
 Open access  Posted Content  DOI:10.1101/2020.02.17.952267

Genome-scale conserved molecular principles of mRNA half-life regulation
— Source link 

Sudipto Basu, Saurav Mallik, Saurav Mallik, Suman Hait ...+1 more authors

Institutions: University of Calcutta, Weizmann Institute of Science

Published on: 17 Feb 2020 - bioRxiv (Cold Spring Harbor Laboratory)

Related papers:

 Genome-scale molecular principles of mRNA half-life regulation in yeast.

 
An integrative approach uncovers transcriptome-wide determinants of mRNA stability regulation in Saccharomyces
cerevisiae.

 Degradation of mRNA in bacteria: emergence of ubiquitous features.

 Regulation of mRNA Turnover by Cellular Stress

 Communication Is Key: 5'-3' Interactions that Regulate mRNA Translation and Turnover.

Share this paper:    

View more about this paper here: https://typeset.io/papers/genome-scale-conserved-molecular-principles-of-mrna-half-
zndivhl7zh

https://typeset.io/
https://www.doi.org/10.1101/2020.02.17.952267
https://typeset.io/papers/genome-scale-conserved-molecular-principles-of-mrna-half-zndivhl7zh
https://typeset.io/authors/sudipto-basu-3g25gfiil2
https://typeset.io/authors/saurav-mallik-1smpg2wjem
https://typeset.io/authors/saurav-mallik-1smpg2wjem
https://typeset.io/authors/suman-hait-3hhttn56mt
https://typeset.io/institutions/university-of-calcutta-11y37gdk
https://typeset.io/institutions/weizmann-institute-of-science-33xmjp8v
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/papers/genome-scale-molecular-principles-of-mrna-half-life-2243260zdk
https://typeset.io/papers/an-integrative-approach-uncovers-transcriptome-wide-2i3e31gvfl
https://typeset.io/papers/degradation-of-mrna-in-bacteria-emergence-of-ubiquitous-13q1pajpa1
https://typeset.io/papers/regulation-of-mrna-turnover-by-cellular-stress-4ooa1rr5id
https://typeset.io/papers/communication-is-key-5-3-interactions-that-regulate-mrna-4uv4lafrw0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/genome-scale-conserved-molecular-principles-of-mrna-half-zndivhl7zh
https://twitter.com/intent/tweet?text=Genome-scale%20conserved%20molecular%20principles%20of%20mRNA%20half-life%20regulation&url=https://typeset.io/papers/genome-scale-conserved-molecular-principles-of-mrna-half-zndivhl7zh
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/genome-scale-conserved-molecular-principles-of-mrna-half-zndivhl7zh
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/genome-scale-conserved-molecular-principles-of-mrna-half-zndivhl7zh
https://typeset.io/papers/genome-scale-conserved-molecular-principles-of-mrna-half-zndivhl7zh


P a g e  | 1 

 

Genome-scale conserved molecular principles 1 

of mRNA half-life regulation 2 

Authors: Sudipto Basu1,3, Saurav Mallik1,2,*, Suman Hait1, and Sudip Kundu1,3,* 3 

Author affiliations: 4 

1 Department of Biophysics, Molecular Biology and Bioinformatics, 92, Acharya Prafulla 5 

Chandra Road, University of Calcutta, Kolkata 700009, India. 6 

2 Present address: Department of Biomolecular Sciences, Weizmann Institute of Science, 7 

Rehovot 7610001, Israel. 8 

3 Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), 9 

University of Calcutta, JD-2, Sector-III, Saltlake, Kolkata 700106, India. 10 

* Correspondence. skbmbg@caluniv.ac.in (S.K.), saurav.mallik@weizmann.ac.il (S.M.) 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 17, 2020. ; https://doi.org/10.1101/2020.02.17.952267doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.17.952267


P a g e  | 2 

 

Abstract 1 

Precise control of protein and mRNA degradation is essential for cellular metabolism and homeostasis. 2 

Controlled and specific degradation of both molecular species necessitates their engagements with the 3 

respective degradation machineries; this engagement involves a disordered/unstructured segment of the 4 

substrate traversing the degradation tunnel of the machinery and accessing the catalytic sites. Here, we 5 

report that mRNAs comprising longer terminal and/or internal unstructured segments have significantly 6 

shorter half-lives; the lengths of the 5′ terminal, 3′ terminal and internal unstructured segments that 7 

affect mRNA half-life are compatible with molecular structures of the 5′ exo- 3′ exo- and endo-8 

ribonuclease machineries. Sequestration into ribonucleoprotein complexes elongates mRNA half-life, 9 

presumably by burying ribonuclease engagement sites under oligomeric interfaces. After gene 10 

duplication, differences in terminal unstructured lengths, proportions of internal unstructured segments 11 

and oligomerization modes result in significantly altered half-lives of paralogous mRNAs. Side-by-side 12 

comparison of molecular principles underlying controlled protein and mRNA degradation unravels their 13 

remarkable mechanistic similarities, and suggests how the intrinsic structural features of the two 14 

molecular species regulate their half-lives on genome-scale and during evolution. 15 

Keywords 16 

Messenger RNA, mRNA stability, mRNA degradation, Xrn1, Exosome, Rrp44, protein-RNA 17 

interaction 18 
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Introduction 1 

Quality control of all the constituent molecular machines is the key to sustain the living engine we call 2 

a cell. A plethora of surveillance pathways have evolved at different kingdoms of life to promote and 3 

to sustain the accurate designing of all the cellular macromolecules. For DNA, which is replicated only 4 

once during a cell cycle, elegant repair mechanisms have evolved to orchestrate the quality control of 5 

genetic information with chromosome segregation and cell cycle progression (Hustedt & Durocher, 6 

2016). For RNA and proteins, which are regularly synthesized, a myriad of enzyme machineries has 7 

evolved to prompt the degradation of the aberrant species and to execute their controlled hydrolysis as 8 

they get damaged during their lifetime (Houseley & Tollervey, 2009; Bhattacharyya et al, 2014). A 9 

precise balance between the synthesis of nascent copies and degradation of the damaged ones maintains 10 

the cellular homeostasis and assigns each protein and RNA molecule a characteristic half-life (Belle et 11 

al, 2006; Mathieson et al, 2018; Price et al, 2010; Wang et al, 2002; Narsai et al, 2007; Raghavan et al, 12 

2002; Eser et al, 2016) 13 

Despite the immense compositional, structural and functional diversity of protein and RNA molecules 14 

within the cell and among organisms, their controlled degradations, in all kingdoms of life, exhibit 15 

remarkably similar mechanistic principles (Makino et al, 2013b; Houseley & Tollervey, 2009; Cromm 16 

& Crews, 2017). In eukaryotic cells, degradation of both molecular species involves surveillance and 17 

proofreading pathways recognizing the damaged copies and festooning them with a degradation signal 18 

(poly(A/U) tag (Slomovic et al, 2010; West et al, 2006; Bresson et al, 2015; Mullen & Marzluff, 2008) 19 

and 5′ decapping (Mullen & Marzluff, 2008; Franks & Lykke-Andersen, 2008; Coller & Parker, 2004) 20 

for mRNAs, and poly-ubiquitin tag for proteins (Finley, 2009; Thrower et al, 2000). Protease and RNase 21 

machineries then recognize these aberrant substrates based on these tags, mechanically unfold them 22 

with the help of ATP-dependent and/or ATP-independent cofactors and finally hydrolyze them into 23 

small oligo-peptide/-nucleotide fragments (Bhattacharyya et al, 2014; Makino et al, 2013b; Houseley 24 

& Tollervey, 2009). 25 

Both protein and RNA degradation in the cell follow first order kinetics, depending on a rate-26 

determining initial step: substrate engagement with the protease/RNase machinery (Goldberg & Dice, 27 

1974; Schimke & Doyle, 1970; Laalami et al, 2014). Protein degradation in eukaryotic cells is 28 

predominantly mediated by a barrel-shaped self-assembling machine called proteasome that can engage 29 

with any disordered region of the substrate of sufficient length (~30 amino acid for terminal, ~40 amino 30 

acid for internal) and initiate degradation (Ciechanover, 2005; Bhattacharyya et al, 2014; van der Lee 31 

et al, 2014). Prevalence of one single, highly conserved machinery confers the advantage that 32 

understanding how it works leads to a systematic understanding of the overall process in a multitude of 33 

organisms. Consequently, molecular factors influencing protein degradation have been extensively 34 

explored on a genome scale, and in multiple organisms (van der Lee et al, 2014; Fishbain et al, 2015; 35 

Mallik & Kundu, 2018). RNA degradation, on the other hand, involves three major classes of RNases: 36 

endonucleases that cut RNA internally, 5′ exoribonucleases that hydrolyze RNA from the 5′ end, and 37 

3′ exoribonucleases that degrade RNA from the 3′ end (Houseley & Tollervey, 2009; Hui et al, 2014). 38 

Genomes of most organisms encode multiple enzymes of each class, often with overlapping activities 39 

and a plethora of common target substrates, which makes the overall process very difficult to understand 40 

systematically (Houseley & Tollervey, 2009; Hui et al, 2014). As a result, to this date exploration of 41 

molecular factors influencing RNA (and especially messenger RNA, mRNA) degradation on a genome 42 

scale remains limited to finding the degradation signals (Slomovic et al, 2010; West et al, 2006; Bresson 43 

et al, 2015; Mullen & Marzluff, 2008; Franks & Lykke-Andersen, 2008; Coller & Parker, 2004) and 44 

degradation-promoting or hindering sequence motifs (Tomecki & Dziembowski, 2010; Cheng et al, 45 
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2017; Yang et al, 2003; Geisberg et al, 2014; Geissler & Grimson, 2016). But a systematic 1 

understanding of how the structural attributes of the RNase machineries and their substrates influence 2 

mRNA half-life on a genome scale and during evolution remains elusive. 3 

Here, we exploited (i) the experimental half-life data of Saccharomyces cerevisiae mRNAs, (Data S1) 4 

(ii) their experimentally derived secondary structures as well as protein-binding data, (iii) extensive 5 

characterization of their coding (CDS) and 5′ and 3′ untranslated regions (UTRs), (Data S1) along with 6 

(iv) high-resolution X-ray crystallographic structures of the RNase machines (Table S1) – to develop a 7 

comprehensive theory demonstrating how the intrinsic structural attributes of the RNase machines and 8 

their substrates influence mRNA half-life on a genome scale. Despite the enormous variation in 9 

sequence, structure and function of mRNAs on a genome scale, and that of their degradation 10 

machineries, simple molecular principles tune transcript half-lives across the genome and during 11 

evolution, similar to that of proteins.  12 

Results 13 

To investigate the relationship between the structural attributes of mRNA transcripts and their in vivo 14 

half-lives, we began with comparing the known mechanistic principles of protein and mRNA 15 

degradation, to gain insight about their similarities. The major protease machinery, proteasome, is a 16 

barrel-shaped molecular machine, with its catalytic sites accessible through a ~70 Å long narrow 17 

internal tunnel. Protein substrates that exhibit ~30 residues long intrinsically disordered regions at their 18 

termini or ~40 residues long intrinsically disordered regions in the middle (Lobanov et al, 2010; 19 

Uversky, 2013; van der Lee et al, 2014) can potentially traverse this tunnel and access the catalytic 20 

sites. This geometrical constraint of enzyme-substrate engagement tunes protein half-life in a way that 21 

proteins comprising >30 residues terminal (Fig. 1A) and/or >40 residues internal disordered regions 22 

(Fig. 1B) exhibit significantly shorter half-life than proteins without these features (van der Lee et al, 23 

2014). A careful survey of the existing literature hints that similar mechanistic principles influence 24 

mRNA half-life as well. On one hand, crystal structure data showed that mRNA degradation 25 

machineries exhibit ‘molecular cage’-like shapes, with their catalytic sites accessible through narrow 26 

internal tunnels (Fig. 1 C–G) (except for endonuclease degradation where the catalytic sites are 27 

positioned on the surface (Bonneau et al, 2009)). On the other hand, experimental genome-wide mRNA 28 

secondary structure measurements (Rouskin et al, 2014; Kertesz et al, 2010) as well as computational 29 

predictions  (Shabalina et al, 2006) depicted that mRNAs tend to be more unstructured (presence of 30 

higher proportion of single stranded region) at their termini than in the middle (Fig 2A). To 31 

systematically understand how the geometrical constraints of enzyme-substrate engagement influence 32 

mRNA half-life on a genome-scale and in evolution, we identified the degradation tunnels in different 33 

RNase machines and estimated the lengths of terminal unstructured regions for each mRNA substrates. 34 

Combining these with experimental mRNA half-life data, we performed a rigorous statistical 35 

comparison. 36 

RNase machineries comprise catalytic sites accessible through narrow internal tunnels 37 

To understand the geometrical criteria of enzyme-substrate recognition associated with mRNA 38 

degradation, we collected high-resolution crystallographic structures of known RNase machines of S. 39 

cerevisiae (Fig. 1C–G, Fig S1A-C,Table S1) and their respective catalytic site information (Porter et 40 

al, 2004) (Table S1). A comprehensive methodology (see Materials and Methods) was developed to 41 

identify the degradation tunnels (with an entry and an exit pore) in these machines that single-stranded 42 

mRNAs can traverse to access the catalytic sites.  43 
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Results show that the minimum length threshold required to traverse the tunnel entry to the catalytic 1 

site are different for different RNase machineries (Table S1). For example, progressive 5′→3′ 2 

exoribonucleases Xrn1 and Xrn2 comprise 35–40 Å long internal tunnels that 5–6 nucleotide (nt) long 3 

single-stranded mRNA substrates can traverse (Fig 1 C, D, Fig S1A). The X-ray crystallographic 4 

structure of Drosophila Xrn1, bound to an RNA substrate (Jinek et al, 2011), showed very similar length 5 

requirements. 6 

 7 

Figure 1. RNase machineries exhibit catalytic sites accessible through narrow internal tunnels 8 

(A–B) Schematic diagrams of proteins engaging with proteasome through their (A) terminal and (B) 9 

internal disordered regions. Bottom. Proteins were classified based on the lengths of their (A) terminal 10 

and (B) internal disordered segments: long (TDR > 30 aa, and IDR > 40 aa, orange) and short (TDR ≤ 11 

30 aa, and IDR ≤ 40 aa, grey). Mann-Whitney U tests were performed to test whether the distributions 12 

significantly differ, p-values are mentioned. These two panels are generated following ref. (van der Lee 13 

et al, 2014). (C–G) The molecular diagrams of different mRNA machineries (surface representation), 14 

with their degradation tunnels highlighted schematically. The catalytic site locations are schematically 15 

marked as scissors. The machineries depicted as following: progressive 5′→3′ exoribonuclease Xrn1 16 

(C) and Xrn2 (D), the Exo-10 (comprising RNase PH-like subunits, green, and S1 and KH ring, orange) 17 

associated with progressive 3′→5′ exoribonuclease Rrp44 (yellow) (E), Rrp44 acting alone (F), 18 

distributive exoribonuclease Rrp6 acting alone (G). 19 

 20 

The major progressive 3′→5′ exoribonuclease, exosome (Exo-10, Fig. 1E, Fig S1B), is formed by nine 21 

catalytically inert subunits (Exo-9, comprising the RNase PH-like ring and the S1 and KH ring) and 22 

one catalytically active RNase, Rrp44 (Makino et al, 2013a, 2013b). A comprehensive RNase digestion 23 

assay investigating the lengths of single stranded RNA being protected by inactive Exo-10, against 24 

RNase A and RNase T1, detected 31–33 nt RNA fragments (Bonneau et al, 2009). Later, an X-ray 25 
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crystallographic structure of Exo-10, bound to a substrate RNA (Makino et al, 2013a), confirmed that 1 

a 31–33 nt single-stranded RNA substrate can traverse the highly conserved core internal tunnel 2 

(roughly 160 Å path, Table S1) and access the catalytic site. Recently, a Cryo-EM structure of human 3 

Exo-10 (Weick et al, 2018), showed a very similar 31–33 nt path.  4 

The catalytic subunit of exosome, progressive 3′→5′ exoribonuclease Rrp44, also digests unstructured 5 

substrates on its own. The previously mentioned RNase digestion assay showed that inactive 6 

Rrp44ΔPIN (Rrp44 without the endonuclease PIN domain) protects 9–10 nt RNA fragments (Bonneau 7 

et al, 2009). A careful analysis of Rrp44 structure unraveled an internal tunnel of ~57 Å (Fig. 1F, Fig 8 

S1C, Table S1), that a single-stranded RNA of 9–10 nt length can traverse. X-ray and Cryo-EM 9 

structures of yeast (Bonneau et al, 2009) and human Exo-10 (Makino et al, 2013a), bound to the 10 

substrate RNAs, further confirmed this estimation. In the nucleus, the Exo-10 core recruits a distributive 11 

3′→5′ exoribonuclease Rrp6. Rrp6 comprises a ~49 Å internal tunnel through which 8–9 nt long 12 

substrates can traverse (Fig. 1G, Fig S1C). In summary, cells encode different classes of RNases and 13 

their geometrical criteria of substrate recognition also varies broadly. 14 

Substrate mRNA molecules tend to exhibit unstructured regions at both termini 15 

A generalized feature implicated in protein degradation is that substrate proteins tend to exhibit 16 

intrinsically disordered termini (van der Lee et al, 2014; Lobanov et al, 2010; Uversky, 2013). To 17 

understand whether substrate mRNA molecules exhibit similar structural features, we combined 18 

experimental PARS-score based estimation of mRNA secondary structures (Kertesz et al, 2010) with 19 

RNAfold-based computational predictions (Hofacker, 2003). PARS-scores represent the single (PARS 20 

< 0) or double stranded nature (PARS > 0) of RNA molecules at single nucleotide resolution, using 21 

ribonuclease digestion and high-throughput sequencing (Wan et al, 2013). Based on the PARS score, 22 

the single and double stranded regions of the transcript were designated as unstructured and structured 23 

regions, respectively. RNAfold predicts the minimum free energy structure (ΔG) of a given RNA 24 

sequence using Zuker and Stiegler algorithm (Zuker & Stiegler, 1981). A sliding-window approach was 25 

applied, in which starting from the 5′-end of the transcript, a window of 25 nucleotides (other thresholds 26 

provide very similar results) was sliding towards the 3′-end, one nucleotide at a time, and the average 27 

PARS scores of all the nucleotides within that window was compared with their RNAfold-predicted 28 

MFE. Normalizing transcript lengths within the range 1–100, the PARS and negative MFE values 29 

(−ΔG), averaged across all transcripts were plotted in Fig 2A. Across the transcript lengths, both 30 

parameters depicted a clear and consistent tendency that transcripts tend to be less structured at their 31 

termini than at the middle.  32 

Terminal unstructured regions influence mRNA half-lives on a genome scale 33 

Since mRNAs engage with exonuclease machineries through their terminal unstructured regions (TUR)  34 

(Houseley & Tollervey, 2009; Hui et al, 2014), those featuring TURs long enough to traverse the 35 

respective RNase machinery internal tunnel and access the catalytic sites would presumably be 36 

degraded faster (shorter half-life) than mRNAs without this feature. One in vitro biochemical study 37 

(Lorentzen et al, 2008) on Rrp44 (requires 9 nt 3′ TUR) showed that such principles do exist: the authors 38 

incubated duplex RNA substrates with 14 nt, 7 nt, 4 nt, and 2 nt long 3′ TURs with Rrp44 and observed 39 

that while Rrp44 efficiently degraded substrates with 14 nt long 3′ TURs, those comprising 7 nt and 4 40 

nt long 3′ TURs degraded slower and slower, while those having 2 nt long 3′ TURs were not degraded 41 

at all. 42 
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 1 

Figure 2. The effects of terminal unstructured region lengths on S. cerevisiae mRNA half-life. 2 

(A) PARS scores (black) and RNAfold-predicted −ΔG values (blue), averaged over all the transcripts 3 

(n=3000) used in our analysis, are plotted, where each transcript length is scaled within the range 1-4 

100.  For both PARS and −ΔG, the respective standard deviation values (shown as error bars) are scaled 5 

down five-fold, for the clarity of presentation. (B–C) For different (B) 5′ TUR and (C) 3′ TUR length 6 

thresholds, yeast transcripts (n=2854) were classified into two groups: short (those that exhibit TUR 7 

lengths ≤ threshold) and long (those that exhibit TUR lengths > threshold). Each time, the difference of 8 

the mean half-lives of the two groups (ΔT1/2, blue, linear scale) was estimated and Mann-Whitney U-9 

test was performed to test whether the respective distributions differ significantly. The p-values of the 10 

test are plotted in log scale (black). PARS score data of the last 24 nucleotides of the transcripts were 11 

inconclusive (which is why 3′ TUR length thresholds start from 25 nt, (C), broken axis), though 12 

RNAfold clearly suggested that these regions are unstructured (A). The plots are generated using 13 

experimental half-life data by Miller and his group (Miller et al, 2011). Plots for rest of the datasets are 14 

given in the supplementary (Fig S2A-B). 15 

 16 

To understand the effect of TUR lengths on mRNA half-life, the 5′ and 3′ TUR lengths of each transcript 17 

were estimated from the PARS-score data (see Materials and Methods). For a transcript of length L, 18 

if s1 and s2 are indices of the first and last structured nucleotides having PARS score > 0, then the 5' 19 

and 3' terminal unstructured region (TUR) lengths were assigned as s1-1 and L-s2-1, respectively.  The 20 

estimated 5′ TUR lengths varied within the range 0–300 nt (mean = 7.8, median = 2.5) (Fig S2C, Data 21 

S1); 3′ TUR lengths varied within the range 25–1164 nt (mean = 37.9, median = 30.0) (Fig S2C, Data 22 

S1). The PARS score data of the last 24 nucleotides at the 3' UTR region of the transcripts were 23 

inconclusive (PARS = 0). However, RNAfold-predicted −ΔG values clearly suggested that these 24 

regions tend to be unstructured (Fig 2A).  25 

Controlled protein degradation in eukaryotic cells is mediated by a single machinery, proteasome; 26 

meaning, the same 30 aa TDR length criterion applies to all the substrates. If we classify yeast proteins 27 

into two groups depending on the TDR lengths: short (TDR ≤ 30 aa) and long (TDR > 30 aa), the latter 28 

exhibits significantly shorter half-life than the former ( 30 30
1/2 1/2
TDR TDR

T T
  , Mann Whitney U-test p < 29 

10−5) (van der Lee et al, 2014). Degradation of mRNAs, on the other hand, involves multiple RNase 30 

machineries having characteristic TUR length criteria and specific directional preferences for 31 

degradation (3′→5′ or 5′→3′). Since no single length cutoff applies to all mRNAs, we varied 5′ and 3′ 32 

TUR length cutoffs, i and j, and investigated whether 1/2 1/2
5 5TUR i TUR i

T T
   (half-lives of mRNAs having 33 

5′ TUR ≤ i (short group) are longer than those having 5′ TUR > i (long group)) and 1/2 1/2
3 3TUR j TUR j

T T
   34 

(whether half-lives of mRNAs having 3′ TUR ≤ j (short group) are longer than those having 3′ TUR > 35 
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j (long group)) trends exist on a genome scale. As 5′ TUR length i varied, we plotted the half-life 1 

differences of short and long groups ( 1/2 1/2 1/2
5 5TUR i TUR i

T T T
  = − ) and the p-values representing whether 2 

1/2
5TUR i

T
  and 1/2

5TUR i
T

  significantly differ (MWU-test of equal median). 3 

Results showed that for different 5′ TUR thresholds, half-life difference (and the respective p-value) 4 

between short and long groups attains a maxima (minima) within the range 3 8i   nt, and then 5 

gradually decreases (increases) as longer length thresholds were applied (Fig 2B, Fig S2A). Given that 6 

the major progressive 5′→3′ exoribonucleases Xrn1/2 require ~5 nt 5′ TUR to engage efficiently, this 7 

result clearly depicts that mRNAs comprising 5′ TURs amenable to efficient Xrn1/2 engagement have 8 

significantly shorter half-lives than mRNAs without this feature. As longer and longer length thresholds 9 

were applied, slowly and rapidly degrading mRNAs mixed together in the short group, and the 10 

significant difference between the short and the long group continued to fade away. In case of 3′ TUR, 11 

the half-life difference (and the respective p-value) between short and long groups attained a maxima 12 

(minima), within the range 29 41j  nt, and then gradually decreased (increased) as longer length 13 

thresholds were applied (Fig 2C, Fig S2B). This 29–41 nt range probably reflects the 31-33 nt mRNA 14 

path through the Exo-10 central tunnel (Fig 1E), which extends to 40–41 nt when Exo-10 recruits ATP-15 

dependent RNA helicase Ski-complex (cytoplasm) and TRAMP complex (nucleus, Table S1) in order 16 

to mechanically unwind structured mRNA substrates prior to degradation (Makino et al, 2013b). These 17 

results suggest that the geometrical criteria of enzyme-substrate recognition can be efficiently captured 18 

by analyzing high-resolution crystallographic structures of the degradation machineries and these 19 

criteria influence half-lives of the substrate molecules on a genome-scale. 20 

The proportion of internal structured and unstructured segments likely influence 21 

engagement to endonuclease machineries and thereby regulate transcript half-lives 22 

Yeast genome encodes various endonuclease machineries with a wide variety of functions (reviewed in 23 

(Tomecki & Dziembowski, 2010)), among which here we focus on Rrp44-mediated controlled mRNA 24 

degradation. The N-terminal PIN domain of Rrp44 harbors endonuclease activity, that cuts substrate 25 

mRNAs from the middle. Endonuclease activity does not involve an internal tunnel (Bonneau et al, 26 

2009). A careful survey of Rrp44 crystal structure showed that the key catalytic residue Asp171 is 27 

located roughly at the middle of the PIN domain surface (Lebreton et al, 2008; Bonneau et al, 2009), 28 

about 30 Å distant from the boundary of the PIN domain. Thus, one can speculate that a single stranded 29 

substrate mRNA of 8–12 nt length should be able to position itself around Asp171 (Schaeffer et al, 30 

2009; Bonneau et al, 2009), along the PIN domain structure. Thus, using different thresholds between 31 

8–14 nt, we tried to understand whether and to what extent the geometrical criterion for endonuclease 32 

engagement influences transcript half-lives on a genome scale.  33 

We first developed a methodology to systematically capture the internal unstructured regions (IURs) of 34 

transcripts from experimentally determined PARS-scores (Kertesz et al, 2010). We adopted a sliding 35 

window approach. Starting from the 5′-end of the transcript, a window of 12 nucleotides was sliding 36 

towards the 3′-end, 6 nucleotides slide at a time (12/6). We counted the number of windows in which ≥ 37 

60% nucleotides with PARS score < 0 ( usn , putative unstructured regions, amenable to endonuclease 38 

engagement). The number of windows that did not satisfy this criterion were assigned as putative 39 

structured regions ( sn , not amenable to endonuclease engagement). We estimated the overall 40 

(un)structured nature of the mRNA as ( ) ( )us s us sn n n n = − + , which ranges between −1 to +1 (Data 41 

S1). The mRNAs with higher ξ (i.e., majorly unstructured) are presumably more amenable to Rrp44 42 

engagement, thus would have shorter half-lives. All mRNAs in our dataset comprises at least one IUR. 43 
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To understand how these segments influence mRNA half-life, we classified S. cerevisiae mRNAs into 1 

multiple groups based on their ξ values. Half-life distributions of these groups differed significantly, in 2 

a way that that mRNAs having higher proportions of unstructured elements had shorter median half-3 

lives ( 22610p
− , multi-sample Kruskal Wallis test for equal median) (Fig 3A, Fig S3A). Assigning 4 

structured and unstructured regions of different window sizes (8/4, 10/5, 14/7, and 16/8) and for 5 

different nucleotide thresholds (40%, 60%, 70% nucleotides having PARS > 0) did not alter this trend 6 

(Fig S3C-G). An example plot for 12/6 window and for 40% nucleotide threshold (a window was 7 

assigned as an unstructured region if ≥40% nucleotides had PARS score < 0) is shown in Fig 3B (Fig 8 

S3B). 9 

Overall, these results reflect that relative abundance of unstructured and structured segments within the 10 

transcripts, in which the former is a potential endonuclease engagement site and the latter is not, 11 

influences mRNA half-life on a genome scale. Previously, van der Lee et al, 2014 showed similar results 12 

for proteins.  13 

 14 

Fig 3. The effects of internal (un)structured regions on mRNA half-life 15 

Half-life distributions of S. cerevisiae mRNAs are plotted as notched boxes (notches represent median), 16 

for different ξ ranges; ξ calculation was performed for 12/6 window size and an unstructured window 17 

was assigned for (A) 60% and (B)  40% nucleotides in the window having PARS < 0. Increasing 18 

(decreasing)   values reflect comparatively more unstructured (structured) nature of the transcript that 19 

tend to exhibit shorter (longer) half-life. Multi-sample Kruskal-Wallis test of equal median were 20 

performed to test whether the half-life distributions differ significantly, the p-values are provided. The 21 

plots are generated using experimental half-life data by Miller and his group (Miller et al, 2011). Plots 22 

for rest of the datasets are given in the supplementary (Fig S3A-B). 23 

Sequestration into ribonucleoprotein complexes probably hinders exo- and 24 

endonuclease engagement and elongates transcript half-lives 25 

Previously, working on the structural constraints influencing protein half-life on a genome-scale, we 26 

showed that sequestration into multi-component complexes warrants longer half-lives of protein 27 

subunits, presumably because the intrinsically disordered and ubiquitinoylation sites amenable to 28 

proteasomal engagement are buried under oligomeric interfaces (Mallik & Kundu, 2018). We asked 29 

whether similar molecular principles apply to mRNA degradation as well, meaning whether transcripts 30 

sequestrating into ribonucleoprotein complexes are more likely to avoid degradation (presumably by 31 

burying their unstructured regions amenable to RNase engagement at oligomeric interfaces) compared 32 

to transcripts that do not (Fig. 4B). This analysis was performed on a compendium of experimental 33 

protein-binding site data of S. cerevisiae transcripts, at single nucleotide resolution, obtained from 34 
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ClipDB (Yang et al, 2015). This data included 50 proteins that bind to at least one of the 2665 transcripts 1 

but do not promote mRNA degradation directly or indirectly (Fig 4A, Data S2) (see Materials and 2 

Methods). Since transcripts can engage with RNases from both ends as well as from the internal 3 

regions, to investigate how protein binding hinders exo- and endo-nuclease activities, we mapped the 4 

protein binding sites on the transcript sequences. 5 

Protein binding at transcript termini results in longer transcript half-life. In S. cerevisiae, 5′-end 6 

decapping is usually followed by rapid progressive 5′→3′ degradation by Xrn1/2 (Beelman et al, 1996; 7 

Muhlrad et al, 1994). We began with a set of 796 mRNAs comprising ≥ 5 nt long 5′ TUR and classified 8 

them into two groups: (i) those that bind to at least one protein at the 5′ TUR and (ii) those that do not. 9 

Because protein binding at 5′ TUR would, in principle, hinder Xrn1/2 engagement, the former is 10 

expected to exhibit longer half-lives than the latter. This trend was indeed observed (Fig. 4C, Fig S4A), 11 

and is statistically significant with p < 10−5 (MWU test) on a genome-scale. Next, because binding of 12 

any protein to the 5′ UTR would, in principle, hinder progressive 5′→3′ degradation, we performed the 13 

following analysis. For each transcript, (i) the number of unique proteins (n5) binding to its 5′ UTR 14 

(Data S2), and (ii) the fraction of the 5′ UTR length covered by protein binding regions (f5), were 15 

computed. For a given transcript, both parameters represent the probability of progressive 5′→3′ 16 

degradation being hindered by protein binding. We performed two analyses. First, based on n5, S. 17 

cerevisiae transcripts were classified into three groups: (i) n5 = 0, (ii) 0 < n5 ≤ 10, and (iii) n5 > 10. Half-18 

lives of these three groups differed significantly (KW p < 10−9, Fig. 4D, Fig S4B), such that T1/2(i) < 19 

T1/2(ii) < T1/2(iii). Second, based on f5, transcripts were reclassified into three groups: (a) f5 = 0, (b) 0 < 20 

f5 ≤ 0.5, and (c) f5 > 0.5. Half-lives of these three groups again differed significantly (KW p < 10−19, 21 

Fig. 4E, Fig S4C), such that T1/2(a) < T1/2(b) < T1/2(c). These results reflect that protein binding at the 5′ 22 

UTR tunes transcript half-lives on a genome scale, likely by hindering Xrn1/2-mediated progressive 23 

5′→3′ degradation. A similar systematic analysis could not be performed for 3′ TUR or 3′ UTR, because 24 

only for 31 transcripts protein binding sites were mapped at 3′ TURs or 3′ UTRs. 25 

Protein binding at internal unstructured regions results in longer transcript half-life. In the previous 26 

section, we proposed that 8–12 nt internal unstructured segments might efficiently engage with Rrp44 27 

PIN domain, and showed that abundance of such unstructured segments (over structured segments) 28 

results in shorter transcript half-lives. The fraction of the unstructured regions that are also protein 29 

binding sites (fi) were calculated for each transcript. If at least 3 nucleotides of an unstructured region 30 

comprises a protein binding site, we assigned it as a protein binding region. The parameter, fi, 31 

theoretically ranges from 0 to 1; and the higher the fi, the higher proportion of the internal unstructured 32 

regions is buried. Transcripts were classified into three groups based on fi -values: (i) fi ≤ 0.1, (ii) 0.2 ≤ 33 

fi < 0.1 and (iii) fi > 0.2, and their half-life distributions were statistically compared. Half-lives of these 34 

three groups again differed significantly (KW p < 10−39, Fig. 4F, Fig S4D), in a way that transcript half-35 

lives elongate as higher and higher fractions of potential endonuclease engagement sites are buried at 36 

ribonucleoprotein interfaces. 37 

Sequestration into multiple ribonucleoprotein complexes results in longer half-life. Previously we 38 

showed that proteins sequestrating into multiple complexes tend to have longer half-lives than those 39 

that sequestrate into only one complex, presumably because in the former case, the protein is rarely 40 

available to the proteasome machinery in its monomeric state (Mallik & Kundu, 2018). Fig. 4D 41 

indicates that similar molecular principles apply to mRNA degradation as well (transcripts that bind to  42 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 17, 2020. ; https://doi.org/10.1101/2020.02.17.952267doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.17.952267


P a g e  | 11 

 

 1 

Fig 4. The effects of protein binding on mRNA half-life. 2 

(A) A sequential pipeline of the analysis along with the number of datapoints (n) used at each step (B) 3 

Top, a schematic representation of mRNA (black line, red termini signify the TURs) engaged with a 5′ 4 

exonuclease, represented as Pac-man; bottom, protein (blue) binding at the 5′ TUR hinders engagement. 5 

(C) Half-life distributions of mRNAs comprising ≥ 5 nt long 5′ TUR that do (top, grey) and do not 6 

(bottom, wine) bind to proteins. These distributions are compared by a Mann-Whitney U test, p-value 7 

is provided. (D–G) Half-life distributions of S. cerevisiae mRNAs (Miller et al., 2011) are plotted as 8 

notched boxes (notches represent medians), based on (D) the number of unique proteins (n5) binding to 9 

its 5′ UTR, (E) the fraction of the 5′ UTR length covered by protein binding regions (f5), (F) the fraction 10 

of internal unstructured regions that are protein binding sites (fi), and (G) the total number of unique 11 

proteins (np) binding. In each case, the number of mRNAs in each group are mentioned. Multi-sample 12 

Kruskal-Wallis test of equal median was performed to test whether the distributions differ significantly; 13 

p-values are provided. The plots are generated using experimental half-life data by Miller and his group 14 

(Miller et al, 2011). The plots for rest of the datasets are given in the supplementary (Fig S4A-E). 15 

multiple proteins at its 5′ UTR exhibit longer half-lives), even though, on average, 5′ UTR comprise 16 

only 28% of all the proteins binding to a transcript. Therefore, finally we classified the S. cerevisiae 17 
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transcripts into three classes of roughly equal size, based on the number of unique proteins (np) it binds 1 

to (Data S2): (1) np ≤ 5, (2) 5 < np ≤ 10, (3) 10 < np ≤ 15 and (4) np > 15. Half-lives of these four groups 2 

again differed significantly (KW p < 10−56, Fig. 4G, Fig S4E), such that T1/2(1) < T1/2(2) < T1/2(3) < 3 

T1/2(4). 4 

These results suggest that sequestration into ribonucleoprotein complexes elevates transcript half-lives, 5 

presumably by burying the RNase engagement sites under complex interfaces. Further, promiscuous 6 

sequestration into multiple ribonucleoprotein complexes elevates transcript half-lives on a genome 7 

scale, likely because the transcript is rarely available to RNase machineries in the monomeric state. 8 

Differential half-lives of paralogous transcripts depend on their altered TUR lengths, 9 

modified proportions of internal unstructured segments and different oligomerization 10 

modes 11 

Previous genome-wide analyses of yeast paralogous protein pairs (that arose from gene duplication and 12 

evolving under similar conditions), unraveled that terminal and internal disordered segments and 13 

oligomerization modes (how many macromolecular complexes they sequestrate into) of paralogous 14 

proteins diverge in the course of evolution, resulting in their altered half-lives (van der Lee et al, 2014; 15 

Mallik & Kundu, 2018). Based on this fact, we asked whether paralogous transcripts diverge in their 5′ 16 

and 3′ TUR lengths, in the proportions of internal structured and unstructured regions (ξ), and 17 

oligomerization modes (number of proteins bound to mRNA), and if they do, whether these changes 18 

correspond to their altered half-lives. 19 

We began by classifying the paralogous pairs (Data S3) (half-lives 1
1/2T  and 2

1/2T ) into two groups: 20 

Similar, those that during evolution maintained 5′ and 3′ TURs of roughly equal lengths (i.e., 5′ TURs 21 

of both transcripts are either ≤ 5 or > 5, and 3′ TURs of both transcripts are also ≤ 33 or > 33) and 22 

Divergent, pairs with TURs of different lengths (i.e., 5′ TURs of one paralog is ≤ 5, while the other is 23 

> 5, and 3′ TURs of one paralog is ≤ 33, while the other is > 33). If changes in TUR lengths correspond 24 

to changes in half-life, the ‘Divergent’ group is expected to have wider distribution of half-life 25 

differences ( 1 2
1/2 1/2 1/2T T T = − ) than the ‘Similar’ group. This trend was indeed observed (Fig. 5A, Fig 26 

S5A), with a p < 10−6 statistical significance (F-test under the null hypothesis of equal variances). In 27 

other words, paralogous transcripts with similar 5′ and 3′ TUR lengths tend to have similar half-lives, 28 

and TUR length dissimilarity is usually associated with differential half-lives. 29 

 30 

Fig 5. Evolutionary divergence of TUR lengths and that of internal unstructured segments 31 

influence transcript half-lives 32 

(A) Distribution of half-life differences in S. cerevisiae paralogous transcripts, grouped according to 33 

the difference in the 5′ and 3′ TUR lengths. Similar: 5′ TURs of both transcripts are either ≤ 5 or > 5, 34 

as well as 3′ TURs are also ≤ 33 or > 33. Divergent: 5′ TUR of one paralog is ≤ 5, while the other is > 35 

5, and 3′ TUR of one paralog is ≤ 33, while the other is > 33. (B) Distribution of half-life differences in 36 

S. cerevisiae paralogous transcripts (Miller et al., 2011), grouped according to the difference in the 37 

proportions of structured and unstructured regions [unstructured/structured: 60/40, overlap/discrete: 38 

6/12]. Similar: −0.05 ≤ Δ  ≤ 0.05. Divergent: −0.05 > Δ  or Δ  > 0.05. (C) Distribution of half-life 39 

differences in S. cerevisiae paralogous transcripts (Miller et al., 2011), grouped according to the 40 
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difference in protein binding modes. Similar: those that bind to roughly the same number of proteins, 1 

and Divergent: those that bind to differential number of proteins. For each comparison, the number of 2 

pairs in each group are mentioned, as well as the p-value of F-test under the null hypothesis of equal 3 

variances. The plots are generated using experimental half-life data by Miller and his group (Miller et 4 

al, 2011). The plots for rest of the datasets are given in the supplementary (Fig S5A-C). 5 

A similar analysis was performed to test whether paralogous transcripts that substantially differ in the 6 

proportions of internal structured and unstructured segments (ξ) also show significantly larger changes 7 

in half-life than pairs that do not. For each paralogous pair, we estimated ( ) ( )1 2 1 2     = − + , 8 

where 1  and 2  are their proportions of internal structured and unstructured segments. These pairs 9 

were then classified into two groups: Similar, those that during evolution roughly maintained the 10 

proportions of internal structured and unstructured regions ( 0.05 0.05−    ) and Divergent, pairs 11 

for which the proportions of internal structured and unstructured regions diverged significantly (12 

0.05 −    or 0.05  ) (Fig. 5B, Fig S5B). Half-life distributions of these two groups differed 13 

significantly (p < 10−10, F-test under the null hypothesis of equal variances) in a manner that transcript 14 

pairs with 0 →  tend to exhibit highly similar half-lives and non-zero   is usually associated with 15 

differential half-lives. Different   thresholds did not alter our results. 16 

We observed that oligomerization modes differ at transcript levels as well (Fig 5C, Fig S5C), which 17 

likely reflects alterations in post-transcriptional regulations after the duplication event. We specifically 18 

asked whether altered oligomerization modes lead to altered half-lives of duplicated transcripts. If two 19 

paralogous transcripts bind to n1 and n2 number of proteins, we estimated ( ) ( )1 2 1 2n n n n n = − + . 20 

Based on this parameter, paralogous transcript pairs were classified into two groups: Similar, those that 21 

bind to roughly the same number of proteins ( 0.1 0.1n−    ) and Divergent, those that diverged to 22 

bind differential number of proteins ( 0.1 n−    or 0.1n  ). Half-life differences between these two 23 

groups differed significantly (p < 10−6, F-test under the null hypothesis of equal variances) in a manner 24 

that transcript pairs that bind to roughly the same number of proteins exhibit similar half-lives. Taken 25 

together, these results suggest that divergence of TUR lengths, of the proportions of internal structured 26 

and unstructured segments, and that of oligomerization modes generally lead to altered transcript half-27 

lives for duplicated genes. 28 

Discussion 29 

Geometrical shape complementarity is crucial to enzyme-substrate recognitions in cell. On one hand, 30 

four billion years of evolution (Hedges et al, 2015) has shaped both protein (Lobanov et al, 2010; 31 

Uversky, 2013) and mRNA molecules (Rouskin et al, 2014; Kertesz et al, 2010; Ding et al, 2014; Li et 32 

al, 2012) to exhibit intrinsically disordered/unstructured regions at their termini as well as in the middle. 33 

On the other hand, RNase and protease machineries have evolved into ‘molecular cage’-shaped 34 

nanomachines with their catalytic sites accessible through narrow internal tunnels (except 35 

endonucleases) that only these unstructured regions can traverse. 36 

Yeast comprises multiple RNase machineries with characteristic degradation 37 

mechanisms 38 

In eukaryotic cells, cytoplasmic RNAs are degraded by multiple machineries. Each RNase machinery 39 

has its own geometrical criterion, and directional preference (5′→3′ or 3′→5′ or endonuclease) for 40 
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substrate engagement (Houseley & Tollervey, 2009) and a characteristic mode of degradation 1 

(progressive/distributive) (Houseley & Tollervey, 2009). 2 

A key feature implemented in mRNA degradation is that their engagement with the respective RNase 3 

machineries is the rate determining step of degradation (Laalami et al, 2014); this engagement involves 4 

a terminal (exonuclease) or an internal (endonuclease) unstructured region of a certain length. Despite 5 

the wide diversity of RNase machineries, PARS-score based estimation of TUR lengths showed that 6 

specific 5′ TUR and 3′ TUR length cutoffs appear to be crucial for rapid 5′→3′ and 3′→5′ degradation, 7 

and transcripts featuring TURs longer than this threshold are degraded faster than those without this 8 

feature. For 5′→3′ exonuclease degradation the aforesaid optimum 5′ TUR length for rapid 5′→3′ 9 

degradation appears to be 3–8 nt. Yeast cells comprise two related 5′→3′ exonuclease, Xrn1 and Xrn2, 10 

that require substrates with 5–6 nt long 5′ TURs for efficient engagement, which is clearly reflected in 11 

our analysis. For 3′→5′ exonuclease degradation, yeast cells comprise two machineries, Rrp6 12 

(distributive degradation) and Rrp44 (progressive degradation). Both these enzymes can work alone, or 13 

as a part of a massive multicomponent RNase machine, the exosome. While working alone, both Rrp6 14 

and Rrp44 can efficiently degrade short, unstructured substrate mRNAs (Lorentzen et al, 2008; 15 

Callahan & Butler, 2008) with ~9 nt 3′ TUR lengths (Fig 1). However, the 3′ TUR length cutoff 16 

optimum for rapid 3′→5′ exonuclease degradation appears to be 29–41 nt. The only machinery that 17 

comprises mRNA paths of this range is the exosome. The central tunnel of Exo-10 (catalytically inert 18 

Exo-9 bound to Rrp44) incorporates a 31–33 nt mRNA path, that extends to 40–41 nt when Exo-10 19 

binds to ATP-dependent RNA helicase Ski-complex in cytoplasm or TRAMP complex in nucleus 20 

(Table S1). Notably, these helicase complexes mechanically unwind structured mRNA substrates prior 21 

to degradation(Makino et al, 2013). This suggests that even though Rrp6 and Rrp44 can degrade short, 22 

unstructured RNA fragments independently (Lorentzen et al, 2008; Callahan & Butler, 2008), 23 

degradation of full-length yeast mRNAs, that tend to be structured (Rouskin et al, 2014; Kertesz et al, 24 

2010; Ding et al, 2014; Li et al, 2012), seems to be predominantly mediated by the exosome itself. 25 

The eukaryotic mRNA degradation scenario is very similar to that of protein degradation in the sense 26 

that the latter involves only one-barrel shaped machinery, Proteasome, that can engage with its substrate 27 

from either termini as well as from the middle (Ciechanover, 2005; Bhattacharyya et al, 2014; van der 28 

Lee et al, 2014). The geometrical criterion of proteasomal engagement applies to all its substrates, and 29 

proteins exhibiting disordered regions longer than these thresholds tend to have shorter half-lives than 30 

proteins without these features (van der Lee et al, 2014).  31 

Endonuclease degradation also regulates mRNA half-life on a genome-scale 32 

Endonuclease cleavage is one of the major mRNA degradation mechanisms in the eukaryotic cell, with 33 

the resulting fragments rapidly cleared by exonuclease digestion(Schoenberg, 2011; Abernathy et al, 34 

2015). The N-terminal PIN domain of Rrp44 exhibits endonuclease activity (Lorentzen et al, 2008). 35 

The geometrical criterion of substrate recruitment to the Rrp44 PIN domain (Rrp44PIN) and to what 36 

extent Rrp44PIN mediated endonuclease degradation influences mRNA half-life on a genome scale, 37 

have remained elusive and to our knowledge, receives its first genome-scale assessment in this study. 38 

We depicted that increasing abundance of internal unstructured segments that are presumably amenable 39 

to Rrp44PIN engagement, results in shorter transcript half-lives (Fig 3). These genome-scale trends are 40 

very similar to proteins comprising multiple ≥ 40 aa long internal disordered regions (amenable to 41 

proteasome engagement) having shorter half-lives than proteins without this feature (van der Lee et al, 42 

2014). 43 

Sequestration into ribonucleoprotein complexes protects transcripts from degradation 44 
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Sequestration into ribonucleoprotein complexes was experimentally shown to hinder degradation of 1 

specific mRNAs in the past. Several RNA-binding proteins (HuR, for example) mask U-rich and AU-2 

rich elements (known to promote mRNA degradation) and elevate the transcript half-life (Abdelmohsen 3 

& Gorospe,2010; Ross, 1995). Poly-(A) binding proteins can couple poly-(A) tail with the cap-binding 4 

complex, forming a loop that resists exonuclease degradation (Wakiyama et al, 2000; Ross, 1995). 5 

Some iron regulatory proteins are known to shield specific RNA from degradation (Ross, 1995). Despite 6 

all such case studies, to our knowledge, the effect of protein binding on mRNA stability receives its 7 

first genome-scale assessment and further exploration in this study. Working on a set of 50 S. cerevisiae 8 

RBPs that are not reported to promote mRNA degradation either directly or indirectly, we show that 9 

sequestration into ribonucleoprotein complexes elevates transcript half-lives across the genome and in 10 

evolution. A careful analysis of protein binding sites further suggested that oligomerization elongates 11 

transcript half-life by burying the putative exo- and endo-nuclease engagement sites (pExEnEg, 12 

terminal and internal unstructured segments) under complex interfaces, because mRNAs with larger 13 

fractions of buried pExEnEg sites tend to have longer half-life. This is very similar to oligomerization 14 

resulting in longer protein half-life, by burying the ubiquitinoylation sites and the intrinsically 15 

disordered regions necessary for proteasomal engagement under the oligomeric interfaces (Mallik & 16 

Kundu, 2018). Furthermore, association with multiple complexes results in longer protein half-life, 17 

presumably because the protein is rarely available in its monomeric form to engage with the proteasome 18 

(Mallik & Kundu, 2018). A very similar mechanism exists for mRNAs, in the sense that association 19 

with multiple proteins results in longer half-life, across the genome. 20 

Tuning mRNA half-life by protein binding is of broad biological significance, including regulation of 21 

gene expression (Dassi, 2017; Ross, 1995) and pathogenicity (Hasan et al, 2014; Dassi, 2017; Moore 22 

& von Lindern, 2018). Hijacking host mRNA-stabilizing proteins to protect its own transcript is one of 23 

the most fascinating pathogenic strategies of Hepatitis C (Korf et al, 2005) and human papillomavirus 24 

(Cumming et al, 2009). Association with ribosome during translation also protects the transcript from 25 

degradation (Deana & Belasco, 2005; Edri & Tuller, 2014), and mutations promoting such phenomena 26 

often result in critical diseases. The α-Thalassemia is a well-known example, that is caused by an anti-27 

termination mutation of UAA to CAA in the αCS allele, allowing translating ribosomes to proceed into 28 

the 3′ UTR and ‘mask’ the mRNA from degradation in differentiated erythrocyte precursors (Weiss & 29 

Liebhaber, 1995). In fact, aberrant alterations of transcript half-lives had been known to lead to 30 

regulated cell death, aging and a variety of diseases (Falcone & Mazzoni, 2018; Hollams et al, 2002). 31 

Evolutionary variations of transcript half-lives that emerged from gene duplication 32 

Gene duplication of an ancestral protein often results in sub-functionalization of the ancestral function 33 

among the duplicated copies; alternatively, non-essential or redundant functions might be lost and new 34 

functions might emerge(Lynch & Conery, 2000). Functional divergence of duplicated genes is often 35 

associated with their altered gene expression at transcript level (Ganko et al, 2007; Hallin & Landry, 36 

2019) and altered molecular interactions at the protein level (Dandage & Landry, 2019; Marchant et al, 37 

2019). Several genetic mechanisms may generate diversity in terminal or internal unstructured segments 38 

of duplicated transcripts and in protein binding sites that would in turn result in their altered half-lives 39 

and thereby altered gene expression. These genetic mechanisms may include mutations, insertions and 40 

deletions, expansion of tandem repeats, alternative splicing, and alternative transcription start and end 41 

sites. It is fascinating that the same genetic variations can also diversify the terminal and internal 42 

disordered region lengths and alter the surface geometry at protein level, which further results in 43 

differential oligomerization modes and thereby differential half-lives of paralogous proteins (van der 44 

Lee et al, 2014; Mallik & Kundu, 2018). This suggests that paralogous genes harbor genetic variations 45 

that fine-tunes their regulatory schemes in all the downstream levels of central dogma 46 
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(DNA→RNA→Protein). The same mechanisms should also contribute to half-life divergence among 1 

orthologous proteins/transcripts between species. 2 

Additional factors that influence mRNA half-life 3 

In addition to the geometrical criteria to engage with the respective degradation machineries, and 4 

sequestration into oligomeric complexes, additional factors, such as (i) presence of (de)stabilizing 5 

sequence and structural motifs and (ii) higher order structures of individual mRNA molecules may fine 6 

tune their half-lives. Ubiquitinoylation-specific motifs (Miller et al, 2004) and sequence composition 7 

of unstructured termini (that confers high-affinity engagement with proteasome) were shown to 8 

influence protein half-life on a genome-scale (Fishbain et al, 2015). Similarly, presence and abundance 9 

of stabilizing and destabilizing sequence and structural motifs at the 5′ and 3′ UTRs strongly influence 10 

transcript half-lives across the genome (Cheng et al, 2017; Rabani et al, 2008; Geisberg et al, 2014). A 11 

structural motif like stem loop promotes mRNA decay through a class of mRNA deadenylation protein 12 

which specifically targets the stem loop feature to capture its substrate (Leppek et al, 2013). In 13 

Leishmania, a certain conserved sequence signature at the 3′ UTRs trigger endonuclease activity 14 

without prior transcript deadenylation (Müller et al, 2010).    15 

When a globular, folded protein is degraded, 20S proteasome works with the 19S regulatory particle to 16 

mechanically unfold the protein by pulling it from one terminal (Lee et al, 2001). This mechanical 17 

unfolding becomes the rate-limiting step of degradation (Bard et al, 2019), and because the global 18 

topology of the substrate dictates its resistance against such unfolding, the topology of the folded chain 19 

influences its degradation rate (Mallik & Kundu, 2018). Interestingly, transcripts can also fold into 20 

higher order structures (Bevilacqua et al, 2016; Staple & Butcher, 2005; Gutell, 2013), thus making 21 

their mechanical unwinding a prerequisite for degradation. However, unravelling such principles, 22 

awaits discovery of 3D structures of several mRNAs.  23 

Mechanisms of protein and mRNA degradation: similarity in diversity 24 

In summary, four billion years of evolution have evolved versatile surveillance and quality control 25 

pathways to regularly degrade damaged protein and mRNA molecules in the cell and to replace them 26 

with newly synthesized copies. But underlying this wide diversity are remarkably similar molecular 27 

principles that regulate the turnover rates of both the molecular species on a genome-scale and in 28 

evolution. In both cases, molecular cage-shaped degradation machineries have evolved. Catalytic sites 29 

of these machines are accessible through narrow internal tunnels (except endonuclease) that only 30 

unstructured regions of the substrate molecules can traverse. These geometrical constraints of enzyme-31 

substrate recognition are further influenced by versatile biophysical constraints, including sequestration 32 

into multicomponent complexes, (de)stabilizing structural and sequence motifs, and globular structures 33 

of individual substrate molecules that must be mechanically unfolded prior to degradation. It is 34 

remarkable that this complex interplay of versatile biophysical factors at two different levels of central 35 

dogma can be efficiently captured by analyzing the experimental 3D structures of the respective RNase 36 

and protease machineries, terminal and internal unstructured regions of the substrate molecules, and 37 

their sequestration into multicomponent complexes, despite the fact that both molecular species include 38 

nearly 1,000-fold variations of half-lives, and comprise an enormous sequence, structure, and functional 39 

diversity. These findings further promise deeper understanding of post-translational control of gene 40 

expression and associated phenomena, including cell cycle, development, circadian rhythm, ageing, and 41 

virus biology. 42 

Materials and Methods 43 
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Dataset 1 

S. cerevisiae transcript half-life and sequence data. Five non-redundant, experimental mRNA half-life 2 

datasets were collected (Presnyak et al, 2015; Miller et al, 2011; Neymotin et al, 2014; Wang et al, 3 

2002; Munchel et al, 2011). Protein half-life data was collected from ref. (van der Lee et al, 2014). S. 4 

cerevisiae transcriptome sequences and their respective 5′ UTR, CDS and 3′ UTR annotations were 5 

obtained from Saccharomyces Genome Database (Cherry et al, 2012) (Data S1). 6 

PARS data. PARS-scores represent the single (PARS score ≤ 0) or double stranded nature (PARS score 7 

> 0) of a given RNA at single nucleotide resolution (Wan et al, 2013), using nuclease digestion and 8 

high-throughput sequencing. Experimentally determined PARS scores of 3204 S. cerevisiae transcripts 9 

were obtained from (Kertesz et al, 2010). For 3000 of these transcripts, 5′ UTR, 3′ UTR and CDS 10 

annotations are available (Data S1). 11 

RNA-Protein Binding data. RNA-protein binding data for S. cerevisiae was obtained from ClipDb  12 

(Yang et al, 2015). This database includes transcriptome-wide binding sites of RBPs at the single-13 

nucleotide level identified by crosslinking immunoprecipitation experiments. We used the protein-14 

binding sites predicted by the statistically robust, pliant computational pipeline of Piranha (Uren et al, 15 

2012) for our work. This data included 61 proteins binding to 2698 transcripts (Data S2). These proteins 16 

were manually reviewed and 11 proteins directly or indirectly involved in mRNA degradation were 17 

removed from further analysis. Our final workable dataset includes 50 stabilizing RNA-binding protein 18 

engagement mapped to 2665 transcripts (Fig 4A, Data S2). 19 

Structural data of RNase machines. From the seminal review of Houseley and Tollervey (Houseley & 20 

Tollervey, 2009), an initial list of yeast RNases was prepared. This list included 5′-exoribonucleases 21 

Xrn1 and Xrn2, 3′-exoribonucleases exosome, Rrp44, Rrp6 and exosome, and endonuclease Rrp44. 22 

High-resolution (< 3Å) crystal structures of these machineries are collected from Protein Data Bank 23 

(Berman et al, 2007). We also used the model structure of Xrn1 available in ModBase (Pieper et al, 24 

2011). Catalytic site residues of these RNases were collected from Catalytic Site Atlas (Porter et al, 25 

2004) and by literature search (Table S1). In addition, a crystal structure of yeast cytoplasmic Ski 26 

complex (Halbach et al, 2013) and a human exosome structure with nuclear MTR4 and substrate RNA 27 

were collected (Weick et al, 2018). 28 

Tunnel analysis of RNase machines 29 

For each machinery (i) all probable tunnels having a bottleneck radius of ≥ 3.4 Å were identified in the 30 

crystal structures using Caver Analyst v2.0 (Jurcik et al, 2018), (ii) tunnels that pass through the 31 

catalytic sites were filtered manually, (iii) finally, uninterrupted sliding of a train of ellipsoids of 3.4 Å 32 

major and 2.9 Å minor axis lengths (approximating sliding nucleotides) from one opening of the tunnel 33 

to the other was confirmed. This analysis extracted the probable degradation tunnels in each RNase 34 

machine and further allowed us to compute the minimum lengths of unstructured single-stranded RNA 35 

required to traverse the distance from the tunnel opening to the catalytic site (Table S1). 36 

Transcript structure analysis 37 

PARS-score based Terminal Unstructured Region length assignment. For a transcript of length L, if s1 38 

and s2 are the indices of the first and last nucleotides with PARS scores > 0, then the 5′ and 3′ terminal 39 

unstructured regions (TUR) lengths were assigned as s1−1 and L−s2−1.  40 

RNAfold-based secondary structure prediction. The secondary structures of transcript sequences and 41 

associated folding free energy were predicted using RNAfold program from ViennaRNA package 42 

(Hofacker, 2003). A sliding-window approach was adopted. Starting from the 5′-end of the transcript, 43 

a window of 25 nucleotides (other thresholds rendered similar results) was sliding towards the 3′-end, 44 

one nucleotide at a time. 45 
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Paralogue data 1 

Paralogous transcript pairs of S. cerevisiae were identified based on their sequence similarities and 2 

identical domain contents at protein level. First, NCBI standalone protein-protein BLAST (Camacho et 3 

al, 2009) was run across the proteomes and BLAST hits were filtered with 10−10 e-value thresholds. A 4 

subset of these filtered pairs, that further exhibit identical domain content (domain assignments with p-5 

value ≤ 10−5) as annotated in Pfam (Finn et al, 2014), were considered as paralogous pairs (Data S3). 6 

Statistical Analysis and Data visualization 7 

All the statistical test mentioned in the main text are performed with our in-house python scripts and 8 

Past v3.0 (Hammer et al, 2001). All the images are produced using Pymol, OriginPro, Matplotlib and 9 

Seaborn package of Python 2.7, and Adobe Photoshop.  10 

Data Availability Statement 11 

All the raw data that support the plots within this paper and other finding of this study are available as 12 

Supplementary Files. 13 
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