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Along with methane, methanol and methylated amines represent important 

biogenic atmospheric constituents, thus not only methanotrophs, but also non-

methanotrophic methylotrophs play a significant role in global carbon cycling. The 

complete genome of a model obligate methanol and methylamine utilizer, 

Methylobacillus flagellatus (strain KT) was sequenced. The genome is represented by a 

single circular chromosome of approximately 3 Mb pairs, potentially encoding a total of 

2,766 proteins. Based on genome analysis as well as the results from previous genetic and 

mutational analyses, methylotrophy is enabled by methanol- and methylamine 

dehydrogenases, the tetrahydromethanopterin-linked formaldehyde oxidation pathway, 

the assimilatory and dissimilatory branches of the ribulose monophosphate cycle, and by 

formate dehydrogenases. Some of the methylotrophy genes are present in more than one 

(identical or non-identical) copy. The obligate dependence on single carbon compounds 

appears to be due to the incomplete tricarboxylic acid cycle, as no genes potentially 

encoding alpha ketoglutarate, malate or succinate dehydrogenases are identifiable. The 

genome of M. flagellatus was compared, in terms of methylotrophy functions, to the 

previously sequenced genomes of three methylotrophs: Methylobacterium extorquens 

(Alphaproteobacterium, 7 Mbp), Methylibium petroleophilum (Betaproteobacterium, 4 

Mbp), and Methylococcus capsulatus (Gammaproteobacterium, 3.3 Mbp). Strikingly, 

metabolically and/or phylogenetically, methylotrophy functions in M. flagellatus were 

more similar to the ones in M. capsulatus and M. extorquens than to the ones in the more 

closely related M. petroleophilum, providing the first genomic evidence for the 

polyphyletic origin of methylotrophy in Betaproteobacteria.  
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INTRODUCTION 

Methylotrophy is a metabolic capacity to grow on compounds containing no C-C 

bonds, such as methane, methanol, methylated mines etc. (1, 32). While the role of 

methanotrophs in reduction of global emissions of methane has been well recognized 

(25), less attention has been paid to non-methanotrophic methylotrophs as participants of 

the global carbon cycle. However, recent models estimate methanol emissions into the 

atmosphere at 82-273 Tg y-1 (living plants being the major source; 16, 20), putting them 

on the scale similar to the scale of methane emissions (approx. 600 Tg y-1; 29) and 

pointing toward the global role of non-methanotrophic methanol utilizers. While no 

global modeling has been attempted for methylated amines production, they are known to 

be abundant in marine and freshwater environments and represent the dynamic 

constituents of not only carbon, but also nitrogen global cycles (36). So far only non-

methanotrophic methylotrophs have been implicated in utilizing methylated amines (1, 

32). 

Methylobacillus flagellatus strain KT utilizes methanol and methylated amines as 

single sources of carbon and energy and is classified as an obligate methylotroph (19). 

The strain has been isolated in early eighties from a metropolitan sever system (19) and 

selected as a prospective industrial strain, due to its high growth rates on methanol, high 

tolerance to methanol and also formaldehyde, high biomass yield and a high coefficient 

of conversion of methanol into biomass (2, 3, 6, 19). Derivatives of the strain have been 

successfully generated aimed at commercial production of value added compounds (5, 

17, 34). In addition to its commercial potential, the strain became one of the most 

prominent models in studying biochemistry of methylotrophy as it presents a facile 
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genetic system, with a variety of tools for manipulation such as suicide vectors for site-

directed mutagenesis, expression vectors, promoter probe vectors etc. (7, 13, 15, 27). 

Thus, the genome-based analysis of methylotrophy in this organism is complemented by 

a body of previous genetic and biochemical data. Based on 16S rRNA sequence, M. 

flagellatus belongs to Betaproteobacteria and is most closely related to other members of 

Methylophilaceae (19). The genomic sequence of M. flagellatus reported here presents an 

excellent study case for comparative analysis of molecular basis of methylotrophy in 

alpha-, beta- and gammaproteobacteria. 

 

MATERIALS AND METHODS 

Methylobacillus flagellatus strain KT (ATCC 51484) was from the laboratory 

collection. For the isolation of genomic DNA, cultures were grown in 100 ml of minimal 

medium (21) supplemented with 2% (W/V) methanol. Genomic DNA was isolated from 

late-exponential-phase cultures in accordance with the recommendations by the 

Department of Energy's Joint Genome Institute (DOE-JGI; Walnut Creek, CA). The 

genome was sequenced using the whole-genome shotgun method (13) and assembled 

using standard tools as described on the JGI website (http://www.jgi.doe.gov/). Gaps 

remaining in the assembled sequence were closed by primer walking or by sequencing 

specifically amplified PCR fragments. Sequence was finished and polished at the ??? 

facility and computationally annotated at the ??? facility. Automated functional 

assignments were curated manually, as appropriate. The sequence of the complete M. 

flagellatus strain KT genome is available under GenBank accession number NC 007947 
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and also at the JGI web site (http://genome.jgi-

psf.org/finished_microbes/metfl/metfl.home.html). 

RESULTS 

General genome features and basic functions 

The genome consists of a single circular chromosome of 2,971,517 base pairs 

(55.7 % GC content) of which 143,032 base pairs represent a direct identical repeat (see 

below). A total of 2,766 coding regions are recognized in the genome, of which 144 are 

identical doubles as these are parts of the extended repeat. Of the total translatable open 

reading frames, 233 are unique to M. flagellatus, 2,520 have top BLAST hits with 

bacterial genes, 10 have top hits with archaeal genes, and 3 have top hits with eukaryotic 

genes. Based on protein identity scores, the closest relatives of M. flagellatus whose 

complete genome sequences are available are the Betaproteobacteria Thiobacillus 

denitrificans (492 of a total of 1681 betaproteobacterial top hits) and Dechloromonas 

aromatica (299 top hits). Of 568 gammaproteobacterial top hits, 108 are with the proteins 

translated from the chromosome of Methylococcus capsulatus, an obligate methane 

utilizer whose genome has been recently sequenced (44). Some of these are the well-

characterized methylotrophy genes (see below), while most of the remaining genes are 

hypothetical genes, and some of these may be involved in methylotrophy as well. The 

chromosome contains two ribosomal (16S-23S-5S) operons and all the genes encoding 

ribosomal proteins. There are a total of 46 tRNA genes corresponding to 38 tRNA 

acceptors for recognizing all 20 amino acids. Only one complete (Tn3 type) transposase 

gene is present in the genome (Mfla1495), and a partial gene is present nearby 
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(Mfla1488), the two surrounding a group of genes predicted to be involved in arsenate 

resistance. A number of phage-related genes were identified in the genome, and most of 

these appear to have homologs in related Betaproteobacteria, with a few exceptions that 

are unique to M. flagellatus (see below). The genome of M. flagellatus, like many 

microbial genomes (33), contains a CRISPR repeat (93 identical sequences of 32 

nucleotides interspaced by non-identical sequences of 33 to 39 nucleotides; nucleotides 

632591-638803) that is non-homologous to any known CRISPR repeats. The repeat is 

preceded by six genes encoding CRISPR-associated proteins (Mfla 601-607). 

Standard sets of genes are present for DNA replication, transcription and 

translation, and complete pathways are apparently present to synthesize all the amino 

acids, nucleotides, and a few vitamins. Few secondary metabolite synthesis pathways are 

encoded in the genome, for example, a pathway for terpenoid precursor (geranylgeranyl) 

biosynthesis. A single large gene cluster (Mfla1940-1987) is responsible for encoding the 

flagellum functions. A complete set of genes for NADH quinone oxidoreductase 

(complex I) were identified (Mfla2048-2061), all in one cluster, as well as the genes for 

cytochrome c oxidase (complex IV, Mfla1292-1295). An array of genes were predicted to 

be involved in regulatory functions, including numerous lysR, tetR and luxR homologs, as 

well as other classes of regulators. However, little knowledge exists on the regulation of 

either methylotrophy or general metabolism function in M. flagellatus. Thus the specific 

functions of the predicted regulators will need to be tested via mutation and/or expression 

analyses in the future. A large number of genes encoding putative transporters were 

identified in the genome. The 31 TonB-dependent siderophore receptor gene homologs 

are likely involved in iron uptake. Other transporters are predicted to be involved in 

 6



transport of other metals or in nitrate, ammonium, or sulfate metabolism, as well as in 

biopolimer transport. Type I, II and IV secretion systems are also encoded. A cluster of 

genes encoding parts of a phosphotransferase-type sugar transport system was identified, 

similar to the clusters previously characterized in Nitrosomonas europea (24) and 

Nitrosococcus oceany (31). However, the function of these genes remains enigmatic (24). 

 

Methylotrophy 

Primary oxidation of methanol and methylamine 

M. flagellatus exhibits very high growth rates on methanol or methylamine (up 

to 0.73 h-1; 2, 3, 6) and possesses high activities of methanol and methylamine 

dehydrogenases (MDH and MADH, respectively; 6, 30). The genome analysis revealed 

the presence of a gene cluster encoding MDH and accessory proteins 

(mxaFJGIRSACKLD, Mfla2034-2044) similar to the clusters characterized in other 

methylotrophs (8, 22, 44). In Methylobacterium extorquens this cluster contains two 

additional genes, mxaEH whose functions remain unknown (8), but no homologs were 

found in the genome of M. flagellatus. In addition to the bona fide MDH gene cluster, 

four additional gene clusters were identified in the genome encoding homologs of the 

large subunit of MDH (mxaF; Mfla344, 1451, 1717 and 2314), three of them linked to 

genes encoding cytochromes c (Mfla342, 1450, and 2312, respectively), one of the 

clusters also containing a homolog of mxaJ (Mfla2313), but none containing homologs of 

mxaI that encodes the small subunit of MDH (8). Two additional clusters were identified 

encoding functions essential for synthesis of active MDH (mxaRSACKL, Mfla687-692 

and Mfla1895-1900), but these were not linked to any genes potentially encoding 
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pyrolloquinoline quinine (PQQ)-linked dehydrogenases. An additional cluster encoding 

homologs of MxaED (Mfla2124 and 2125) was also identified. Homologs of the genes 

for MDH subunits as well as other MDH functions are often found in the genomes of 

both methylotrophs and non-methylotrophs (9, 12, 22, 39, 44). However, mutant analysis 

suggests that these homologs are not involved in methanol oxidation, and a MDH proper, 

composed of the small and the large subunits, is required (9). Genes for biosynthesis of 

PQQ, the cofactor of MDH, were found in two separate clusters (pqqABCDE, Mfla1680-

1683, 18) and pqqFG, Mfla734-735), similar to the clusters previously characterized in 

other methylotrophs (8, 22, 44). 

All the genes for MADH synthesis have been partially identified previously and 

all are present in a single cluster on the chromosome (mauFBEDAGLMNazu, Mfla547-

556; 14, 15). No genes with high homologies to the regulatory genes involved in 

methanol- or methylamine oxidation functions that have been characterized in M. 

extorquens (8) or Paracocccus denitrificans (11, 23) are identifiable in the M. flagtellatus 

chromosome, pointing toward the existence of non-homologous regulatory systems.   

 

Formaldehyde oxidation 

Genes for two pathways for formaldehyde oxidation are present, the oxidative 

branch of the ribulosemonophosphate (RuMP) cycle and the tetrahydromethanopterin 

(H4MPT)-linked formaldehyde oxidation pathway (Fig. 1). Based on experimental 

evidence, the former is the essential pathway and the latter is auxiliary (7, 27). There are 

two enzymes that are specific to the RuMP cycle, hexulosephosphate synthase (HPS) and 

hexulosephosphate isomerase (HPI; 1). Two copies of hps were identified (Mfla250 and 
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Mfla1654), one is part of a gene cluster previously identified in “Aminomonas 

aminofaciens” (an uncharacterized Methylobacillus species) and containing genes for 

histidine biosynthesis (40), while the other is part of the previously characterized large 

methylotrophy gene cluster containing most of the genes for the H4MPT-linked 

formaldehyde oxidation pathway, the so-called “archaeal-like” gene cluster (27). Genes 

for HPI (Mfla1653) and transaldolase (Mfla1655) are also found in this cluster. Physical 

linking on the chromosome of RuMP cycle genes and the H4MPT-linked pathway genes 

is so far unique to Methylophilaceae (27). Like HPS, the first enzyme of the RuMP cycle, 

Fae, the first enzyme of the H4MPT-linked pathway (responsible for condensation of 

formaldehyde with H4MPT; 43) is also encoded by two different genes. The first is part 

of the main “archaeal” gene cluster (Mfla1652; 27), while the second (Mfla2543) does 

not appear to be linked to any recognizable methylotrophy genes. The proteins translated 

from the two genes are 83% identical. In addition to the two bona fide fae, two fae 

homologs are present, previously designated as fae2 (Mfla2524) and fae3 (Mfla2364), 

and the functions of these genes remain unknown (27). Four additional “archaeal-like” 

genes involved in H4MPT-linked formaldehyde oxidation pathway (afp, orf20, orf19, 

orf22, Mfla1579-1582) form a separate gene cluster (27).  

The product of HPI, fructose 6-phosphate (P) is converted to glucose 6-P by 

phosphoglucoisomerase (1). A single pgi gene is identifiable in the genome (Mfla1325), 

not linked to any other C1 genes. The genes encoding glucose 6-P dehydrogenase, 6-P-

gluconelactonase and 6-P-gluconate dehydrogenase (GND) form a gene cluster (zwf- 

gndA-pgl; Mfla917-919 and Mfla1061-1063) in which gndA and zwf are co-transcribed 

while pgl is transcribed in the opposite orientation, and this cluster is present in two 
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copies, one of which is part of the extended identical repeat. An additional copy of gnd 

(gndB, Mfla2599) is present in the genome. This latter gene encodes an enzyme 70% 

identical to GND translated from the genome of Methylococcus capsulatus while it is 

only 28% identical to gndA. We have previously demonstrated that overexpressing gndA 

leads to an increase in GND activity linked to NAD, while the NADP-linked activity 

remains unaffected (7). Likely, gndB is responsible for the latter activity.  

 

Formate oxidation 

Genes for a formate dehydrogenase (FDH, Mfla718-722) homologous to the one 

encoded in the genome of M. capsulatus (44) were identified in the genome. In addition, 

a gene is present (Mfla338) homologous to the gene recently identified as responsible for 

a novel FDH (FDH4) in M. extorquens (Chistoserdova and Lidstrom, unpublished). 

 

Formaldehyde assimilation 

The assimilatory RuMP cycle branches from the dissimilatory RuMP cycle at the 

level of 6-P-gluconate (1). Previous enzyme evidence suggested that the 6-P-gluconate 

dehydratase (KDPG)/ ketodeoxy-P-gluconate aldolase/transaldolase version of the RuMP 

cycle must be operational (30). Indeed, genes for all the enzymes involved are 

identifiable in the genome (Fig. 1). A total of three genes were identified encoding 

pentose phosphate isomerase (Mfla129, 962, and 1106), the latter two are identical copies 

(as a result of the extended repeat) having 41% amino acid identity with the former. 

Functioning of the alternative cleavage/regeneration versions of the RuMP cycle 

(fructose bisphosphate aldolase/sedoheptulose bisphosphatase, fructose bisphosphate 
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aldolase/TA, or KDPG/sedoheptulose bisphosphatase; 1) is not supported by genome 

analysis, as genes for neither phosphofructokinase, no sedoheptulose bisphosphatase are 

identifiable.  

Pyruvate is the ‘end product’ of the RuMP cycle in M. flagellatus (Fig. 1, 1). To 

provide necessary cell constituent precursors, reactions converting pyruvate or acetyl-

CoA into phosphoenolpyruvate (PEP) and oxaloacetate (OAA) are necessary (1). We 

were able to identify putative genes for PEP synthase (Mfla2203) and pyruvate kinase 

(Mfla2244) that are likely responsible for interconverting pyruvate and PEP. We also 

identified a putative gene for pyruvate carboxylase (Mfla1511) that may be responsible 

for converting pyruvate into OAA. In addition, a gene was identified encoding a product 

homologous to the alpha subunit of OAA decarboxylase (Mfla1512), another enzyme 

capable of converting pyruvate into OAA. However, we were not able to identify genes 

for the beta and gamma subunits associated with this activity (10). An alternative way of 

synthesizing PEP would be from glyceraldehyde phosphate (GAP) as shown in Fig. 1. 

This proposed metabolic loop could serve to balance the levels of pyruvate, GAP and 

PEP in the cell.  

 

The tricarboxylic acid cycle (TCA) deficiency as a cause of obligate methylotrophy 

Some methylotrophs (classified as facultative) can grow on multicarbon 

substrates in addition to C1 substrates, while others (classified as obligate) can only grow 

on C1 substrates (1, 32). The causes of obligate methylotrophy remained poorly 

understood. The lack of a complete tricarboxylic acid cycle (TCA) has been suggested as 

one of the main causes of obligate methylotrophy (1). However, the recent sequencing of 
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an obligate methane utilizer M. capsulatus revealed the presence of all the genes for the 

TCA (44). This is also the case with chemolithoautotrophic ammonia-oxidizing bacteria 

(24, 31). On the contrary, analysis of the M. flagellatus genome revealed that genes for 

three enzymes of the TCA were not identifiable (encoding malate, alpha ketoglutarate 

and succinate dehydrogenases). Thus in the case of M. flagellatus, the obligate 

methylotrophy may be explained by the lack of the main energy-generating pathway for 

multicarbon substrate metabolism. Gene candidates for the reactions leading to the 

formation of alpha-ketoglutarate were identified (Mfla61, 1817, 2074-2076, 2139; Fig. 

1), suggesting an anapleurotic function for the partial TCA. A gene encoding an 

alternative enzyme for converting OAA into malate, malate:quinone oxidoreductase 

(Mfla11) is present in the genome, likely providing a source of malate for cell 

biosyntheses. Genes are also present for interconverting succinate and succinyl-CoA 

(Mfla1888, 1889). However, we were unable to make prediction as to how succinate or 

succinyl-CoA may be made to be parts of central metabolism. 

 

Polysaccharide synthesis 

Methylotrophs employing the RuMP cycle for formaldehyde assimilation are 

known to produce large amounts of exogenous polysaccharide (41, 45, 46). The 

polysaccharide may be a means to balance carbon assimilation and energy generation in 

specific conditions, a means for detoxifying formaldehyde (38), or an agent essential for 

existence of these microbes in the environment (for example, function in biofilm 

formation; 4). This metabolic peculiarity of methylotrophs has been explored in terms of 

commercial production of EPS as a food additive (45, 46). A Methylobacillus strain 
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closely related to M. flagellatus, Methylobacillus sp. Strain 12S has been employed in 

studies aiming to define the set of genes involved in EPS synthesis and defining their 

specific functions (45, 46). As a result, a cluster of 21 genes has been characterized, and 

chemical properties of the EPS, named methanolan, studied. The latter has been found to 

be a heteropolymer composed of glycosyl, galactosyl, and mannosyl residues (3:1:1; 46). 

Interestingly, a large gene cluster was detected in the genome of M. flagellatus 

(Mfla2007-20299) that revealed significant gene syntheny with the cluster in 

Methylobacillus sp. Strain 12S (45). However, similarity between the polypeptide 

counterparts was very low, not exceeding 51% identity. As homologs of most of the 

genes involved in EPS biosynthesis in Methylobacillus sp. Strain 12S were present, 

similar chemical properties could be predicted for the EPS excreted by M. flagellatus. 

However, significant divergence in gene sequence suggests separate histories for the 

respective gene clusters in M. flagellatus and Methylobacillus sp. Strain 12S. An 

additional gene cluster predicted to be involved in EPS biosynthesis was identified in the 

genome (Mfla1268-1280) containing a number of genes with (distant) homologs in the 

former gene cluster. This gene cluster may be involved in biosynthesis of a different EPS.  

As sugar phosphates are central intermediates in the metabolism of C1 compounds 

by M. flagellatus, theoretically, precursors for EPS biosynthesis could be drawn straight 

from the RuMP cycle. Alternatively, sugar phosphate precursors may be synthesized de 

novo, via the reactions of gluconeogenesis, as shown in Fig. 1. There are two arguments 

in favor of the enzymes in question being involved in gluconeogenesis as opposed to 

glycolysis, the latter theoretically allowing growth on glucose and fructose: (1) the 
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apparent lack of sugar phosphorilation enzymes and (2) the apparent lack of a gene for 

phosphofructokinase.  

 

The identical repeat as a sign of the recent evolution of the genome 

A direct repeat of 143,032 base pairs was identified in the genome. The analysis 

of the repeated sequence and its flanking regions has shown that part of the repeat is 

made up by a group of genes unique to M. flagellatus and most probably representing a 

prophage (Mfla820-832 and Mfla964-976), based on predictions that some of these genes 

encode phage-related functions. The sequence analysis also revealed that one copy of the 

putative prophage interrupts a tonB-independent repressor gene homolog (Mfla818 and 

Mfla 833), while the entire sequence of the repeat interrupts a spoU gene homolog (Mfla 

963 and Mfla1107). The structure of the repeat schematically represented in Fig. 2 points 

toward the possibility that the duplication event occurred as a result of phage integration. 

The duplication in the sequenced strain of M. flagellatus appears to be a recent event, 

based on previous mutagenesis experiments. The repeat contains a number of C1 

utilization genes, such as zwf and gndA that are essential for survival of M. flagellatus. 

Attempts of mutagenizing these genes, via site-specific insertion mutagenesis were 

unsuccessful as recently as 1999, consistent with the essential role of these genes (7). 

Thus we assume that the duplication has occurred between 1999 and 2002, when the 

shotgun library for this sequencing project has been constructed. (I am trying to test this 

by doing mutagenesis again). 
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The polyphyletic nature of methylotrophy as deduced from genome comparisons 

M. flagellatus is the fourth methylotroph whose genomic determinants for 

methylotrophy are being reported. The organisms previously characterized in these terms 

include M. extorquens, an alphaproteobacterial facultative methylotroph (8), M. 

capsulatus, a gammaproteobacterial obligate methylotroph (44), and the recently 

described Methylibium petroleophilum, a betaproteobacterial facultative methylotroph 

(35, Hristova et al., Submitted). Methylotrophy has been characterized before in terms of 

functional metabolic modules, which encompass enzymes and factors involved in a single 

metabolic goal, such as methanol oxidation, formaldehyde oxidation or C1 assimilation 

(8). The major metabolic modules involved in methylotrophy in M. flagellatus, as 

described above, include oxidation systems for methanol and methylamine, the RuMP 

cycle for formaldehyde oxidation that overlaps to a large degree with the assimilatory 

RuMP cycle, and the H4MPT-linked formaldehyde oxidation pathway. While at least two 

putative formate dehydrogenases are encoded in the genome, their contribution to 

methylotrophy is predicted to be minor, based on the previous experiments demonstrating 

low levels of FDH activity during growth on C1 compounds and the predominant role of 

cyclic oxidation of formaldehyde that does not involve formate as an intermediate (6, 30). 

In terms of primary C1 oxidation functions, genome comparisons revealed that gene 

clusters encoding the methanol dehydrogenase function in M. flagellatus were similar to 

the respective gene clusters in M. extorquens and M. capsulatus (8, 44), while no major 

methanol oxidation cluster encoding the large and the small subunits of MDH and an 

associated cytochrome (MxaG) were identified in M. petroleophilum (Hristova et al., 

Submitted). The nature of the enzyme responsible for methanol oxidation in this 
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organism remains unknown. The mxaF homolog, xoxF that has been identified in the 

genome of M. petroleophilum, if active, would represent a different module, along with 

xoxGJ. Homologs of xoxFJG are also present in M. flagellatus, M. capsulatus and M. 

extorquens, and in the latter organism mutation analysis failed to establish a function for 

this module in methanol oxidation (9). The methylamine utilization gene cluster in M. 

flagellatus was found to be similar with the one in M. extorquens, except for the gene for 

amycianin, a natural electron acceptor for MADH in M. extorquens was missing from the 

M. flagellatus cluster. Instead, a gene for azurine, an alternative electron acceptor was 

present (14, 15). No genes encoding methylamine oxidation were detected in the M. 

petroleophilum or the M. capsulatus genomes. For formaldehyde assimilation, M. 

flagellatus employs the KDPG/TA version of the RuMP cycle, and the same module is 

employed by M. capsulatus (30, 44). In contrast, M. petroleophilum does not encode key 

function of the RuMP cycle. Instead, its genome contains a complete set of genes for the 

serine cycle, the formaldehyde assimilation pathway also employed by M. extorquens 

(Table 1; 8). Different gene clustering patterns and low gene similarity between the two 

organisms do not imply a recent transfer from an alpha-proteobacterial methylotroph into 

M. petroleophilum. The only methylotrophy module shared by all the organisms involved 

in comparisons, besides formate dehydrogenases that are ubiquitous, was the H4MPT-

linked C1 transfer module. We have previously conducted comparative analyses of gene 

clusters encoding H4MPT-linked C1 transfer reactions in methylotrophs (27). These 

analyses have uncovered that the cluster in M. flagellatus was more similar, in terms of 

gene syntheny, to the clusters in gammaproteobacterial methanotrophs than to the clusters 

in two other beta-proteobacteria, M. petroleophilum and Burkholderia xenovorans. 
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Phylogenetic analyses further supported the finding that in terms of H4MPT-linked C1 

transfer functions, M. flagellatus is more closely related to M. capsulatus than to 

betaproteobacteria of the order Burkhorderiales (27). These analyses suggest that M. 

flagellatus (and other Methylophilaceae) and M. petroleophilum (and other 

Burkholderiales) have acquired genes for H4MPT-linked C1 transfers as results of at least 

two independent events. Considering the lack of other overlapping methylotrophy 

modules in Methylophilaceae and Burkholderiales, we propose that methylotrophy as a 

metabolic capacity evolved at least twice in Betaproteobacteria.  

 

DISCUSSION 

We described here the findings form the genome analysis of an obligate methanol 

and methylamine utilizer, M. flagellatus strain KT that represents a large and 

environmentally abundant group of methylotrophs belonging to the family 

Methylophilaceae (37). In terms of methylotrophy functions, genome analysis revealed 

few surprises. Sets of genes encoding methylotrophy pathways previously predicted 

based on biochemical and genetic analyses (7, 15, 18, 30) were identified. Some of the 

methylotrophy genes were found in more than one, homologous or non-homologous 

copy. In addition, genes for enzymes converting pyruvate, the ‘end product’ of the 

assimilatory RuMP cycle into PEP and OAA were identified. M. flagellatus excretes 

large amounts of EPS during growth, equaling up to 20% of total biomass (41). All the 

genes encoding gluconeogenesis enzymes are present in the genome, and these are 

implicated in EPS biosynthesis. On the contrary, operation of the Embden-Meyerhof-

Parnas pathway is unlikely as no gene for phosphofructokinase is identifiable in the 
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genome. As expected, genes for few known sugar transporters were identified in the 

genome. While a set of genes homologous to a fructose transport (PTS) system were 

identified, they are not predicted to encode a functional transporter (24, 31). However, 

previous experiments on stimulation of biomass yield on methanol by the addition of 

glucose (30), likely due to enhanced EPS production, indicate that M. flagellatus is able 

to uptake sugars, even if non-specifically. The main cause for obligate methylotrophy of 

M. flagellatus must be the incomplete TCA as the genome is lacking three enzymes 

essential to its operation. While the function of malate dehydrogenase may be replaced by 

malate:quinone oxidoreductase (28), no enzymes that would functionally replace alpha-

ketoglutarate or sucinate dehydrogenases are encoded in the genome.  

The M. flagellatus genome encodes biosynthesis of all the amino acids and 

nucleotides, and of the vitamins and cofactors essential for its metabolism (biotin, 

riboflavin, CoA, H4F, H4MPT). Transport systems involved in essential metal (iron, 

molybdenum) homeostasis are identifiable, while few transporters predicted to uptake 

complex organic compounds (such as amino acids) are present. Few secondary 

metabolite biosynthesis pathways (such as antibiotic biosynthesis) are encoded, and no 

known xenobiotic degradation pathways are encoded. Overall, M. flagellatus appears to 

possess a streamlined, compact genome encoding few metabolic capacities in excess of 

the ones devoted to the efficient growth on C1 compounds, possibly pointing to the 

unique environmental function of M. flagellatus and likely other Methylotrophilaceae in 

consuming C1 compounds.  

The availability of the genomic sequence of M. flagellatus allowed comparisons 

with other methyltoroph genomes, in terms of methylotrophy functions. It is remarkable 
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that in terms of methylotrophy metabolic modules, M flagellatus has more in common 

with M. capsulatus, a gammaproteobacterium than with M. petroleophilum, a 

betaproteobacterium. While biochemistry of methylotrophy in M. petroleophilum is not 

nearly as well studied as in M. flagellatus, some of the essential methylotrophy modules 

are clearly missing from its genome, such as a gene cluster encoding a bona fide 

methanol dehydrogenase or key genes for the RuMP cycle (Hristova et al., submitted). 

Instead, a complete serine cycle for formaldehyde assimilation that was believed until 

recently to be characteristic of alphaproteobacterial methylotrophs (1, 32) is encoded in 

the M. petroleophilum genome (Hristova et al., submitted). The only methylotrophy 

module shared by M. flagellatus and M. petroleophilum is the H4MPT-linked 

formaldehyde oxidation pathway. However, previous phylogenetic analyses argued that 

even in terms of this module M. flagellatus is more related to gammaproteobacterial 

methylotrophs than to M. petroleophilum (27). While the questions of evolution of 

methylotrophy as a metabolic capability are far from being answered, it is rather clear 

that at least in betaproteobacteria methylotrophy has evolved more than once. It is worth 

noting that M. petroleophilum is not an isolated case of an organism possessing ‘non-

canonical’ methylotrophy metabolic modules. We have recently characterized a group of 

strains, classified as Methyloversatilis universalis of the family Rhodocyclaceae, which, 

like M. petroleophilum, do not appear to possess classical dehydrogenases for methanol 

or methylamine and utilize serine cycle for formaldehyde assimilation (26). The rather 

close relatedness of Methylophilalales, Rhodocuyclales and Burkholderiales suggests 

recent evolution for one of the two, and possibly both distinct modes of methylotrophy 

within betaproteobacteria.  
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Table 1 
 
Methylotrophy metabolic modules in M. flagellatus, compared to other methylotrophs 

 
_______________________________________________________________________ 
Methylotrophy      M. flagellatus M. petroleophilum M. capsulatus M. extorquens 
module                            
_____________________________________________________________________________________ 
 
Methane                  -  -   +  - 
monooxygenase 
 
Methanol   +  -   +  + 
mehydrogenase 
 
Mehylamine   +  -   -  + 
mehydrogenase 
 
H4MPT-linked   +  +   +  + 
C1 transfer 
 
Ribulosemono-   +  -   +  - 
phopshate cycle 
 
Serine cycle   -  +   +  + 
 
CBB cycle   -  +   +  - 
_____________________________________________________________________________________ 
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FIGURE LEGENDS 

Figure 1. Central metabolism of M. flagellatus as deduced from the genome sequence 

and prior genetic/physiological studies. Grey boxes indicate specific methylotrophy 

metabolic modules. Enzymes responsible for specific reactions are represented by the 

numbers (Mfla) of open reading frames as translated from the genome sequence 

(Genbank accession NC 007947).  CH3OH, methanol; CH3NH2, methylamine; CH2O, 

formaldehyde; H4MPT, tetrahydromethanopterin; H6P, hexulose 6-phosphate; F6F, 

fructose 6-phosphate; G6P, glucose 6-phosphate; 6PGL, 6-phosphogluconolactone; 6PG, 

6-phosphogluconate; KDPG, ketodeoxy 6-phosphogluconate; Ru5P, ribulose 5-

phosphate; Xu5P, xilulose 5-phosphate; E4P, eritrose 4-phopshate; S7P, sedoheptulose 7-

phopshate; GAP, glyceraldehyde phosphate; DHAP, dihydroxyacetone phosphate; 

F16PP, fructose 1,6-bisphosphate; G1P, glucose 1-phosphate; 1,3DPG, 1,3 

diphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, 

phosphoenolpyruvate; OAA, oxaloacetate; AcCoA, acetyl-CoA; α-KG, 

alphaketoglutarate; EPS, exopolysaccharide. 

 

Figure 2. Schematic representation of the chromosomal region containing a direct 

identical repeat. 3’ and 5’ indicate 3’ and 5’ partial genes, respectively.  
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