not correspond to domains within a protein but are random divisions of the gene. Perhaps then, recombination amongIESs might facilitate evolution by creating new combinations and arrangements of MDSs. However, IESs interrupt individual codons at any position with equal frequency. So recombination between two IESs, to link two M DSs in a new combination, would result in a shift in the reading frametwo-thirds of thetime and changethe amino-acid sequenceencoded by the downstream MDS. This does not necessarily obviatetheidea of M DS shuffling as an important evolutionary mechanism, but perhaps makes it less plausible. In addition, the M DSs that flank an IES contain repeats of 2-7 bp at their junctions with the IES. For example, M DS1 in the β TP gene of 0 . trifallax has the sequence 5 '-CAGTA- 3 ' at its 3^{\prime} end and M DS2 has the

C Final order of MDSs: 1-3-5-7-9-11-2-4-6-8-10-12-13-14
Figure 5 |A model for nonrandom scrambling. The model illustrates how simultaneous internal eliminated segment (IES) insertions lead to nonrandom scrambling of the micronuclear gene that encodes α-telomere-binding protein (α TP) in Oxytricha nova. a |IESs are derived from a loop of (A+T)-rich DNA (spacer DNA) and $\mathbf{b} \mid$ are inserted into the α TP gene at staggered cuts. Insertion of IESs 12 and 13 are separate events. $\mathbf{c | F i n a l}$ order of the scrambled macronuclear-destined segments (MDSs). (Adapted from REF. 24.)
same sequence at its 5^{\prime} end. The repeat sequences that flank each IES are very variable (all pairs of repeats in a gene consist of different sequences). Therefore, recombination between two IESs would create an IES with non-matching flanking sequences at its ends. If the pairs of repeats are important in guiding IES excision or M DS ligation during macronuclear development, then the absence of a repeat pair might makeI ES excision and M DS ligation impossible. But this is not the case, as shown by the behaviour of repeat pairs whose positional relationships havebeen disrupted by recombination, which scramblesM DSs.

Scrambled MDSs

In somemicronuclear genes, theMDSsare out of order. In thegeneencodingactin I in 0 . nova, eight IESs divide the micronuclear geneinto nine M DSs in a largely random, scrambled order: 3-4-6-5-7-9-2-1-8 (REF.21) (FIG.4). M DSs 3 and 4 are separated by the first IES; they are not scrambled relativeto each other and sharea pair of direct repeats. M DS3 has thesequence 5^{\prime}-AATC -3^{\prime} at its 3^{\prime} end, where it joinsIES1. The downstream end of IES1 joins with M DS4, which begins with 5^{\prime}-AATC -3^{\prime}. The other seven MDSs are scrambled, but pairs of repeats still definetheir orthodox order. For example, MDSs 4 and 5 are scrambled becausethey are separated by the segment IES2-M DS6-IES3, but they still sharea pair of repeats: 5^{\prime}-CTCCCAAGTCCAT- 3 ' at the 3^{\prime} end of MDS4 is repeated at the 5^{\prime} end of M DS5. M oreover, MDS2 is in the inverted orientation; its upstream end contains the sequence 5^{\prime}-CTTGACGACTCC- 3^{\prime}, which is an inverted repeat of the sequence, 5^{\prime}-GGAGTCGT-CAAG- 3^{\prime}, at the upstream end of MDS3, to which it must ligate after reinversion to become unscrambled during macronuclear development. Similarly, theother end of M DS2 shares an inverted-repeat pair with the
downstream end of MDS1. Remarkably, theligation of M DS1 with reinverted M DS2 brings together an AT sequence at the 3^{\prime} end of MDS1 with a G at the 5 ' end of M DS2 to form theATG start codon for actin I.

The pairs of repeats for scrambled M DSs in the actin I gene rangein length from $9-13 \mathrm{bp}$ (average of 11 bp), in contrast to repeat lengths of 2-7 bp (average of 4 bp) for non-scrambled M DSs in several genes. This suggests that Ionger repeats are required for unscrambling of MDSs than for ligation of non-scrambled M DSs, but whether the longer repeats are adequate to guide unscrambling specifically isquestionable. Further guidance may be required, as is the casefor the short repeats of non-scrambled MDSs.
The presence of pairs of repeats suggests a recombination model of M DS unscrambling in which members of a pair align in register by folding of micronuclear DNA (FIG. 4b). Recombination between the aligned repeats would join all M DSs in the orthodox order and would remove one copy of each repeat with its adjacent IES. A problem with thefolding/recombination model istheinsufficiency of information in the short repeats to guide correct folding; multiple copies of a repeat sequence sometimes occur within an IES and in both upstream and downstream M DSs.

How did theactin I genebecome scrambled?A simple hypothesis isto assumethat in a common ancestor to 0 . nova and 0 . trifallax, eight IESs wereinserted into the actin I gene, creating nine M DSs in the orthodox order. Subsequently, intraduplex recombination between IESs, including recombination that inverted M DS2, created the current scrambled pattern ${ }^{22}$. Such recombination might betolerated because the mechanism already present for excising IESs and ligating M DSs could join M DSs in theorthodox order when guided by the repeat pairs and, possibly, by sequence information provided by the DNA molecules in theold macronucleus. It seems likely that IES6, which creates non-scrambled M DSs 9 and 10 in 0 . trifallax (FIG.4), was added morerecently, after divergencefrom 0 . nova. (Coincidentally, IES6 is the first to beremoved during macronuclear development.) H owever, the IES recombination hypothesis does not account for lengthening of the repeat sequence(from an average of 4 bp to 11 bp) when non-scrambled M DSs areconverted to scrambled MDSs.

Nonrandomly scrambled genes

The micronuclear gene that encodes α-telomerebinding protein (α TP) in 0 . nova contains 13 IESs that divideit into 14 MDSs , most of which are scrambled ${ }^{23}$. Unlike the pattern in the actin I gene, the $\alpha \mathrm{TP}$ gene is scrambled in the nonrandom pattern, 1-3-5-7-9-11-2-4-6-8-10-12-13-14. No inversions are present, and MDSs 12,13 and 14 are not scrambled relative to each other.
Thenonrandom pattern of M DS scrambling suggests a recombination model for theorigin of scrambling that is different from simple recombination between IESS ${ }^{24}$. IESs 1-11 arehypothesized to haveoriginated simultaneously from a loop of ($\mathrm{A}+\mathrm{T}$)-rich DNA

TRANSITION

A mutation in which a purineis replaced by a purine, or a pyrimidine is replaced by a pyrimidine.

TRANSVERSION

A mutation in which a
pyrimidine is replaced by a purine or vice versa.

Figure $6 \mid$ An extremely scrambled gene. Arrangement of macronuclear-destined segments (MDSs) in the gene that encodes DNA polymerase α in Oxytricha nova. MDSs are boxes; internal eliminated segments (IESs) are lines between boxes. Arrows in boxes indicate the $5^{\prime} \rightarrow 3^{\prime}$ polarity of the coding strand. The MDSs are present at two separate chromosomal locations in the micronucleus. The distances between the MDSs at the second (lower) location are unknown and so are represented as dotted lines. (TAS, telomere addition site.) (Adapted from REF. 18.)
(spacer DNA) aligned with the α TP gene, followed by a series of recombinations between the two (FIG.5). The recombinations occur at staggered cuts in the gene DNA to create pair of repeats. Non-scrambled M DSs 12,13 and 14 , formed by insertion of IESs 12 and 13 , are separate events in time in this model.

Thepol α genein 0 . nova is extremely scrambled ${ }^{25}$. It contains 44 IESs and 45 M DSs. M ost of the M DSs are arranged in a nonrandom odd/even pattern as in the $\alpha \mathrm{T}$ gene, but with an inversion of about one third of theM DSsthat places M DS1 near themiddle of the gene (FIG.6). Themodel for scrambling of the α TP genecan beapplied to thepol α geneas well, with theinversion occurring after scrambling of theM DSs. Occurrence of theinversion before scrambling in theodd/even pattern of M DSs is difficult to imagine. Thestructure of the micronuclear pol α gene is further complicated by the separation of the scrambled M DSs into two loci. Eight M DSs occur at a separate locus whose positional relationship to the main locus is unknown. Unscrambling requires that the two loci be brought together and aligned to permit the appropriate series of recombinations between odd- and even-numbered M DSs.

Thepol α gene is scrambled in a very similar pattern in two other hypotrichous ciliates - the sameinversion is present, and the gene issplit into two loci - but there are some significant differences. In Stylonychia lemnae, the gene includes three more IESs and three more M DSsthan in 0 . nova ${ }^{26}$. In 0. trifallax, the pol α gene has 50 IESs and $51 \mathrm{MDSs}^{17}$, six morethan in 0 . nova. Two IESs are inserted into two M DSs that are nonscrambled in 0 . nova to createtwo further non-scrambled M DSs. Theother four extra M DSs are integrated into theodd/even scrambled pattern. Finally, one very short M DS is not present in either of thetwo loci in 0. trifallax or S. lemnae and remains unaccounted for.
It is apparent that thepol α genebecame scrambled in an evolutionary progenitor of 0 . nova, S . lemnae and 0 . trifallax. Asin the actin I and $\alpha \mathrm{TP}$ genes, IESs and

M DSs continued to beadded to the pol α gene during evolution, but in thiscase some of thenew M DSs are in scrambled configurations that indicate scrambling can occur by recombination between IESs.
The unscrambling of genes, particularly the pol α gene, implies an extraordinary molecular mechanism of DNA cutting and splicing, about which little is known. Cell clones in which thesegermlineDNA modifications are present can undergo intraclonal mating, develop new macronuclei, and yield new vegetative clones with 95 to 100% efficiency, proving that the modifications are reversed with remarkable precision during macronuclear development.

Shifting of MDS-IES junctions

Comparison of theactin I, $\alpha \mathrm{TP}$ and pol α genes among species reveal san important property of M DSs and IESs: they change in length, location and composition during speciation. For example, the lengths of MDS1 in the $\alpha \mathrm{TP}$ gene of 0 . trifallax, S . mytilus and 0 . nova are 208, 230 and 239 bp , respectively, and the lengths of IES1 in thethree species are 43,111 and 48 bp , respectively, reflecting insertions or deletions within the IES. IES1 is also totally different in sequence in the three organisms, indicating a high rate of accumulation of transitions and transversions in this non-coding DNA. M DSs generally contain coding sequences and are, by comparison, strongly conserved.

The lengths, locations and compositions of M DSs and IESs can also changeby shifting of MDS-IES junctions ${ }^{27}$. This is illustrated in FIG. 7 for M DSs 11 and 12 in the $\alpha \mathrm{T}$ gene of 0 . trifallax and the corresponding M DSs in O. nova. TheM DS-IES junctions aredifferent and the repeat sequences are different in the two organisms. Nevertheless, when theM DSs are ligated during macronuclear development, they yield the same macronuclear sequence in the two organisms. This is most readily explained by a series of mutations that shorten or lengthen M DSs at their ends and simultane-

Figure 7 |A model for MDS-IES junction shifting. Sequence of the 3 ' end of scrambled macronuclear-destined segment (MDS) 11 , the beginning of internal eliminated segment (IES) 12 , the end of IES5 and the 5^{\prime} end of MDS12 in the scrambled genes that encode α-telomerebinding protein (α TP) in Oxytricha trifallax (top line) and Oxytricha nova (bottom line). In the scrambled genes, six IESs and five MDSs separate MDS11 from MDS12 (see FIG.5). Repeat sequence pairs are underlined. A model is shown for shifting of MDS-IES junctions in the $\alpha \mathrm{TP}$ gene of 0 . trifallax by a series of mutations creating hypothetical intermediates, ending with the gene as it is in O . nova. Arrows indicate mutations.
ously lengthen or shorten theadjacent IES during evoIution. Thisisillustrated by the series of mutations in FIG. 7 that could have converted the 0 . trifallax sequence structure into the 0 . nova sequence structure. As a result of junction shifting, M DS11 in 0 . trifallax is longer by 11 bp than in 0 . nova, and M DS12 in 0 . trifallax is shorter by 11 bp than in 0 . nova. IES12 is shorter by 11 bp and IES5 is longer by 11 bp in 0 . trifallax relative to 0 . nova. Some single mutations result in two or three base shifts at junctions, for example, lines 7 and 8 in fig.7. The sequence of the repeat has changed completely from 0 . trifallax to 0 . nova, and is 1 bp shorter in 0 . nova. Appropriate mutations must occur in loose coordination at the two junctions to preserve a repeat pair, although the sequence of the repeat changes.

Thejunction shifts between species for scrambled M DSs are modest; the longest observed so far is 19 bp in the pol α genebetween 0. nova and 0. trifallax. For non-scrambled M DSs, shifts can extend over at least a few hundred bp. The reason for such a difference in junction mobility is obscure. The consequence of junction shifts is that M DS lengths can change substantially, with sequence being switched from oneM DS to another, but with no change in sequence. So the macronu-
clear sequencein FIG. 7 is unaltered by junction shifting.

Conclusion

Theinsertion of IESs into micronuclear genes, the concomitant creation of M DSs and the scrambling of M DSs in some genes in ciliates represent new evolutionary phenomena in molecular genetics. Superficially, these ciliate phenomena bear somesimilarity to DNA manipulations in other organisms. For example, the unscrambling of M DSs seems similar to V(D)J recombination in vertebrates, which generates immunoglobulin genes, but the two processes arefundamentally different in mechanism, design and consequence. Also, in some respects IESs resembleintrons. Both interrupt coding regions of genes, but their mechanisms of excision are completely different; IESs areexcised from DNA, introns from RNA. IESs also accumulatemutations at asignificantly higher ratethan introns. IESs shift along DNA molecules, but there is no convincing evidencethat introns can shift along DNA. Introns create theopportunity for alternative splicing of exonsto generatedifferent geneproducts, but IESs lack that function because they are absent from transcribed (macronuclear) genes. Nevertheless, borrowing the concept of exon shuffling suggeststhe possibility that M DSs may recombine in the germ line to evolvenew genes. If such M DS shuffling has occurred during evolution, it might be detected in contemporary organisms by searching for M D Ss that are common to two or moremicronuclear DNA genes, although this test may becomplicated by theability of MDS boundaries to changebyIES shifting. At present, insight into thesignificanceof the M DS/IES phenomena is being sought by long-term mutagenesis, which might alter M DS/IES patterns in informative ways. We can be confident that the spectacular contortions shown by ciliategenomes have played an important part in their evolution - a phenomenon that has been summed up incisively as the 'evolution of evolvability' ${ }^{28}$.

(2) Links

DATABASE LINKS Tetrahymena thermophila | O xytricha
trifallax | Oxytricha nova | Euplotes | Oxytricha|
Stylonychia | Gastrostyla | Pleurotricha | Paraurostyla |
Uroleptus | Stylonychia mytilus | Paramecium tetraurelia
| Stylonychia lemnae
FURTHER INFORMATION David Prescotts lab page
ENCYCLOPEDIA OF LIFE SCIENCES Ciliophora | Euplotes
|Tetrahymena| Developmentally programmed DNA
rearrangements

DATABASE LINKS Tetrahymena thermophila $\mid 0$ xytricha trifaliax |Oxytricha nova | Euplotes | Oxytricha Uroleptus | Stylonychia mytilus | Paramecium tetraurelia | Stylonychia Iemnae
FURTHER INFORMATION David Prescott's lab page |Tetrahymena|Developmentally programmed DNA rearrangements

1. Wright, A.-D. G. \& Lynn, D. H. Maximum ages of ciliate lineages estimated using a small subunit rRNA molecular clock: Crown eukaryotes date back to the
Paleoproterozoic. Arch. Protistenkd. 148, 329-341 (1997).
2. Blackburn, E. H. \& Gall, J . G. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol. 120, 33-53 (1978).
3. Greider, C. W. \& Blackburn, E. H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405-413 (1985).
4. Price, C. M. Telomere-binding proteins of ciliated protozoa.

Nucleic Acids Mol. Biol. 9, 299-307 (1995).
5. Horvath, M. P., Schweiker, V. L., Bevilacqua, J. M. Ruggles, J. A. \& Schultz, S. C. Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95, 963-974 (1998).
6. Zahler, A. M. and Prescott, D. M. Telomere terminal transferase activity in the hypotrichous ciliate Oxytricha nova and a model for replication of the ends of linear DNA molecules. Nucleic Acids Res. 16, 6953-6972 (1988).
7. Brehm, S. L. \& Cech, T. R. Fate of an intervening sequence ribonucleic acid: Excision and cyclization of the Tetrahymena ribosomal RNA intervening sequence in vivo.

Biochemistry 22, 2390-2397 (1983).

8. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503-514 (1999).
9. Murti, K. G. \& Prescott, D. M. Telomeres of polytene chromosomes in a ciliated protozoan terminate in duplex DNA loops. Proc. NatI Acad. Sci. USA 96, 14436-14439 (1999).
10. Klobutcher, L. A. et al. Conserved DNA sequences adjacent to chromosome fragmentation sites in Euplotes crassus. Nucleic Acids Res. 26, 4230-4240 (1998).
11. Klobutcher, L. A. Characterization of in vivo developmental chromosome fragmentation intermediates in Euplotes
crassus. Mol. Cell 4, 695-704 (1999).
12. Sueoka, N. Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J. Mol. Evol. 40, 318-325 (1995); erratum 42, 323 (1996).
13. Frank, A. C. \& Lobry, J. R. Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene 238, 65-77 (1999).
14. Klobutcher, L. A., J ahn, C. L. \& Prescott, D. M. Internal sequences are eliminated from genes during macronuclear development in the ciliated protozoan Oxytricha nova. Cell 36, 1045-1055 (1984).
The original discovery of internal eliminated
segments in a germline gene of a hypotrich.
15. DuBois, M. L. \& Prescott, D. M. Volatility of IESs in germline genes of hypotrichous ciliates. Mol. Cell. Biol. 17 326-337 (1997).
The discovery of internal eliminated segment shifting in the actin I gene of hypotrichs.
16. Tausta, S. L. \& Klobutcher, L. A. Internal eliminated sequences are removed prior to chromosome fragmentation during development in Euplotes crassus. Nucleic Acids Res. 18, 845-853 (1990).
This work proved that excision of internal eliminated segments leaves intact the polytene chromosomes formed during macronuc lear development, and is apparently unrelated mechanistically to the eventual breakup of the polytene chromosomes into genesized DNA molecules.
17. Hoffman, D. C. \& Prescott, D. M. Evolution of internal eliminated segments and scrambling in the micronuclear gene encoding DNA polymerase α in two Oxytricha species. Nucleic Acids Res. 25, 1883-1889 (1997). The complex scrambled patterns in the gene that encodes DNA polymerase α in two hypotrich species.
18. Prescott, D. M. \& DuBois, M. L. Internal eliminated segments (IESs) of Oxytrichidae. J. Euk. Microbiol. 43 432-441 (1996)
19. Duharcourt, S., Keller, A.-M. \& Meyer, E. Homologydependent maternal inhibition of developmental excision of internal eliminated sequences in Paramecium tetraurelia. Mol. Cell. Biol. 18, 7075-7085 (1998).
These experiments in Paramecium implicate the old macronucleus in directing the excision of internal eliminated segments in the developing macronucleus.
20. Forney, J . D., Yantiri, F. \& Mikami, K. Developmentally controlled rearrangement of surface protein genes in Paramecium tetraurelia. J . Euk. Microbiol. 43, 462-467 (1996).
21. Prescott, D. M. \& Greslin, A. F. Scrambled actin I gene in the micronucleus of Oxytricha nova. Dev. Genet. 13, 66-74 (1992).
22. Prescott, D. M. The evolutionary scrambling and developmental unscrambling of germline genes in hypotrichous ciliates. Nucleic Acids Res. 27, 1243-1250
(1999).
23. Mitcham, J. L., Lynn, A. J. \& Prescott, D. M. Analysis of a scrambled gene: The gene encoding α-telomere-binding protein in Oxytricha nova. Genes Dev. 6, 788-800 (1992)
24. Prescott, J. D., DuBois, M. L. \& Prescott, D. M. Evolution of the scrambled germline gene encoding α-telomere binding protein in three hypotrichous ciliates.
Chromosoma 107, 293-303 (1998).
A model of the origin of scrambling of the gene that encodes α-telomere-binding protein is presented, based on the structure of the germline gene in three hypotrichs.
25. Hoffman, D. C. \& Prescott, D. M. The germline gene encoding DNA polymerase α in the hypotrichous ciliate Oxytricha nova is extremely scrambled. Nucleic Acids Res. 24, 3337-3340 (1996).
26. Landweber, L. F., Kuo, T.-C. \& Curtis, E. A. Evolution and assembly of an extremely scrambled gene. Proc. Natl Acad. Sci. USA 97, 3298-3303 (2000).
27. DuBois, M. \& Prescott, D. M. Scrambling of the actin I gene in two Oxytricha species. Proc. Natl Acad. Sci. USA 92, 3888-3892 (1995).
28. Radman, M., Matic, I. \& Taddei, F. Evolution of evolvability Ann. NY Acad. Sci. 870, 146-155 (1999).
29. Prescott, D. M. Invention and mystery in hypotrich DNA. J Euk. Microbiol. 45, 575-581 (1998).
Acknowledgements
This work is supported by the NIGMS and the NSF.
