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Abstract 
 

Thesis Title:  Genome-scale Dynamic Modeling of the Competition Between 

Rhodoferax and Geobacter in Anoxic Subsurface Environments 

Degree:   Masters of Applied Science (MASC) 

Convocation Year:  2010 

Name:   Kai Zhuang 

Department:  Chemical Engineering and Applied Chemistry 

University:  University of Toronto 

 

In situ bioremediation by Fe(III) reducers is a strategy for clean-up of ground water 

through reductive immobilization. The dynamics of the community involved is complex 

and needs to be understood better for improving the bioremediation. Here, we have 

created a dynamic genome-scale metabolic model of Geobacter sulfurreducens and 

Rhodoferax ferrireducens, the two primary iron-reducers in subsurface environments, in 

order to understand the community competition prior to and during uranium-

bioremediation. The simulation results suggest that the community competition is 

modulated by two factors: the ability of G. sulfurreducens to fix nitrogen under 

ammonium limitation, and a rate vs. yield trade-off between these two organisms. This 

model will be an important tool for the analyses of more complex microbial communities 

and the design of effective uranium-bioremediation strategies. 
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Chapter 1. Modeling Uranium Bioremediation 

1.1 In Situ Uranium Bioremediation 

Uranium is a contaminant posing serious health risks to our society.  The source of this 

contamination can be traced to weapon testing wastes and mill tailings, which releases 

U(VI) to the subsurface.  The contaminant is often carried by groundwater flow to a river 

system, leading to significant environmental concern. Traditional remediation 

technologies are limited by contaminant volume and process efficiency. The discovery of 

several uranium-reducing microorganisms, such as Geobacter sulfurreducens, Geobacter 

metallireducens, and Desulfovibrio vulgaris, gave rise to a novel uranium treatment 

technology – microbial-mediated uranium immobilization, or in situ uranium 

bioremediation. By artificially introducing appropriate substrates into the contaminated 

subsurface, this technology promotes the growth and reductive activities of pre-existing 

uranium-reducing microorganisms in the subsurface. The reduction of U(VI) to U(IV) 

leads to the precipitation of uranium, hence immobilizing it within the subsurface.  This 

immobilization prevents spread of uranium contamination. 

The US Department of Energy has recognized microbial-mediated uranium 

bioremediation as a novel method with great potential, and created several test sites for 

studying uranium bioremediation.  However, it was found that uranium bioremediation is 

an extremely complex process influenced by a combination of several factors including 

geochemistry, transport, and microbial activities [6].  Therefore, computational models of 
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the geochemistry, transport, and microbial activities of the uranium-contaminated 

subsurface environment are required for designing effective bioremediation strategies.  

The Rifle in situ bioremediation test site in Colorado is thought to be significantly 

influenced by microbial activity [7], therefore, we focus on studying the microbial 

community activities prior to and during bioremediation. 
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1.2 Overall Project Motivation 

A wide phylogenetic diversity of microorganisms that are capable of dissimilatory metal 

reduction has been recovered from subsurface environments [8, 9]. The factors 

controlling which species dominate in a given subsurface environment are poorly 

understood, but may have important environmental consequences.  For example, some 

dissimilatory metal-reducing microorganisms such as those from the Geobacteraceae 

family are capable of reducing U(VI) to U(IV), which impacts the mobility of uranium in 

the subsurface [8-14].  Stimulating dissimilatory metal reduction in order to promote the 

reductive precipitation of uranium shows promise as a bioremediation strategy for 

uranium-contaminated groundwater [7, 15], but relies on stimulating the appropriate 

dissimilatory metal-reducing microorganisms. 

During uranium bioremediation field experiments at the Rifle site in Colorado, acetate is 

injected into the subsurface to promote the growth and activities of Geobacter species.  

However, it was found that several non-uranium-reducing organisms, including 

Rhodoferax species and acetate-oxidizing sulfate reducers, compete against Geobacter 

species for this substrate (Figure 1-1) [7, 15, 16].  It has been proposed that competition 

from these organisms affects the long-term viability of current bioremediation strategies, 

which is evident from a decrease in the relative abundance of Geobacter species after 50 

days of acetate injection [7, 15, 16]. 

The overall motivation of our project, which this Masters of Applied Science research 

project is a part of, is to develop effective uranium bioremediation strategies.  In 

particular, we are interested in overcoming the long-term viability issue of the current 
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bioremediation strategies.  The bioremediation process at Rifle is highly complex due to 

the dynamic interactions between multiple microbial and metabolic species.  Given the 

complexity of the problem, we have decided to approach the problem by first developing 

a computational model of the subsurface community metabolism, and then use the model 

to investigate the phenomena during bioremediation, and finally use the model to aid in 

our design of novel bioremediation strategies. 

This thesis documents a sub-project of this project that focuses on the competitive 

interactions between Geobacter and Rhodoferax species (Figure 1-1). It is intended as a 

pilot project that develops and refines the modeling approach by focusing on a small but 

important sub-community of the more complex overall community. 



 5 

 

 

 

Figure 1-1. Microbial Competition at Rifle During Uranium Bioremediation 

During the in situ uranium bioremediation experiments at the Rifle site, injected acetate is competitively utilized by Geobacter, 

Rhodoferax, and sulfate-reducing species as electron donor.  The MASC project described in this thesis focuses on the interactions 

between Geobacter and Rhodoferax species. Geobacter simultaneously reduces U(VI) and Fe(III), where as Rhodoferax is only 

capable of Fe(III) reduction.  Since Fe(III) is the primary electron acceptor responsible for Geobacter growth as the concentration of 

Fe(III) is three orders higher than that of U(VI), Rhodoferax essentially competes with Geobacter for both electron donor and 

acceptor.  This makes understanding the competition between these two organisms essential for developing effective uranium 

bioremediation strategies. 
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1.3 Geobacter and Rhodoferax competition at Rifle 

Field investigations of in situ uranium bioremediation at the Rifle site have demonstrated 

that Rhodoferax and Geobacter species, two phylogenetically distinct groups of 

dissimilatory metal-reducing microorganisms, are important components of the naturally 

anoxic subsurface at this site [16]. Multiple field experiments at the Rifle site have 

demonstrated that when dissimilatory metal reduction is artificially stimulated with the 

addition of acetate to the subsurface, Geobacter consistently become the predominant 

dissimilatory Fe(III) reducing microorganisms[7, 17]. This is despite the fact that like 

Geobacter species [9, 18, 19], the one described Fe(III)-reducing Rhodoferax species, 

Rhodoferax ferrireducens, is also capable of oxidizing acetate with the reduction of 

Fe(III) [20]. However, in contrast to the Geobacter species, R. ferrireducens has not been 

shown to be capable of U(VI) reduction, and in addition cannot fix nitrogen in the 

absence of ammonium [20] (Figure 1-2).  Therefore, the ability of Geobacter species to 

outcompete Rhodoferax species may be critical for the success of stimulated in situ 

bioremediation at the Rifle site, and presumably other similar uranium-contaminated 

environments.  The relative abundance of Rhodoferax and Geobacter species in different 

subsurface locations within the site has been measured, the competition among these 

Fe(III) reducers appeared to be related, at least in part, to the availability of ammonium in 

those locations [16] (Figure 1-2C). 
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Figure 1-2. Conceptual Model of Uranium Bioremediation 

A) Prior to acetate injection, acetate is generated in the subsurface primarily through fermentation.  During bioremediation, acetate is 

injected to the subsurface at high concentrations through the injection galleries. The artificial flow of acetate is combined with natural 

acetate flow, and follows the direction of the ground water.  This acetate stimulates the growth of multiple microbial species 

downstream of the injection galleries, including Geobacter and Rhodoferax species.  Groundwater samples are collected periodically 

at the test wells downstream of the injection galleries, including wells D02, D05, and D08. Various tests were performed on these 

groundwater samples, including ammonium concentration measurements and 16S rRNA based analysis of the relative microbial 

abundance. 

 

B) Both Geobacter and Rhodoferax oxidize the dissolved acetate, and carry out the reduction of Fe(III) by attaching to a ferric iron 

surface. Geobacter is also capable of reducing U(VI) in its planktonic phase.  Given that Fe(III) is the primary electron acceptor for 

Geobacter, this implies that the organisms compete for both electron donor and acceptor. The reduction of Fe(III) creates dissolved 

Fe(II), while the reduction of dissolved U(VI) creates U(IV), which precipitates.  The reductive precipitation of uranium effectively 

removes uranium from the groundwater.   

Rf : Rhodoferax    

GsA : Geobacter (attached to sediment)  

GsP : Geobacter (planktonic) 

 

C) Ammonium concentrations at wells D02, D05, and D08 are measured periodically. Here, the initial and average ammonium 

concentration is shown. The Geobacter and Rhodoferax columns show the number of Geobacter and Rhodoferax 16S rRNA genes as 

a percentage of the total number of 16S rRNA genes in the sample. Geobacter fraction is calculated using Eq. X.  The relative 

abundance of these two organisms appears to be related to the concentration of ammonium. 
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1.4 Need for a Community Metabolic Model 

In order to develop effective and long-term viable bioremediation strategies, it is critical 

for us to understand the mechanism of the competition between Geobacter and 

Rhodoferax species, as well as predicting the outcome of the competition.  Traditional 

modeling techniques such as Monod-type kinetic models and its derivatives [21] are 

limited by inaccurate predictions when applied to complex environments involving 

multiple metabolites. Genome-scale metabolic modeling offers the possibility of 

predicting the physiological responses of microorganisms to a diversity of environmental 

conditions as well as the interactions of microorganisms with each other and their 

environments [22, 23].  Flux Balance Analysis (FBA) models of pure cultures, such as 

Escherichia coli [24-28] and G. sulfurreducens [3, 29] are capable of predicting the 

detailed physiology including growth yields and respiration rates.  This modeling 

approach has been useful for both understanding the behavior of biological systems in 

complex environments and for engineering purposes [30-35].  

The availability of the genome sequences of Geobacter [36, 37] and Rhodoferax [4] 

provides the opportunity to apply FBA to examine the interaction and competition 

between Geobacter and Rhodoferax species under naturally occurring and artificially 

stimulated Fe(III)-reducing conditions.  However, the Geobacter and Rhodoferax 

community is highly complex, involving multiple microbial and metabolic species, and 

the concentrations of these species are highly dynamic.  Currently, there are no metabolic 

modeling techniques capable of dynamically simulating such complex systems.  In order 

to model the microbial community of interest, we need to develop a community 

metabolic modeling framework capable of handling such complexity. 
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1.5 Thesis Objective 

This thesis is motivated by our need to develop effective and long-term viable 

bioremediation strategies.  In particular, we aim to use computational modeling to 

understand the mechanism of the competition between Geobacter and Rhodoferax 

species, as well as predicting the outcome of the competition.  As pointed out in the 

previous section, there are no computational modeling techniques that are applicable to 

this community.  Therefore, this thesis has two objectives: 

 

1. To develop a general computational framework applicable to complex (dynamic, 

multi-species) microbial communities. 

2. To apply this computational framework to the investigation of the Geobacter and 

Rhodoferax microbial community in uranium-contaminated subsurface.  In 

particular, we aim to answer the following two questions: 

a. Why do two acetate-oxidizing iron-reducing organisms occupy the same 

niche? 

b. Will the existence of Rhodoferax species affect the outcome of uranium 

bioremediation? 
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Chapter 2. Metabolic Modeling 

2.1 Systems Biology and Metabolic Modeling 

The past decade has seen an exponential growth in the field of systems biology, 

particularly in the area of modeling large-scale biochemical networks.  Systems biology 

has greatly increased our understanding of the complex processes of life and has become 

an indispensable tool for metabolic and bioprocess engineering.  The advent of systems 

biology is fueled by the recognition of the limitation of the reductionist paradigm.  

Systems biology adopts a holistic view of biological systems; its approach allows the 

investigation of systemic features, including emergence, robustness, and modularity [38-

41]. 

One prominent systems biology method used for the analysis of metabolic networks is 

the constraint-based modeling. The model has two major components - the stoichiometric 

matrix and the constraints [42] (Figure 2-1).  The stoichiometric matrix is a mathematical 

representation of the biochemical reaction network, and the constraints represent 

physiological and environmental limitations on the network.  Generally, the biochemical 

reaction network is underdetermined - by applying additional constraints, we reduce the 

size of the solution space [40, 42, 43] (Figure 2-1).  Because this approach does not 

require any kinetic descriptions, a constraint-based model (CBM) can be constructed with 

minimal experimental data.  On the other hand, physiological information can be 

described by a mathematical constraint [40, 42, 43]. A standard model reconstruction 

process has been described [40] and can be automated to aid the manual reconstruction 

process [37, 44]. To date, 46 genome-scale metabolic models have been successfully 

reconstructed [40, 45], including both well studied organisms such as Escherichia coli 
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[25-28, 40, 45], Saccharomyces cerevisiae [46], as well as less studied organisms 

including Geobacter sulfurreducens [29, 47], Geobacter metallireducens [37], 

Rhodoferax ferrireducens [4], and Dehalococcoides sp.[48]. 

Traditionally, constraints are defined by experimental observations such as the maximum 

substrate uptake rate. Flux variability analysis can be used to computationally determine 

the non-viable solution space [49]. Michaelis-Menten kinetics can be used to incorporate 

kinetics measurements as dynamic constraints [50]. Recently, several novel methods have 

been developed to further reduce the solution space.  Yang et al. analyzed experimentally 

determined competition fitness scores between knockouts using a bi-level optimization 

algorithm (the optimal capacity constraint identification algorithm, OCCI) to determine 

additional enzyme capacity constraints [51]. Henry et al. (2007) used group contribution 

theory to estimate the ΔG of metabolic reactions, and developed the thermodynamics-

based metabolic flux analysis (TMFA) method, which includes both pathway flux 

constraints and thermodynamic constraints [52].  The relationship between the 

stoichiometric matrix and various constraints is graphically represented in Figure 2-1. 
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Figure 2-1. Constraint-Based Metabolic Modeling. 

The primary components of constraint-based metabolic models include the stoichiometric matrix and the flux constraints.  The 

stoichiometric matrix is a mathematical representation of the metabolic reaction network.  The flux constraints can be directly 

measured through experiments, computationally derived using flux variability analysis, or inferred using the OCCI algorithm.  The 

solution space can be explored using either optimization methods or metabolic sampling methods.  

This figure is inspired by the graphics in several review papers from Dr. Palsson’s Lab [40, 42, 43].  
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2.2  Exploration of Solution Space 

Since constraint-based metabolic models are under-determined mathematically, it offers 

us a solution space instead of a single solution.  Although there are many different 

methods to explore this solution space, these generally fall under the categories of 

optimization-based methods and stochastic-sampling based methods.  Of the two, 

optimization-based methods are much more common. 

 

 Optimization-Based Methods 

Optimization-based methods utilize mathematical programming techniques to select the 

optimal point in the solution space for a given objective function.  For metabolic 

engineering purposes, this objective function often takes the form of maximizing or 

minimizing a particular flux of interest. Multiple fluxes can be maximized 

simultaneously; multi-level and multi-stage optimization has been used for metabolic and 

bioprocess engineering purposes as well [31, 34, 35].  These methods offer us insights on 

how to genetically modify an organism to achieve our engineering goals. 

For the purpose of predicting metabolic behaviors, the objective function is a 

mathematical representation of the true cellular objective.  The rationale behind this 

exercise is that under a constant environment, organisms tend to develop an optimal 

evolutionary strategy to cope with the environment.  The most common method in this 

category is flux balance analysis (FBA).  In FBA, the maximization of the biomass flux is 

used as the objective function.  It was shown that by long-term exposure to a non-native 

steady-state environment, such as growth on glycerol, E. coli could be adaptively evolved 
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to exhibit the phenotypes of the FBA optimal solution [24]. Flux balance analysis (FBA) 

models for pure cultures such as Escherichia coli and Geobacter sulfurreducens are 

capable of accurate growth predictions [3, 25, 26, 28, 53] as well as gene-expression 

predictions [54, 55]. While FBA is useful for organisms under long-term evolution, 

Minimization of Metabolic Adjustment (MoMA) and Regulatory On/Off Minimization 

(ROOM) are useful for the prediction of metabolic behaviors of knock-out strains. 

MoMA minimizes the difference between the metabolic distributions of wild-type and 

knock-out organisms [56], where as ROOM minimizes the number of significant 

metabolic changes between wild-type and knock-out organisms [57]. 

 

 What is the Right Objective Function? 

Despite the success of FBA in growth yield predictions, there is a great amount of 

confusion on its physiological significance, as well as criticism on its universality. The 

maximization of the biomass flux in FBA is often quoted as the maximization of growth 

rate [27, 28, 40, 42, 43, 58].  However, Schuster et al. suggested that in practice, FBA 

maximizes biomass rate for a fixed substrate uptake rate, which should be interpreted as 

maximization of molar yield under carbon limiting conditions.  The authors compared 

this approach to the maximization of reaction rate, and suggested that the optimal 

solution produced by FBA is not always favored by evolution due to a well-studied trade-

off between rate and biomass yield [59]. 

The crux of this argument is that from a game-theory perspective, the true cellular 

objective in a competitive environment is the maximization of growth rate, which is the 

product of substrate utilization rate and biomass yield (µ = v·Y).  A mole of substrate 
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contains a fixed amount of Gibbs free energy (ΔG), which can either drive the rate of 

chemical reactions through entropic dissipation or be converted to biomass.  This 

enforces a thermodynamic trade-off between biomass yield and the substrate utilization 

rate.  In order to maintain internal steady state, substrate utilization rate is equal to 

substrate uptake rate under most conditions.  In other words, an organism must optimize 

either energetic efficiency or substrate uptake rate.   Since life exists under the realm of 

non-equilibrium thermodynamics, the exact nature of this trade-off cannot be easily 

formulated mathematically.  However, using a linear approximation, Pfeiffer et al. 

showed that rate optimizers are favored if the feed rate is high, and yield optimizers are 

favored if the feed rate is low [60].  The existence of this trade-off is supported by 

experimental studies [61]. 

It is important to note that the optimization in FBA operates at the pathway level alone, 

and should be interpreted as the maximization of specific growth rate given a fixed 

substrate uptake rate and a fixed stoichiometric matrix. For example, in E. coli, much 

more ATP can be produced from glucose through the respiratory pathway than the 

fermentative pathway. Given fixed glucose and oxygen uptake constraints, the current 

FBA formulation correctly predicts that if oxygen is in excess, all glucose will be 

processed through the respiratory pathway, but if oxygen is limited, both respiratory and 

fermentative pathways are used, thus maximizing growth rate at the expense of growth 

yield. The current FBA objective function is a good approximation to the maximal 

growth rate at the pathway level; however, it does not take into consideration the cost of 

enzyme and metabolite production, which can be important at higher substrate uptake 

rates [62, 63]. 
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The energetic efficiency of a metabolic model is fixed by the stoichiometry of the 

electron transport chain.  Because mutations can potentially occur in the electron 

transport chain, this can limit the universality of FBA. For example, E. coli and B. 

subtilis strains have different versions of electron transport chains, each with different 

energetic efficiencies. Maharjan et al. found that a single strain of E. coli in a chemostat 

can evolve into up to nine different strains with very different phenotypic and metabolic 

characteristics, and not all phenotypes correspond to the optimal growth rate produced by 

FBA [64]. In order to reflect this trade-off in systems biology models of metabolism, 

thermodynamics must be taken into account.  Although TMFA is a step forward in this 

direction [52], it only incorporates thermodynamics inside the constraints, not the 

objective function. Other approaches that investigate this further are needed.  

 

 Size, Shape, and Distribution of Solution Space 

The concern of Maharjan et al. over metabolic diversity is not unfounded, since 

redundancy in metabolic pathways is well noted [41, 64].  It is often important to know 

the size and shape of the solution space, as well as the distribution of the solutions within 

this space.  The analysis of extreme pathways and elementary modes can help determine 

the shape of the solution space [65, 66], while stochastic sampling can be used to 

determine the distribution of viable solutions [41, 66, 67]. One of the key benefits of the 

stochastic metabolic sampling method is that we can investigate the solution space where 

the biomass flux is within a certain percentage of the FBA optimal solution, and thereby, 

recognizing the reality of metabolic diversity. For example, in the Maharjan paper, the 

growth rates of most mutants are within 15% of the maximum growth rate [64]. These 
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methods can also explore the effect of mutation on the solution space.  The sampling of 

solution space has been extensively studied for various metabolic networks including the 

Red Blood Cell Network [68, 69] and E. coli central metabolism [66].  
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2.3 Computational Challenges of Modeling Uranium Bioremediation 

An important area of applications of constraint-based metabolic models is environmental 

biotechnology, particularly subsurface bioremediation. The process of subsurface 

bioremediation is extremely complex, involving physical, chemical and biological 

factors. An approach of relying solely on experimental studies is normally time-

consuming and unable to adequately describe effects of various factors on this process. 

The coupling of detailed experimental studies with mathematical models are therefore 

rapidly becoming a widely used approach to effectively evaluate subsurface 

contamination problems and to design and formulate appropriate bioremediation 

strategies (Figure 2-2).  

However, there are significant challenges in mathematically modeling the metabolism of 

the complex microbial communities involved in bioremediation.  For example, the 

uranium bioremediation at the Rifle site involves a host of different microbial species – 

multiple species from the Geobacteraceae, Rhodoferax ferrireducens, and sulfate 

reducing bacteria from at least two different families all plays important roles in the 

bioremediation process.  In addition, these organisms interact with each other by 

competing for and exchanging metabolites in the environment.  Important metabolites to 

this community include (but are not limited to): acetate, ferric iron, ferrious iron, sulfate, 

dissolved uranium, ammonium, dissolved nitrogen, carbon dioxide, and water. This is a 

highly complex problem and there are no modeling techniques that can adequately handle 

problems of this complexity. Traditional modeling techniques such as Monod-kinetic 

equations cannot yield accurate prediction of the community metabolism at this 

complexity, and currently, most constraint-based metabolic modeling techniques are 
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mostly focused on single cultures.  The next section describes several pioneer attempts at 

extending CBMs to the community realm, and discusses the reason that these attempts 

are inadequate for complex problems such as bioremediation. 
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2.4 Extending CBMs to Microbial Communities 

CBMs of microbial metabolism have focused on pure cultures in the past.  However, 

microorganisms in nature exist in complex communities, either in cooperation or in 

competition.  The composition of the community and the metabolic states of its members 

are highly sensitive to the ever-changing environment.  Furthermore, community 

activities can modify their environment, which further modifies community composition 

and behavior.  For example, the rumen microbial community composition varies 

significantly based on the host’s dietary input [70], and the community’s digestive 

performance is decided by the community’s composition. Given that “microbes comprise 

nearly half of all biomass on earth” [71], one cannot truly understand environmental 

dynamics without understanding microbial communities. The advent of systems biology 

has greatly increased our understanding of the complex processes at the organism level.  

The same approach can be applied to microbial ecology, with additional complexities.  

Both living and abiotic processes, including chemical, biological, and transport 

phenomena, must be modeled.  Such models can elucidate the intricate interactions and 

emergent properties of the entire system [71]. 

There have been several pioneer attempts at extending the constraint-based modeling 

paradigm to the modeling of microbial communities, however, the methods used in these 

attempts are inadequate for complex (dynamic, multi-species) systems such as the 

microbial community relevant to subsurface bioremediation.    

Vallino (2003) has modeled a rumen microbial consortium as a distributed network 

constrained by thermodynamics to test the hypothesis that maximization of the rate of 
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energy dissipation is the objective function for the microbial community.  However, the 

metabolism of each organism is represented by a single reaction in this model, therefore 

physiological details cannot be incorporated into the model [72]. 

Stolyar et al. (2007) created the first metabolic model of a mutualistic microbial 

community by directly connecting the FBA models of Desulfovibrio vulgaris and 

Methanococcus maripaludis [73].  The authors assumed that the species are 

interdependent, thereby justifying their usage of a constant biomass flux ratio as the 

objective function.  Another caveat of this model is that it cannot predict the dynamic 

shifts in population and their metabolite concentrations. While this approach may be 

appropriate when the microorganisms are inter-dependent, it is inappropriate in 

ecological settings where the community composition is dynamic.  Nonetheless, this is a 

noteworthy attempt at extending systems biology for modeling microbial community 

metabolism. 

 

To accurately predict the metabolic behavior of a dynamic microbial community 

involving multiple microbial and metabolic species, a novel computational framework is 

required.   With modeling uranium bioremediation in mind, we have set the design 

criteria for such computational framework to be: 

1. The framework should be able to integrate existing metabolic models of single 

organisms into a community metabolic model with relative ease. 

2.  The framework should be able to model the dynamic behavior of multiple 

microbial and metabolic species in a given environment. 
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3. The model predictions should be accurate and detailed enough to aid both the 

investigation of uranium-contaminated subsurface microbial community and the 

designing of effective bioremediation strategies. 

Based on the above design criteria, we have developed the Dynamic Multi-species 

Metabolic framework (DMMM).  The rest of this document will describe this novel 

computational framework in detail, as well as the application of this framework to the 

investigation of the competition between Geobacter sulfurreducens and Rhodoferax 

ferrireducens.   
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Figure 2-2. Applying Constraint-Based Modeling to Bioremediation  

The application of systems biology for environmental biotechnology purposes requires the integration of geochemical modeling and 

community metabolic modeling.  The community metabolic model should be based on the constraint-based metabolic model, but 

incorporating concepts of game theory, microbial ecology, dynamic modeling, as well as meta-genomic data. This thesis focuses on 

the development of the dynamic community metabolic model of uranium bioremediation.  However, to fully understand 

bioremediation, this model needs to be integrated with geochemical model of the uranium-contaminated subsurface. 
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Chapter 3. The Dynamic Multi-species Metabolic 

Modeling framework 

3.1 The original FBA formulation and the dynamic FBA formulation 

The Dynamic Multi-species Metabolic Modeling (DMMM) framework is based on the 

dynamic Flux Balance Analysis (dFBA) [50], an extension of the original FBA.  

The original Flux Balance Analysis (FBA) is formulated as the following: 

maximize  µ = cTv

subject to  Av = 0

                 vmin
≤ v ≤ v

max

        (1) 

In this formulation, the objective of the linear program is the maximization of the growth 

rate, µ, calculated by c
T
v, where c

T
 is the objection function column and v is the vector of 

reaction fluxes.  This maximization of the objective function is subject to constraint Av = 

0, which is a mathematical representation of the assumption that the cell is at steady state 

internally.  Additional constraints in the form of v
min

 ≤ v ≤ v can be applied to represent 

computationally or experimentally determined flux limitations. 

Due to the limitation of the internal steady state assumption, the original FBA 

formulations cannot accurately predict cellular behaviors in highly dynamic processes, 

such as diauxic growth of Escherichia coli.  The dynamic Flux Balance Analysis (dFBA) 

extends the original FBA formulation by linking the exchange fluxes and the biomass 

flux with the rate of change in the environmental metabolite concentrations and the 

biomass concentration.  The dFBA is formulated as below:   
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dX

dt
= µX

dS
i

dt
= A

i
v
i
X

Maximize µ = cTv

subject to  Av = 0

                 vmin
≤ v ≤ v

max

1≤ i ≤ to number of metabolites

       (2) 

 

By integrating over the metabolic rates and the growth rate, the dFBA formulation allows 

the dynamic prediction of changes in the biomass concentration and well as metabolite 

concentrations external to the cell. This is a great improvement over the original FBA in 

applications where the dynamic shifts in external metabolite concentrations determines 

the shifts in internal cellular states, such as diauxic growth of Escherichia coli[50].  

However, the dFBA formulation is still restricted to single organisms. 
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3.2 The formulation of the DMMM framework 

The Dynamic Multi-species Metabolic Modeling (DMMM) framework extends the 

dFBA formulation to the community realm.  Mathematically, the DMMM framework can 

be formulated as: 

dX j

dt
= µ jX j

dSi

dt
= Ai

j
v i

j
X j

j

∑

Maximize µ j = c
T
v j

subject to  A jv j = 0

                 v j

min
≤ v j ≤ v j

max

1≤ i ≤ to number of metabolites

1≤ j ≤ to number of microbial species

        (3) 

In this formulation, j indicates the 
j
th species in the community.  Xj is the biomass of the 

j
th species in the community. Aj is the stoichiometric matrix of the 

j
th species in the 

community; Aji is 
i
th row of the stoichiometric matrix of the 

j
th species in the community. 

vj is the reaction flux vector of the 
j
th species in the community; vji is the reaction flux of 

the 
i
th metabolic reaction of the 

j
th species in the community.  Si is the 

i
th metabolite in 

the environment. vj
max

 and vj
min

 are the maximum and minimum reaction flux vector of 

the 
j
th species in the community; they can be acquired computationally using flux 

variability analysis or acquired experimentally.  For the members of vj
max

 and vj
min

 

corresponding to external metabolites, the uptake/production constraints to these fluxes 

can be calculated based on the environmental concentration of these metabolites, using 
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either the On/Off method or the Michaelis–Menten kinetics.  For a sample of this 

algorithm, see Section 3.3. 

By integrating the growth rates of all microbial species within the community, as well as 

the production/consumption rates of all metabolic species in the environment, the 

DMMM framework can dynamically predict the temporal changes in metabolite and 

biomass concentrations in a complex microbial community. 
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3.3 Sample implementation of the DMMM framework 

Although the mathematical formulation of the DMMM framework was described in 

Section 3.2, it might be difficult to follow for those readers without background in 

mathematical programming and metabolic modeling.  Therefore, a sample 

implementation of the DMMM framework is provided here (Figure 3-1).  This sample 

implementation assumes the existences of a community consisting of two microbial 

species, A and B, and three substrates, Met
1
, Met

2
, Met

3
. The numbers of microbial and 

metabolic species are arbitrary in this example.  The maximal numbers of microbial and 

metabolic species depend on the limitation of the computational hardware.  

After a simulation length (hrs) and a simulation step size (hrs) is given, this particular 

implementation of the DMMM framework execute the following routines during each 

simulation step: 

R1: The concentration of Met
1
, Met

2
, and Met

3
 are used to calculate the upper and 

lower constraints to v1
A
, v2

A
, v3

A
, v1

B
, v2

B
, and v3

B
, where vi

j
 represent the 

i
th 

reaction flux of the species j.  Two calculation methods are commonly used: 

i. On/Off methods 

if [Met
i
] > 0, then -∞< vi

j
 <∞ 

if [Met
i
] <= 0, then vi

j
 =0 

j. Michaelis–Menten kinetics 

V
i,constraint

≤V
i

max
•

S
i

S
i
+K

i
s

      (4) 

R2: Solve two linear programs (FBA models of species A and B) to calculate the 

specific growth rates, µ
A
 and µ

B
, as well as the reaction fluxes v1

A
, v2

A
, v3

A
, v1

B
, 
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v2
B
, and v3

B
. If the linear programs are feasible, then continue to routine R3. If the 

linear program corresponding to species j is infeasible, then a special cell-death 

routine RD is executed to calculate the rate of death r
d
 of the species j, and µ

j
 is 

set to r
d
. 

R3: The rate of change in the biomass of A and B are calculated with the equation: 

  
dX

j

dt
= µ j

X
j         (5) 

 Calculate ∆X
j
 by integrating dX

j
/dt over the simulation step. 

 Calculate the new X
j
 at the end of the simulation step with X

j new 
= X

j old 
+∆X

j
. 

R4:  The rate of change in the concentration of external metabolite i is with the 

equation: 

  
dSi

dt
= v i

j
X j

j

∑        (6) 

 Calculate ∆Si by integrating dSi/dt over the simulation step. 

 Calculate the new Si at the end of the simulation step with Si
new 

= Si
old 

+∆Si. 

Only the rates of change of external metabolites are integrated since all internal 

metabolites still follow the internal steady state assumption.   

RD: The cell death RD routine is a special user-defined routine that is called upon 

when the environmental concentrations of substrates are insufficient to sustain the 

current biomass concentration of the organism.  This routine is flexible and can be 

edited for each individual organism to reflect its specific mechanism of cell-

decay.  The RD routine produces the rate of cell death r
d
, which should be 

considered a negative growth rate.  After completion of RD, return to R3. 
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After routine R4 is completed, time advances one step-size.  The routine R1 is initiated 

again.  This continues until the simulation length is reached.  This procedure is illustrated 

in Figure 3-1.   
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Figure 3-1. The Dynamic Multi-species Metabolic Modeling Framework 

The DMMM framework consists of four major steps: [1] Calculation of the substrate uptake constraints based on current substrate 

concentration.  [2] Solve the FBA problems for the member species of the community. This generates the specific growth rates and 

external reaction fluxes of the member species. If the FBA problem is infeasible for one or more of the member species, then a special 

cell-death simulation routine is used to generate the specific death rate. [3] Calculate dX/dt for each member species.  Integrating over 

this rate to generate the dynamic profile of biomass concentrations.  [4] Calculate dSi/dt for each member species.  Integrating over 

this rate to generate the dynamic profile of metabolite concentrations.  
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3.4 Simulation of Cell-Death 

The traditional way of modeling cell-death assumes that the death of microorganisms is 

often due to the failure to meet maintenance energy requirements [21, 74].  This 

assumption is reflected in the equation[21, 74]: 

 r
D
= (q

S
−m

S
)Y            (7) 

Here, q
S
 (mmol S/gDW/hr) is the uptake rate of substrate S, m

S
 (mmol S/gDW/hr) is 

maintainence requirement of substrate S (the uptake rate of substrate S required to 

maintain the current biomass), Y is the biomass yield on substrate S.   

In metabolic models, the non-growth-related maintenance energy is represented with an 

ATP maintenance flux (m
ATP

) with the unit mmol ATP/gDW/hr.  To adapt Equation 7 to 

metabolic models, the limiting substrate S must be determined first. FBA is used to 

convert m
ATP

 to m
S
 by constraining the biomass growth flux to zero and minimize the 

uptake flux of S.  Then, Y, the biomass yield on substrate S, is calculated using standard 

FBA.  Finally, Equation 7 is used to calculated r
D
 (r

D 
is a negative number). 

It is also important to note that in many situations, the community process of interest may 

not be sensitive to death rate.  For example, the competition between Geobacter and 

Rhodoferax during uranium-bioremediation is insensitive to death rate.  Therefore, in this 

case, the death rate calculation here is included for the sake of completeness only.   
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3.5 Implementation of DMMM framework in MATLAB 

The mathematical formulation of the DMMM framework presented in the previous 

section has been implemented computationally in the MATLAB programming 

environment.  Our implementation of the DMMM framework is designed to be an add-on 

to the COBRA Toolbox [75].  The COBRA Toolbox is a MATLAB toolbox (function 

library) designed for various metabolic modeling tasks. MATLAB is the standard tool of 

the engineering academia, and the COBRA toolbox aims to provide a standard 

computational method to complete metabolic modeling tasks.  As an add-on to the 

COBRA Toolbox, the current implementation of the DMMM framework has can be 

easily integrated into the existing codes used by many academics.  This will likely widen 

the impact of the DMMM framework. 

 

To solve FBA linear programs, CPLEX solver is used.  To connect CPLEX to MATLAB, 

the CPLEXINT interface is used (http://control.ee.ethz.ch/~hybrid/cplexint.php). 

 

It is important to note that since there is an arithmetic solution to the ordinary differential 

equations (ODEs) corresponding to the rate of change of biomass and metabolite 

concentrations (Equation 5, Equation 6), our implementation of the DMMM does not 

require a numeric ODE solver. It is possible to implement the DMMM framework with a 

numeric ODE solver; however, this method would drastically reduce the computational 

speed without a significant increase in accuracy.  
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3.6 Advantage of the DMMM framework 

The usage of the DMMM framework to model microbial communities holds significant 

advantages over the traditional Monod-kinetic models, the Stolyar community metabolic 

model [73] mentioned in section 2.4, as well as pure experimental methods. 

 DMMM vs. Monod-kinetic Model 

The Monod-kinetic model can model relatively simple metabolism quite well. For 

example, if an organism is treated as having only one limiting substrate, S, then the 

organism’s growth with respect to S can be modeled fairly accurately by: 

µ = µmax •
[S]

[S]+ Ks
        (8) 

If an organism is treated as having two limiting substrates, S1 and S2, then the 

organism’s growth can be modeled with: 

µ = µmax •
[S
1
]

[S
1
]+ K

s1

•
[S

2
]

[S
2
]+ K

s2

       (9) 

For an organism with i limiting substrates, the organism’s growth is modeled with the 

General Monod Model: 

µ = µmax •
[S

i
]

[S
i
]+ K

s
i1

i

∏         (10) 

For example, if we assume that each of the substrates are available at their saturation 

concentration (Ks), the Monod model would predict a growth rate of 1/2
n
 of the 

maximum, even though it is clear that the substrate concentrations are sufficient to allow 

the organism to grow at ½ the maximum.  Moreover, the yield in the presence of multiple 

substrates needs to be experimentally determined for each combination, as there are no 

known mechanisms to compute the yields accurately for different metabolic states. Since 
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n is generally related to the metabolic complexity, the Monod-kinetic model does not 

scale up well with complex metabolisms. Realistically, prediction accuracy often 

becomes unacceptable when i > 2. 

Since the DMMM framework is based on CBMs, it is capable of handling significantly 

more complex metabolisms.  For example, the Geobacter sulfurreducens model [3] used 

in this thesis contains 727 reactions, 55 of which are exchange reactions (i = 55).  

 DMMM vs. Stolyar Model 

Stolyar et al. published the first constraint-based metabolic model of a mutualistic 

microbial community in 2007[73]. In the Stolyar model, the CBMs of Desulfovibrio 

vulgaris and Methanococcus maripaludis are directly connected[73].  The authors 

assumed that the species are interdependent, thereby justifying their usage of a pair of 

arbitrary biomass flux weights (authors used 10:1, 1:1, 1:10) as the objective 

function[73].  This objective function is inappropriate for most microbial communities. 

Another caveat of this model is that it cannot predict the dynamic shifts in population and 

their metabolite concentrations. While this approach may be appropriate when the 

microorganisms are inter-dependent, it is inappropriate in ecological settings where the 

community composition is dynamic.   

In comparison, the DMMM framework does not rely on arbitrary objective function – 

instead, the FBA problems representing each organisms are solved separately, allowing 

the usage of more established objective functions such as maximization of biomass flux.  

The DMMM framework is not restricted to mutualistic communities; it is capable of 

predicting the dynamic shifts in community composition and metabolites’ concentration.  
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 DMMM vs. Experimental Studies 

While no model can ever achieve the accuracy of real experimental studies, usage of 

metabolic modeling has proved to be a valuable analytical tool [45].  The DMMM 

framework allows scientists to consider thousands of possible reactions and metabolites 

simultaneously, this together with necessary experimental work, can provide significant 

insights that are otherwise overlooked due to the limitation of the human brain.  

Furthermore, the DMMM framework allows scientists to observe the emergent properties 

of the complex microbial community, which are difficult (if not impossible) to predict 

without. 

The DMMM framework allows complex experiments to be performed in silico prior to 

real experiments.  These simulations can guide the formation of new hypothesis, which 

allows in situ and in vivo experiments to be performed selectively. This approach 

drastically decreases the cost and time required for discovery.  Furthermore, this 

approach allows scientists to test otherwise difficult-to-prove hypothesis.  For example, a 

scientist designing an environmental biotechnology strategy might want to study the 

effect of increasing groundwater flow rate, which would be very difficult to evaluate in 

situ. 
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Chapter 4. Methods 
 

The previous chapter described the Dynamic Multi-species Metabolic Modeling 

(DMMM) framework, a novel general computational framework applicable to complex 

(dynamic, multi-species) microbial communities.  This chapter described the methods we 

used to investigation of the Geobacter and Rhodoferax microbial community in uranium-

contaminated subsurface. 

4.1 Applying the DMMM framework to model the Geobacter and Rhodoferax 

community 

The DMMM framework was used to evaluate competition between Geobacter and 

Rhodoferax species in anoxic environments in which Fe(III) is the primary electron 

acceptor available to these organisms.  This represents conditions in uranium-

contaminated subsurface environments, because Fe(III) is expected to be the predominant 

electron acceptor under anoxic conditions [10] and the concentration of U(VI) 

contaminants in the groundwater does not provide a significant source of electron-

accepting capacity [20].  Geobacter sulfurreducens and Rhodoferax ferrireducens served 

as models for Geobacter and Rhodoferax species because genome-scale metabolic 

models of these organisms are available [4, 47]. The G. sulfurreducens model used is 

modified from the original published model [3], containing new reactions including an 

updated nitrogen-fixation stoichiometry.  This model contains 727 reactions, 55 of which 

are exchange reactions.  The published R. ferrireducens model [4] contains 822 reactions, 

67 of which are exchange reactions.  After applying the DMMM framework, the overall 

community model contains 85 external metabolites and two microbial species. The 
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temporal concentration profiles of all metabolites that are either secreted into or 

consumed from the environment and the biomass of the organisms in the community are 

calculated.  The simulations were performed using the maximization of biomass yield as 

the cellular objective for both organisms [76, 77]. 
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4.2 Kinetic parameters 

As in the dynamic FBA (dFBA) formulation [50], dynamic constraints were applied to 

the flux of carbon and energy source, calculated using the Michaelis-Menten expression 

(Equation 4). The acetate transport kinetics of G. sulfurreducens have been determined 

by measuring [
14

C]-labeled acetate uptake [5].  Three different acetate uptake 

mechanisms were found, each with different Ks saturation constants and specific uptake 

rates, V
max

, were identified [5].  The overall acetate uptake rate of G. sulfurreducens was 

calculated using the experimentally identified uptake parameters (Equation 11) [5, 78].  

The V
max

 for acetate uptake of R. ferrireducens was calculated from regression analysis 

of batch growth data [20] and the Ks was assumed to be equal to the lowest acetate 

saturation constant value of G. sulfurreducens (Equation 12).  The ATP maintenance 

requirement value for G. sulfurreducens and R. ferrireducens was set to 0.45 mmol 

ATP/gDW/hr [3, 4]. In the following equations, [S] represents the concentration of 

substrate S, and VS
A
 represents the uptake rate of substrate S by organisms A. 

 

V
ac

Gs

=
13.3[Acetate]

[Acetate]+ 0.77
+

2[Acetate]

[Acetate]+ 0.167
+

2.67[Acetate]

[Acetate]+ 0.012
   (11) 

Vac

Rf
=

1.71[Acetate]

[Acetate]+ 0.012
        (12) 

 

 

Ammonium serves as a nitrogen source for G. sulfurreducens and R. ferrireducens, and it 

was assumed that maximum ammonium uptake rates were equal to the stoichiometric 
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ammonium requirements at their respective maximum growth rates, as calculated with 

FBA. The Ks for ammonium was assumed to be similar to that of E. coli [79]. 

 

V
NH4

Gs

=
0.468[Ammonium]

[Ammonium]+ 0.074
         (13) 

VNH4

Rf
=
0.127[Ammonium]

[Ammonium]+ 0.074
         (14) 

 

 

 

 

 



 41 

4.3 Modeling Resource Availability  

In anoxic sedimentary environments, complex organic matter is fermented with 

acetate as the primary fermentation product [9, 80, 81].  Thus, the slow steady release of 

acetate from fermentation is expected to be the primary natural source of acetate in the 

subsurface sediments at the Rifle site.  

 The rates of microbial processes have been studied in various organics-poor 

sediments.  In a shallow sandy aquifer similar to the Rifle aquifer, the rate of acetate 

oxidation associated with iron-reduction, sulfate-reduction, and methanogenesis was 

reported to be between 0 – 0.5 uM/hr [82]. Similar values were reported for oligotrophic 

lake and marine sediments [83, 84]. The acetate turnover rate in a deep aquifer is 

measured to be 0.0135 µM/hr at 35m depth [85], which is assumed to be the lower bound 

for our simulations.  

Based on these previous findings, we assumed the acetate flux into the subsurface 

at Rifle is between 0 to 0.54 µM/hr prior to the stimulation of metabolism with the 

addition of acetate.  This value is consistent with the values reported by Hensen et al. 

(2001). Lovley and Klug (1986) have used 3 µM/hr as the acetate turnover rate in order to 

model the organics-poor sediment environment [86].  We assumed a lower value because 

iron reducers only use a portion of the acetate. 

The Ammonium concentrations were set to range from 5 to 400 µM, which 

correspond to the ammonium concentrations previously observed at the Rifle site 

[16](Figure 1-2C). 

Previous sediment sampling at bioremediation sites reported the Fe(III) 

concentration to be in the range of 5 - 40 µmol/g of sediment [7, 15, 87],  which includes 
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both microbially reducible Fe(III) and Fe(III) that is resistant to reduction.  If it is 

assumed that the sediment density is 2 g/ml [88]  and that approximately 50% of Fe(III) 

is bioavailable, then 2.5 - 20 mmoles of Fe(III) per liter of groundwater is available for 

microbial reduction.  Therefore, the initial Fe(III) concentration was assumed to be 10 

mM for both pre-injection and during-injection simulations.  

The initial cell concentration for both G. sulfurreducens and R. ferrireducens were 

assumed to be 10
5
 cells/L based on previous results for the Rifle site [89]. The average 

cell mass of G. sulfurreducens is experimentally measured to be 10
-12 

g/cell (Appendix I). 

Assuming the physical densities of the intracellular content of the two organisms are the 

same, the R. ferrireducens cell mass was calculated to be 6.25 x 10
-12

g/cell using the 

volume ratio between G. sulfurreducens and R. ferrireducens.  Recent studies have 

demonstrated that high proportion of Geobacter species do not firmly attach to 

subsurface sediments at the Rifle site [90] and therefore it was assumed that cells were 

planktonic and that biomass was fully affected by dilution due to groundwater flow.  

The injection of acetate to promote U(VI) reduction at the Rifle site results in 

acetate concentrations of 3-5 mM [7, 15].  The acetate injection rate was calculated by 

multiplying the acetate concentration of 3mM by the dilution rate, resulting in an acetate 

flux of 0.0042 mM/hr. This value was used to simulate the acetate flux during acetate 

injection. Since the measured ammonium concentrations in situ did not change during the 

course of bioremediation, the ammonium concentration during acetate amendment was 

fixed at 400 µM for the ammonium excess simulation, and fixed at 5 µM for the 

ammonium-limiting simulation.  
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The groundwater flow in the subsurface is modeled using a dilution rate of 0.034 

day
-1

, or 0.0014 hr
-1

.  This dilution rate is calculated by dividing the linear flow rate at 

Rifle (0.85 m/day) by the length of the experimental plot (24 m).  

 The simulation parameters are summarized in 0 
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4.4 Treatment of Experimental Data and Model Assessment 

Data from the 2007 field experiment at Rifle Colorado [16] was used to assess the 

accuracy of the community dynamics predicted by the model. This data includes the 

initial and average ammonium concentrations as well as the in situ 16S rRNA 

measurement of G. sulfurreducens and R. ferrireducens abundance prior to the start of 

the acetate injection (day 0) and 9, 14, 18 days after the start of the injection (Figure 

1-2C). In order to compare the relative abundance of Geobacter and Rhodoferax species 

mathematically, we defined a metric called “Geobacter fraction” (Equation 15).  A higher 

Geobacter fraction value indicates a greater abundance of Geobacter species relative to 

Rhodoferax. The experimentally measured 16S rRNA abundance data was converted to 

Geobacter fraction value using equation Equation 15.  Here, it is assumed that the 

number of 16s rRNA gene copies corresponding to a particular species is directly related 

to the number of organisms of this species. 

Geobacter fraction =
Number of G. sulfurreducens

Number of G. sulfurreducens+Number of R. ferrireducens
     (15) 

 

The prediction accuracy of the model was accessed for both natural conditions and 

during-injection conditions by comparing simulated Geobacter fractions with 

experimental Geobacter fractions at test-wells D02, D05, and D08. For both cases, the 

ammonium concentrations are set to the measured concentrations prior to acetate 

injection at these well. 
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4.5 Assumed Geometry 

Our simulations assumed that the geometry of the uranium-contaminated subsurface 

environment to be a chemostat. This implied the assumption of spatial homogeneity, and 

greatly simplifies the transport and geochemical process. Because the focus of this thesis 

is on modeling the microbial community, not geochemistry and transport, this 

simplification was introduced.   

 

Figure 4-1. Assumed Geometry 

This figure illustrates the assumed geometry of the simulations. Here, the parts of the figure shown in red are only present during 

acetate injection; the parts of the figure shown in black are present both prior to and during acetate injection. 

 

During acetate injection, the artificial flow rate is very small, therefore has minimal effect on the overall flow rate.  Therefore, the 

overall flow rate = the groundwater flow rate = the dilution flow rate.  The linear flow rate is measured to be 0.85 m/day, and the 

length of the test plot is 24 m.  The dilution rate is calculated to be 0.00141 hr-1. 
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4.6 List of Assumptions 

This section summarizes the assumptions made in our simulation. 

1. Cells were assumed to be in internal steady state.  This is the basic assumption of 

constraint-based metabolic modeling. 

2. The relationship between substrate concentration and the upper limit of substrate 

uptake rates follow Michaelis-Menten relationship. 

a. Acetate uptake Ks of Rhodoferax ferrireducens is the same as Geobacter 

sulfurreducens, because they must compete for acetate in the same 

environment. 

b. Ammonium uptake Ks of both Rhodoferax ferrireducens and Geobacter 

sulfurreducens are the same as that of Escherichia coli. 

3. Our simulations assumes that the geometry of the uranium-contaminated 

subsurface environment to be a chemostat. This implies the assumption of spatial 

homogeneity, as well as greatly simplifies the transport process. 

4. The physical density (mass/volume) of the intracellular contents of G. 

sulfurreducens and R. ferrireducens are assumed to be the same.  The average 

mass of G. sulfurreducens (g/cell) is measured experimentally. The average mass 

of R. ferrireducens is calculated based on volume ratio of the two cells.  The 

volumes of the cells are calculated based on the published cell dimensions [18, 

20].  Cells are assumed to be rod-shaped. (See Appendix I for details). 
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Chapter 5. RESULTS AND DISCUSSION 

5.1 Community Competition Under Natural Conditions 

Prior to the addition of acetate to the groundwater, fermentation of complex organic 

matter is expected to be the primary source of acetate to Rhodoferax and Geobacter 

species.  The rate of this natural supply of acetate at the Rifle site is not known, but is 

expected to fall within the range of acetate turnover rates that have been observed in 

various sedimentary environments [82-86]. The steady state Geobacter fractions 

generated using low acetate turnover rates of 0.016, 0.027, and 0.04 µM/hr  are compared 

with the Geobacter fraction values calculated from experimental measurement at day 0 

(Figure 5-1).  This comparison suggests that the acetate turnover rates is close to 0.27 

µM/hr at well D02, is close to 0.016 µM/hr at well D05, and is close to 0.04 µM/hr at 

well D08 (Figure 5-1). All three inferred acetate turnover rates falls within the range 

measured in similar environments (Figure 5-1) [82], which supports the predicted 

competition dynamics at natural conditions. These results also suggest that the model 

could be used to predict the community dynamics under natural conditions more 

accurately if measurements of the acetate turnover rates at the three wells prior to 

injection were available. 
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Figure 5-1. Comparison between simulated and measured Geobacter fraction under 

natural conditions 

Predicted Geobacter fractions at D02, D05, and D08 prior to acetate addition are generated using acetate turnover rates of 0.016, 

0.027 and 0.040 µM/hr.  The predictions are compared with the Geobacter fraction values calculated from experimental 16S rRNA 

measurements at the respective wells, at day 0. This comparison suggests that the acetate turnover rates is close to 0.016 µM/hr at well 

D02, is close to 0.027 µM/hr at well D05, and is close to 0.040 µM/hr at well D08. All three inferred acetate turnover rates falls within 

the range measured in similar environments, which supports the predicted competition dynamics at natural conditions. 
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The community competition was simulated over three different (low, medium, high) 

acetate turnover ranges (Figure 5-2). The simulations suggested that at low acetate 

turnover rates Rhodoferax species are likely to be more abundant than Geobacter species, 

especially when ammonium is in excess.  This prediction is consistent with the results of 

analysis of 16S rRNA gene sequences at the Rifle site prior to the addition of acetate 

[16].  

Risso et al. analyzed the energetics of R. ferrireducens by comparing predicted 

yields with experimental yields under multiple conditions, and found that the proton 

translocation stoichiometry at cytochrome reductase of 2H
+
/2e

-
 was consistent with the 

data for R. ferrireducens [4], whereas the stoichiometry at this step that could explain 

experimental data was found to be 1H
+
/2e

-
 for G. sulfurreducens [3]. The doubling of 

cytochrome reductase energetic efficiency led to a significant increase in the efficiency of 

the electron transport chain and the predicted Rhodoferax biomass yield during Fe(III) 

respiration. FBA simulations show that under acetate-limited growth on Fe(III), the yield 

of R. ferrireducens is 0.0798 gDW/mmol of acetate, nearly two times the yield of G. 

sulfurreducens (0.0437 gDW/mmol of acetate).  Thermodynamic analysis of cellular 

growth shows that the free energy of substrate oxidation can either be used to drive 

metabolic reactions at higher rates or to produce biomass; in other words, an organism 

can either optimize for substrate uptake rate or optimize for energetic efficiency [59, 60, 

63, 91, 92].  Therefore, by choosing to optimize for efficiency, Rhodoferax has higher 

biomass yield at the expense of growth rate, resulting in a significantly lower substrate 

uptake rate compared to Geobacter exemplified by the observation that the maximum 
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acetate uptake rate of G. sulfurreducens (18 mmol/gDW/hr, equation 1) is more than ten 

fold higher than that of R. ferrireducens (1.71 mmol/gDW/hr, equation 2). 



 51 

 

 

Figure 5-2. The relative success of Geobacter and Rhodoferax in Fe(III) reducing 

community prior to acetate amendment. 

The steady state community compositions at three different acetate turnover rate ranges are simulated. Geobacter fraction is used to 

measure the relative success of Geobacter to Rhodoferax species. The competition with respect to ammonium concentration and 

acetate turnover rate is viewed at three different scales with respect to the acetate turnover rate. (A) Acetate turnover rates range from 

0 to 0.2 µM/hr. At this scale, the nonlinearity of the competition is highlighted.  (B) Acetate turnover rates range from 0 to 0.54 

µM/hr, corresponding to the range of subsurface acetate availability reported by Hansen et al. (2001). (C). Acetate turnover rates range 

from 0 to 0.04 µM/hr, corresponding to the rates measured in an aquifer extremely poor in acetate (Chapelle and Lovley, 1990). 
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It was previously shown that yield-strategists are favored over rate-strategists under low 

substrate flux conditions [60]. The same rationale can be applied to the anoxic ferric 

microbial community. Growth rate is the product of substrate uptake rate and yield (µ = 

Vs × Y).  At low acetate turnover conditions, the low environmental acetate flux limits 

the uptake rate of Geobacter to a fraction of its maximum. If both organisms have similar 

uptake rates, then the growth rate of Rhodoferax is significantly higher since its yield is 

twice that of Geobacter. This explains the abundance of Rhodoferax at low acetate 

turnover conditions when ammonium is readily available (Figure 5-2C). As acetate 

turnover rate increases, the acetate uptake limitation is relaxed.  When the acetate 

turnover rate is sufficiently high to allow Geobacter uptake rates to become more than 

two times that of Rhodoferax, the growth rate of Geobacter becomes greater than that of 

Rhodoferax. Therefore, Geobacter becomes more competitive at higher acetate fluxes 

(Figure 5-2A, B). 

 

The modeling suggests that the availability of ammonium in the sediments also plays a 

major role in the relative abundance under natural conditions in the sediments, with 

Geobacter favored at low ammonium conditions (Figure 5-1,Figure 5-2). The community 

composition varied non-linearly with respect to ammonium concentration and acetate 

turnover rate (Figure 1-2A).  The region of co-existence (Geobacter fraction between 0.4 

to 0.6) of Rhodoferax and Geobacter under steady-state conditions was narrow; minute 

changes in acetate and ammonium flux led to the complete dominance of one organism 

(Figure 5-2B, C). The simulations predicted that as the availability of ammonium 
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decreased, Geobacter became more competitive with Rhodoferax at low acetate turnover 

rates (Figure 5-2C). This can be attributed to the ability of Geobacter to fulfill its 

nitrogen requirements from fixation of nitrogen whereas Rhodoferax is incapable of 

nitrogen fixation.  Availability of acetate in excess results in the limitation in ammonium 

for Rhodoferax, favoring the growth of Geobacter.  High expression of genes for nitrogen 

fixation in Geobacter species living in a diversity of subsurface sediments [89, 93, 94] 

has suggested that they are actively involved in nitrogen fixation in the subsurface.  

Geobacter nitrogen fixation genes may even be expressed when low (< 50 µM) 

concentrations are available in sediments [95], suggesting that such subsurface sediments 

may well contain microzones that are ammonium-depleted.  The presence of such 

microzones would further facilitate co-existence of Geobacter and Rhodoferax with 

growth of Geobacter favored in the ammonium-depleted microzones. However, the 

current model does not incorporate spatial heterogeneity and therefore, cannot predict 

such spatial variations in community composition. 



 54 

 

 

5.2 Community Competition when Acetate is added to the Subsurface 

Our simulation predictions of the community composition at test wells D02, D05, and 

D08 during acetate addition shows the same trend as the values calculated from 16S 

rRNA measurements (Figure 5-3). These simulations (Figure 5-3) agree with previous 

observations that the addition of millimolar concentrations of acetate to the subsurface in 

order to stimulate in situ uranium bioremediation at the Rifle site significantly influences 

the relative proportions of Geobacter and Rhodoferax, with Geobacter species 

consistently becoming the predominant microorganisms regardless of ammonium 

availability [7, 15, 16, 89]. Furthermore, the predicted number of Geobacter cells agrees 

in order of magnitude with the measured number of Geobacter cells at day 19 (Figure 

5-4). 
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Figure 5-3. Comparison between predicted and measured Geobacter fractions 

during acetate addition. 

The predicted Geobacter fractions of wells D05, D02, and D08 are compared with the experimentally measured fractions at the 

respective wells.  Simulations are initiated with the Geobacter fractions and ammonium concentrations measured at Day 0 in wells 

D05 (64%, 21 µM), D02 (58%, 40µM), and D08 (20%, 400µM). The predicted Geobacter fractions (solid lines) are compared with 

the Geobacter fractions calculated from experimentally 16S rRNA measurements (▲).   
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Figure 5-4. Simulation of the competition dynamics in a Fe(III) reducing community 

during acetate addition. 

Biomass concentrations of G. sulfurreducens and R. ferrireducens (A), Geobacter fractions (B), acetate concentration (C), and Fe(III) 

concentration (D) under both ammonium-limiting and ammonium excess conditions are shown. Geobacter out-competes Rhodoferax 

soon after acetate addition begins under both conditions.  The black bar in panel A represents the measured range of Geobacter cell 

concentration at day 19 [89]. 

 

Simulations are initialized with equal numbers of Geobacter and Rhodoferax. Acetate injection rate of 3mM/day (4.2 µM/hr) is used 

for both ammonium-limiting ([ammonium] = 0.005 mM) and ammonium excess conditions ([ammonium] = 0.4 mM).    

 

 

Note: The Y-axis of panel A is in log scale, where as the Y-axis of panels B,C,D are in linear scale.  
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The reasons for this were readily apparent from the dynamic genome-scale modeling 

(Figure 5-3). Here, the acetate flux was assumed to be 4.2 µM/hr. At this acetate flux, the 

ammonium turnover rate in the ammonium excess case is more than sufficient for 

biomass synthesis and is not limiting. (The ammonium turnover rate is estimated by 

multiplying the dilution rate and the steady ammonium concentration to be 0.56 µM/hr, 

Appendix I)  Whereas in the ammonium limiting case, the ammonium flux (0.035 µM/hr) 

is the primary limitation for growth at the same level of acetate availability. Geobacter 

rapidly responded to increased acetate availability with a substantial increase in biomass, 

whether or not sufficient ammonium was available to completely support all of the 

acetate-dependent growth (Figure 5-4A,B).  In contrast, the growth rate of R. 

ferrireducens was just above the dilution rate in the ammonium excess case, whereas 

there is a loss in Rhodoferax biomass in the ammonium limiting case.  This reflects the 

absolute requirement (Figure 5-4A,B) of Rhodoferax for ammonium to support growth.  

Low ammonium delayed, but did not prevent extensive growth of Geobacter.  However, 

the maximum amount of Geobacter biomass was lower under ammonium-limiting 

conditions due to the increased energetic demands for nitrogen fixation (Figure 5-4A).  

With extended time Fe(III) was depleted and Geobacter  declined (Figure 5-4A,C). 

Acetate was never exhausted during the simulation (Figure 5-4D); however, if more 

Fe(III) was made available, acetate was completely consumed before the complete 

utilization of Fe(III) (data not shown).   

The high flux of acetate from the artificial addition allows both species to achieve 

their maximum acetate uptake rate.  Since the maximum acetate uptake rate of Geobacter 

is more than ten times higher than that of Rhodoferax, whereas the yield of Rhodoferax is 
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only twice higher than that of Geobacter, the growth rate of Geobacter is significantly 

higher than that of Rhodoferax when both organisms utilize acetate at their respective 

maximum uptake rates. Therefore, during bioremediation, Geobacter’s advantage in 

uptake rate outweighs Rhodoferax’s advantage in yield, leading to the overwhelming 

success of Geobacter. 

The cell densities and Fe(III) concentration prior to acetate injection can vary 

greatly prior to acetate amendment.  In order to evaluate the sensitivity of the competition 

dynamics to variations in the initial cell densities, and Fe(III) concentrations,  simulations 

with different initial Fe(III) concentrations (2.5, 5, 10, and 20 mM) and cell densities 

(10
4
, 10

5
, and 10

6
 cells/L) were performed. These simulations showed no significant 

changes in the dynamics of the competition, suggesting that the variations in these two 

parameters will not affect the increase in the Geobacter fraction during in situ 

bioremediation.   
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5.3 Predicted changes in metabolic states-bioremediation implications 

An additional feature of the genome scale metabolic models is their capability to 

predict changes in the metabolic states of microorganisms under different environmental 

conditions. The model predicted three metabolic phases for each organism: the acetate-

limiting growth phase; the ammonium-depleted phase and the Fe(III)-depleted death 

phase;. Under ammonium-depleted conditions, R. ferrireducens is predicted to experience 

a maintenance phase with no associated growth because of the lack of ammonium, but 

with the ability to generate ATP by oxidizing acetate coupled to Fe(III) reduction. In 

contrast, G. sulfurreducens is able to grow in the absence of ammonium by nitrogen 

fixation.  

 The necessity for nitrogen fixation is predicted to have a number of 

environmentally relevant physiological consequences for Geobacter (Figure 5-5). The 

genome-scale model predicts that in order to meet increased energetic demands 

associated with nitrogen fixation more acetate enters the TCA cycle and there are higher 

fluxes through NADH dehydrogenase and extracellular electron transfer, and ATP 

synthase (Figure 5-5). Under nitrogen-fixing conditions, less biomass is produced which 

is reflected in less acetate flux through acetate kinase, as well as less pyruvate production 

through pyruvate oxidoreductase for biomass synthesis.  These changes in metabolic 

fluxes are predicted to result in ca. 30% reduction in growth yield (Figure 5-5). A 

reduction of Geobacter biomass yield under nitrogen-fixation conditions have been 

observed experimentally [96].  
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Figure 5-5. Comparison of the predicted flux distribution of G. sulfurreducens 

during growth with ammonium vs. nitrogen-fixation dependent growth 

The predicted flux distributions of G. sulfurreducens during growth with unlimited ammonium uptake and nitrogen-fixation dependent 

growth are compared. The biomass flux is measured in hr-1, all other fluxes are measured in mmol gDW-1 hr-1.  Red fluxes are 

increased during nitrogen fixation, blue fluxes are decreased during nitrogen fixation.  The first number represents the flux through the 

reaction when ammonium is acquired through environmental uptake; the second number represents the flux through the reaction when 

ammonium is provided through nitrogen-fixation. 
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The predicted shift in metabolism associated with nitrogen fixation could have a 

significant impact on the effectiveness of in situ uranium bioremediation. The rate of 

U(VI) reduction depends on both the specific uranium reduction rate and biomass 

concentration. During nitrogen fixation, the rate of U(VI) reduction per cell may increase 

due to the up-regulation of respiration, at the expense of biomass production. This 

prediction of the model is consistent with field results at the Rifle site.  In the 2007 field 

experiment, U(VI) was much more effectively removed from the groundwater at sites 

low in ammonium than at a site with relatively high ammonium concentrations [16]. It 

may be possible with dynamic optimization techniques to predict from genome-scale 

metabolic models, the optimal ammonium concentrations for maximal rates of U(VI) 

reduction. This would be analogous to recent design of a G. sulfurreducens strain with 

increased respiration rates and lower biomass yields via genome-scale metabolic 

modeling [33]. 
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Chapter 6. Conclusion 

6.1 Implications of the Geobacter and Rhodoferax community simulations 

The simulations suggest that Geobacter and Rhodoferax species have adopted very 

different strategies for growth in subsurface environments. Geobacter have sacrificed 

maximizing yield from substrate utilization in favor of the capability of rapid growth and 

the ability to grow in the absence of ammonium whereas Rhodoferax are more optimized 

for higher growth yields.  Both strategies appear to be adaptive for growth under natural 

subsurface conditions at the Rifle site. Geobacter and Rhodoferax are found within the 

same sampling zones.  This probably reflects growth of Geobacter and Rhodoferax 

species in different microenvironments within the heterogeneous subsurface 

environment.  The ability of Geobacter to grow faster than Rhodoferax at high acetate 

concentrations and to multiply in the absence of ammonium permits it to rapidly respond 

to the artificial conditions imposed when acetate is added to promote in situ uranium 

bioremediation.  It is fortuitous that Geobacter outcompete Rhodoferax under these 

conditions, because pure culture studies have suggested that Geobacter [18], but not 

Rhodoferax [20] species are capable of U(VI) reduction.  If this distinction were true for 

all Rhodoferax species then in situ uranium reduction would be much less effective if 

Rhodoferax could readily compete with Geobacter under high acetate/low ammonium 

conditions.  

There are other microbial interactions that are likely to impact on the effectiveness 

of in situ uranium bioremediation.  Most notably, the consumption of added acetate by 

acetate-oxidizing sulfate reducers that are ineffective in U(VI) reduction (Anderson et al. 

2003) may limit U(VI) reduction by Geobacter species, decreasing the efficacy of the 
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bioremediation [7, 15].  As genome-scale models for these sulfate reducers become 

available it should be possible to evaluate this interaction in a manner similar to that 

reported here for Geobacter/Rhodoferax interactions.  Furthermore, the increasing 

availability of the genome sequences of environmentally relevant microorganisms should 

make it feasible to apply genome-scale metabolic modeling to further investigate the 

ecology of a wide diversity of microbial ecosystems. 
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6.2 Thesis Objectives Achieved 

In section 1.5, we have outlined the objectives of this thesis as:  

1. To develop a general computational framework applicable to complex (dynamic, 

multi-species) microbial communities. 

2. To apply this computational framework to the investigation of the Geobacter and 

Rhodoferax microbial community in uranium-contaminated subsurface.  In 

particular, we aim to answer the following two questions: 

a. Why do two acetate-oxidizing iron-reducing organisms occupy the same 

niche? 

b. Will the existence of Rhodoferax species affect the outcome of uranium 

bioremediation? 

 

We have achieved both of these objectives: 

1. We have developed the Dynamic Multi-species Metabolic Modeling (DMMM) 

framework. The DMMM framework has proved to be a general computational 

framework applicable to complex (dynamic, multi-species) microbial 

communities.   To date, the framework has been applied to multiple microbial 

communities, one of which is the Geobacter and Rhodoferax microbial 

community discussed in this thesis. The DMMM model has proved to be very 

efficient to use – for example, after the establishment of the standard protocols, 

the development of the Geobacter, Desulfovibrio vulgaris, and acetate-oxidizing 
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sulfate reducers took about one week time to complete.  See Appendix III for a 

list of the microbial communities modeled using DMMM. 

2. Using the DMMM framework, we investigated the dynamics of the Geobacter 

and Rhodoferax community in uranium-contaminated subsurface prior and during 

acetate addition.  Our investigations have yielded answers to the two initial 

motivating questions: 

a. Why do two acetate-oxidizing iron-reducing organisms occupy the same 

niche? 

The community composition is highly sensitive to acetate and ammonium 

availability.  Prior to acetate injection, the abundance of these two 

metabolites varies temporally and spatially within the subsurface 

environment, thus conditionally favoring either Geobacter or Rhodoferax 

species.  This allows these two iron-reducing organisms to simultaneously 

occupy the same niche. 

b. Will the existence of Rhodoferax species affect the outcome of uranium 

bioremediation? 

During acetate addition, the high acetate flux strongly favors Geobacter 

species, the rate-strategist.  In all simulations of the acetate addition phase, 

Geobacter completely dominates the community.  Therefore, the existence 

of Rhodoferax species does not affect the outcome of uranium 

bioremediation.  
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6.3 Future Recommendations 

1. To fully understand the uranium-contaminated subsurface environment, the 

DMMM model should be coupled with the reactive transport model, in similar 

fashion as the model presented by Scheibe et al.[23].   

2. The DMMM framework should be used as an in silico tool to test-out novel 

bioremediation strategies, such as lactate addition, prior to incurring the cost of in 

situ experiments. 

3. One significant hurdle in the development of the Geobacter and Rhodoferax model 

was the difficulty in acquiring high-quality experimental data.  Entering low-

quality data into a complex metabolic model such as the DMMM is the scientific 

equivalent of making a high-end sports car run on dry grass.  Hopefully the work 

presented in this thesis will help to bridge the gap between experimentalists and 

modelers. 

4. This thesis investigates the competition between a rate-strategist and a yield-

strategist at the ecological level.  However, while the rate vs. yield tradeoff is well 

understood at the chemical reaction level, less is known about the specific 

mechanism this tradeoff is reflected in the cell metabolism. Investigation into the 

evolution and design of the electron transport chain should provide insights to this 

problem. 
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Appendix I.  Thesis Outline 
This document is a Masters of Applied Science thesis submitted to the Graduate 

Department of Chemical Engineering at the University of Toronto.  This thesis primarily 

focuses on the development of the Dynamic Multi-species Metabolic Modeling 

(DMMM) framework. A large portion of this thesis is adapted from the research paper 

“Genome-Scale Dynamic Modeling of the Competition Between Rhodoferax and 

Geobacter in Anoxic Subsurface Environments” [1].  This fulfills a special requirement of 

University of Toronto Chemical Engineering Graduate program, which allows research 

papers to be submitted as thesis by adding sufficient background information.  Since the 

research paper is submitted to the International Society of Microbial Ecology Journal, it 

is intended for a microbial biology audience instead of an engineering one.  The 

adaptation is aimed to make the document more suitable for an engineering audience. 

 

The main body of this thesis includes five chapters.  Chapter 1 provides an introduction 

to uranium bioremediation as well as our motivation in developing a computational 

model of the uranium contaminated subsurface community. The objective of this thesis is 

discussed at the end of this chapter. Chapter 2 provides a more detailed introduction to 

metabolic modeling, as well as our reasons for developing the Dynamic Multi-species 

Metabolic Modeling (DMMM) framework.  Chapter 3 describes the DMMM framework 

as well as its advantages comparing to other modeling techniques as well experiments.  

Chapter 4 describes the methods by which we applied the DMMM framework to the 
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Geobacter and Rhodoferax community. Chapter 5 describes and discusses the simulation 

results.  Chapter 6 summaries this work and provides some future recommendations. 

 

Section 1.3 of Chapter 1, as well as Chapters 3-6 are adapted from the research paper 

“Genome-Scale Dynamic Modeling of the Competition Between Rhodoferax and 

Geobacter in Anoxic Subsurface Environments” [1].  Chapter 2 is adapted from the 

review paper “Constraint-Based Metabolic Model: an Interdisciplinary Tool for 

Improving Biotechnology Applications” [2]. Kai Zhuang is the first author of both papers, 

and only the portions authored by Kai Zhuang have been used in this adaptation. 

While Kai Zhuang is the sole author of this document, the work of many collaborators 

were instrumental in the development and testing of the DMMM framework as well as its 

application to the Geobacter and Rhodoferax subsurface community.  Their contributions 

are clarified and acknowledged here: 

 

The Dynamic Multi-species Metabolic Modeling (DMMM) framework is developed and 

coded using MATLAB by Kai Zhuang. In order to apply the DMMM framework to the 

Geobacter and Rhodoferax community, the genome-scale metabolic models as well as 

many experimental parameters were required.  The metabolic model of Geobacter 

sulfurreducens has been previously published [3]. Based on the experimental work of 

Bahareh Sayyar, Kai Zhuang has modified the nitrogen fixation stoichiometry of the 

model. The Rhodoferax ferrireducens model is developed by Jun Sun and is described in 

a submitted manuscript [4]. Kai Zhuang is a coauthor of this manuscript; he is 

responsible for the calculation of the electron transport chain and maintenance energy 
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stoichiometry. The acetate uptake parameters of G. sulfurreducens were experimentally 

measured by Hanno Richter and modified by Kai Zhuang.  The procedure is described in 

a submitted manuscript [5]. The 16S rRNA data from 2007 in situ acetate injection 

experiment at Rifle Colorado is acquired from Paula Mouser through Derek Lovley.  All 

other parameters not mentioned are derived/calculated/measured by Kai Zhuang 
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Appendix II.  List of Simulation Parameters 
 

Acetate Uptake Parameters 

G. sulfurreducens 

Ks,1 0.012 mM 

Ks,2 0.0167 mM 

Ks,3 0.777 mM 

Vmax,1 2.67 mmol/gDW/hr 

Vmax,2 2 mmol/gDW/hr 

Vmax,3 13.33 mmol/gDW/hr 

[5, 78] 

 

R. ferrireducens 

Ks 0.012 mM Assumed to be the same as G. sulfurreducens 

Vmax 1.71 mmol/gDW/hr [20] 

 

Ammonium Uptake Parameters 

G. sulfurreducens 

Ks 0.074 mM Assumed to be the same as E. coli [79] 

Vmax 0.468 mmol/gDW/hr Calculated by FBA 

 

R. ferrireducens 

Ks 0.074 mM Assumed to be the same as E. coli [79] 

Vmax 0.127 mmol/gDW/hr Calculated by FBA 

 

Simulations under Natural Conditions 

[Fe3]init 10 mM [7, 15, 87, 88] 

Acetate Turnover  

Rate 

00-0.54 µM/hr  [82-86, 97, 98] 

Ammonium Concentration 0 – 400 µM [16] 

[G. sulfurreducens]init 10
5 
cells/L [89] 

[R. ferrireducens]init 10
5 
cells/L [89] 

Dilution rate 0.00141 hr
-1

 Calculated based on geometry [7, 15, 87, 

88] 
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Simulations During Acetate Addition 

[Fe3]init 10 mM [7, 15, 87, 88] 

Acetate Injection Rate 4.2 - 7 µM/hr [7, 15] 

[NH4]init (excess) 400 µM [16] 

[NH4]init (limiting) 5 µM [16] 

[G. sulfurreducens]init 10
5 
cells/L [89] 

[R. ferrireducens]init 10
5 
cells/L [89] 

Dilution rate 0.00141 hr
-1

 Calculated based on geometry[7, 15] 

 

Cell Number to Cell Mass Conversion 

Mounir Izallalen has calculated the average mass of G. sulfurreducens to be 10
-12 

g per 

cell using the following method [1]: 

1. Grow cells in large volumes (>1L). 

2. Stop growth in mid exponential phase. 

3. Perform cell count using fluorescent microscopy. 

4. Collect dry cell fractions using centrifuge method.  Measure Dry Cell Mass with a 

spring of sufficient precision. 

5. Calculate the conversion factor between Dry Cell Mass and Cell Number. 

The average volume of G. sulfurreducens and R. ferrireducens are calculated based on 

the published dimensions for these organisms [18, 20].  Cells are assumed to be rod 

shaped.  R. ferrireducens is calculated to be 6.25 times the size of G. sulfurreducens.  

Therefore, the average mass of R. ferrireducens is 6.25×10
-12 

g per cell. 
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Appendix III.  Nomenclature
DMMM  Dynamic Multi-species Metabolic Modeling framework 

MASC   Masters of Applied Science 

ODE   Ordinary Differential Equations 

U(VI)   Uranium (VI) 

U(IV)   Uranium (IV) 

Fe(III)   Iron (III), ferric iron 

Fe(II)   Iron (II), ferrous iron 

rRNA   ribosomal RNA 

CBM Constraint-Based Model (in this document, CBM refers 

specifically to a constraint-based metabolic model.) 

 

Exchange flux An exchange flux is a reaction flux where the metabolite either 

moves from the outside to the inside of the cell, or vice versa. 

(Unit: mmol/gDW/hr) 

Uptake rate The rate a metabolite is absorbed into the cell, equal to the 

exchange flux. (Unit: mmol/gDW/hr) 

Production rate The (overall) rate of production of a metabolite. (Unit: mM/hr) 

Consumption rate The (overall) rate of consumption of a metabolite. (Unit: mM/hr) 

Note: the concept of uptake rate and consumption rate is similar and should be distinguished.  These 

two rates are mathematically equivalent if and only if there is only one microbial species within the 

community being modeled.  The “uptake rate” of metabolite i by species j is equal to the exchange 

flux vi
j
, whereas the “consumption rate” of metabolite i is equal to the summation of all exchange 

fluxes relevant to metabolite i, or ∑vi
j
X

j
 over the range of j (1 ≤ j ≤ number of microbial species). 
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Acetate turnover rate The rate at which acetate is been generated in the natural 

environment.  The primary source of acetate prior to acetate 

injection is from fermentation, and the “acetate turnover rate” 

describes this rate. (Unit: mM/hr) 

Cell Concentration Number of cells per unit volume (cells/L) 

Physical Density Here, physical density refers to the mass of the intracellular 

contents per unit volume (g/L).   
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Appendix IV.  Mathematical Symbols 
 µ Specific growth rate (Unit: g new cells/g cells/hr)  

r
D
 Specific death rate (Unit: g dead cells/g cells/hr)  

c
T
 FBA objective column 

 This column chooses which reaction flux(es) is the target of 

optimization.  

A The stoichiometric matrix representation of the chemical reaction 

network 

v the vector of reaction fluxes (Unit: mmol/gDW/hr) 

v
max

 the vector of maximum reaction fluxes (Unit: mmol/gDW/hr) 

v
min

 the vector of minimum reaction fluxes (Unit: mmol/gDW/hr) 

i  the 
i
th metabolite within A 

j the 
j
th organisms of the community 

Si the 
i
th substrate 

q
S
 uptake rate of substrate S (Unit: mmol/gDW/hr) 

m
S
 maintenance requirement of substrate S (Unit: mmol/gDW/hr) 

Y biomass yield (Unit: gDW/mmol) 

m
ATP

 Non-growth-related ATP maintenance flux (Unit: mmol/gDW/hr) 

Vi
max

   Maximum specific uptake rate of metabolite i  

(Unit: mmol/gDW/hr) 

Vi    specific uptake rate of metabolite i (Unit: mmol/gDW/hr) 

N   population number (in Verhulst equation) 
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Appendix V.  List of Equations and Equation 

Sets 
Equation 1. Original FBA formulation 

maximize  z = cTv

subject to  Av = 0

                 vmin
≤ v ≤ v

max
 

 

Equation 2. dFBA formulation 

dX

dt
= µX

dS
i

dt
= A

i
v
i
X

Maximize µ = cTv

subject to  Av = 0

                 vmin
≤ v ≤ v

max

1≤ i ≤ to number of metabolites
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Equation 3. DMMM framework formulation 

dX j

dt
= µ jX j

dSi

dt
= Ai

j
v i

j
X j

j

∑

Maximize µ j = c
T
v j

subject to  A jv j = 0

                 v j

min
≤ v j ≤ v j

max

1≤ i ≤ to number of metabolites

1≤ j ≤ to number of microbial species

 

 

Equation 4. Using Michaelis –Menten kinetics to calculate dynamic flux constraints 

V
i,constraint

≤V
i

max
•

S
i

S
i
+K

i
s

 

 

Equation 5. Rate of change of biomass j 

dX
j

dt
= µ j

X
j

 

 

Equation 6. Rate of change of metabolite i 

dSi

dt
= v i

j
X j

j

∑
 

Equation 7. Calculation of Cell Death based on Maintenance Requirement 

r
D
= (q

S
−m

S
)Y  
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Equation 8. Single Monod Model 

µ = µmax •
[S]

[S]+ K
s  

 

Equation 9. Double Monod Model 

µ = µmax •
[S
1
]

[S
1
]+ K

s1

•
[S

2
]

[S
2
]+ K

s2  

 

Equation 10. General Monod Model 

µ = µmax •
[S

i
]

[S
i
]+ K

s
i1

i

∏
 

Equation 11. Calculation of Acetate Uptake Constraint of Geobacter sulfurreducens 

V
ac

Gs

=
13.3[Acetate]

[Acetate]+ 0.77
+

2[Acetate]

[Acetate]+ 0.167
+

2.67[Acetate]

[Acetate]+ 0.012  

 

Equation 12. Calculation of Acetate Uptake Constraint of Rhodoferax ferrireducens 

Vac

Rf
=

1.71[Acetate]

[Acetate]+ 0.012  

 

Equation 13. Calculation of Ammonium Uptake Constraint of Geobacter 

sulfurreducens 

V
NH4

Gs

=
0.468[Ammonium]

[Ammonium]+ 0.074         

 

Equation 14. Calculation of Ammonium Uptake Constraint of Rhodoferax 

ferrireducens 

VNH4

Rf
=
0.127[Ammonium]

[Ammonium]+ 0.074         
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Equation 15. Geobacter fraction formula 

Geobacter fraction =
Number of G. sulfurreducens

Number of G. sulfurreducens+Number of R. ferrireducens
 

 
Equation 16. Verhulst Equation 

dN

dt
= rN(1−

N

K
)  
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Appendix VI.  Disambiguation: r-Y tradeoff 
A major find of this thesis is that the competition between Geobacter and Rhodoferax 

species is to a large part determined by the rate vs. yield (r-Y) tradeoff.  The rate vs. yield 

tradeoff stems from the 2
nd

 law of thermodynamics – in any non-equilibrium system, the 

entropy increases.  This implies that for any organism to escape “entropy death”, the 

organism must continue to dissipate energy (mostly through chemical reactions).  Higher 

energy dissipation allows faster chemical reactions, but leaves less energy to be 

converted into biomass, hence creating the tradeoff.  The r-Y tradeoff was discussed in 

depth in Section 2.2. 

The r-Y tradeoff is closely related to but distinct from the r-K selection mechanism in 

evolutionary ecology.  The r-K selection mechanism refers to a general evolutionary 

tradeoff: given limited resources, the r-strategists maximize the quantity of offspring, 

whereas the K-strategists maximize the quality of offspring [99].  Here, r and K refer to 

growth rate and carrying capacity of the environment in the Verhulst equation of 

population dynamics.  N is the population number of the organisms. 

dN

dt
= rN(1−

N

K
)         (16) 

Although both r-Y tradeoff and r-K selection are evolutionary equivalents of the Tragedy 

of Common problem in economics, the nature of the tradeoffs are very different. The r-Y 

tradeoff is based in thermodynamics and exists at the level of chemical reactions, whereas 

the r-K selection exists at the level of descriptive ecology, and should be viewed as an 

integrated description of multiple tradeoffs, which could have its root in the r-Y tradeoff.  
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Another ambiguity could arise from the uptake rate vs. substrate affinity tradeoff.  While 

the physiological basis of this tradeoff is still unknown, there is clear evidence for its 

existence [100]. With respect to microbiology, it is possible that the observed r-K 

selection mechanism is the integrative effect of both r-Y tradeoff and rate vs. affinity 

tradeoff.  It is important for scientists to distinguish the physiological/mechanistic 

tradeoffs from the descriptive r-K selection mechanism. 
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Appendix VII.  Applications of DMMM 
As of July 7, 2009, the DMMM framework was used to create the dynamic community 

metabolic models of 4 microbial communities. These includes: 

1. Geobacter sulfurreducens and Rhodoferax ferrireducens (Kai Zhuang) 

2. Geobacter sulfurreducens and Geobacter metallireducens (Zhao Jiao) 

3. Geobacter sulfurreducens and acetate-oxidizing sulfate reducers  (Kai Zhuang) 

4. Geobacter sulfurreducens, Desulfovibrio vulgaris, and acetate-oxidizing sulfate 

reducers  (Kai Zhuang) 

 

Names in bracelets are the lead developers of the respective community model. 

 


