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Abstract: In recent years, in silico studies and trial simulations have complemented experimental procedures. A model is 

a description of a system, and a system is any collection of interrelated objects; an object, moreover, is some elemental 

unit upon which observations can be made but whose internal structure either does not exist or is ignored. Therefore, any 

network analysis approach is critical for successful quantitative modeling of biological systems. This review highlights 

some of most popular and important modeling algorithms, tools, and emerging standards for representing, simulating and 

analyzing cellular networks in five sections. Also, we try to show these concepts by means of simple example and proper 

images and graphs. Overall, systems biology aims for a holistic description and understanding of biological processes by 

an integration of analytical experimental approaches along with synthetic computational models. In fact, biological net-

works have been developed as a platform for integrating information from high to low-throughput experiments for the

analysis of biological systems. We provide an overview of all processes used in modeling and simulating biological net-

works in such a way that they can become easily understandable for researchers with both biological and mathematical 

backgrounds. Consequently, given the complexity of generated experimental data and cellular networks, it is no surprise 

that researchers have turned to computer simulation and the development of more theory-based approaches to augment 

and assist in the development of a fully quantitative understanding of cellular dynamics.
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1. INTRODUCTION

System approaches are hardly new, but the foundations of 
“Systems Biology” have only been achieved now at the be-
ginning of the 21st century [1] with the support of the two 
main international journals “Science” and “Nature”. The 
content of Kitano’s papers is not new by itself, but they were 
written at the right time. The first reason for the renewed 
interest nowadays for a system-level approach is linked to 
the progress in molecular biology experiments (such as ge-
nome sequencing), high-throughput generated data (microar-
ray data), biosensors, and nano-biotechnology [2]. This pro-
gress enables scientists to collect comprehensive data sets on 
system performance and to gain biological information on the 
properties, structures and functions of biomolecules [2, 3].

Present-day systems biology approaches aim to under-
stand biological systems, such as cells or tissues, and also 
how their functions arise from the interplay of their compo-
nents. They involve examination of the structure and dynam-
ics of molecule interactions as a whole, rather than isolated 
parts of a cell. According to Westerhoff and Palsson, two 
lines of investigation led to contemporary systems biology. 
One of them starts from identification of individual 
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molecules and aims at up-scaling to a simultaneous view on 
all molecules and their interactions. But the other line origi-
nates from non-equilibrium thermodynamics and focuses on 
the formal analysis of new functional states arising from 
molecule interactions aiming at the discovery of general 
principles rather than being descriptive [4].

Based on these two aspects of systems biology, two dif-
ferent approaches exist as well: bottom-up (from the parts to 
the whole) and top-down (from the whole to the parts) ap-
proaches (Fig. 1). Bottom-up systems biology starts with the 
parts of the system, formulating the behavior of each com-
ponent and integrating these formulations usually as mecha-
nistic models to predict system behavior. In contrast, top-
down systems biology is characterized by the use of poten-
tially complete that is large, genome-wide data sets for iden-
tification of network interaction structures or modules, em-
ploying phenomenological models. 

A second major reason for a renewed interest for a sys-
tem-level understanding is the failure of classical philosophy 
used in molecular biology, namely the “reductionist” ap-
proach. Now, it is becoming clear that everything in physiol-
ogy and pathology will not be explained by one or a few 
genes/proteins in a cell or an organism. On the other hand, 
many common diseases are polygenic and are characterized 
to be complex at the clinical, cellular, and molecular levels.

Innovative “omics” technologies such as genomics, tran-
scriptomics, proteomics, and metabolomics facilitate a strat-
egy towards the simultaneous analysis of the large number of 
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genes, transcripts, proteins, and metabolites in many labora-
tories. Therefore, a huge volume of data has been generated 
about the make-up of cells and their behavior at various cel-
lular levels and different environmental conditions, which 
enables us to reconstruct genome scale biomolecular net-
works (e.g., transcriptional regulatory networks, interactomic 
networks, metabolic networks, protein-protein interaction 
networks) to perform deeper biological analyses. Further-
more, along with omic data generation, in order to compile 
the biomolecular networks, analytical platforms are being 
developed that can mathematically process raw data, inte-
grate and curate various data types in a biologically mean-
ingful way and finally interpret them in a system’s context to 
properly describe cellular functions and behaviors [5].

Fig. (1). A scheme showing the relationship between the two main 

approaches to modeling biological systems, the top-down approach 

that works from the whole to the parts of a system, and the bottom-

up approach, going from the parts to the whole.

As a result of these recent technological advances, the 
view of molecular biology has been changed, so we consider 
each component as a part of a complex network not as a sin-
gle entity. Moreover, to have a more accurate look at the 
cell’s biology, it has been recommended to integrate omic 
data (e.g., genome sequence, transcriptome, proteome, and 
metabolome) and gain a global insight into cellular behavior 
because it results from the action and interplay between the 
distinct networks in a complex web of hierarchical, multi-
leveled and regulated dynamic processes [6], according to 
Linus Pauling’s statement “Life is a relationship among mol-
ecules and not a property of any molecule”.

The most important resources for such information are 
the scientific literature and human expertise deposited in 
public databases. In particular, for the development of math-
ematical models, standardized resources that provide their 
data in a computational amenable and reusable manner are a 
preferable resource. 

The paper is organized as follows: in the first section, we 
define graph theory we use, its applications in systems biol-
ogy, and four types of networks that represent molecular 
interactions. Section two is the main section of the paper, 
where static and dynamic modeling algorithms commonly 
used in systems biology are reviewed using examples that 
generated from experimental data. Section three presents 
resources and databases, such as gene and protein sequence 
and annotation databases, biological network resources, and 
biomodel repositories. In section four, we discuss the soft-
ware tools that were developed for biological modeling and 
simulation. In section five, standards and programming lan-
guages for the representation of molecular pathway are de-
scribed. Finally, in conclusion of the paper, we give an over-
view of all processes in modeling and simulating biological 
networks.

2. GRAPH THEORY AND BIOLOGICAL NETWORKS

The theoretical underpinnings for the analysis of net-
works come from mathematics (in particular graph theory 
and computer science), probability theory, and statistics. We 
describe networks in terms of (static) graphs. Mathematical-
ly, a graph G = (V, E) is a pair of sets, where V is a set of n 
vertices or nodes and E is a set of m links or edges which 
connect pairs of nodes [8].

Some properties of graphs, such as node degree, directed 
vs. undirected, loops, paths, cyclic vs. acyclic, simple vs. 
multigraph, completeness, connectedness, and bipartiteness, 
are important and widely used in the topological analysis of 
biological networks. One of the most important properties of 
biological networks is scale-freeness, i.e., these networks 
have a node degree that follows a power law distribution 
(Barabasi-paper, Jeong-Nature-paper).

Topological analysis of a biological network identifies 
the global qualitative properties of the system. Network to-
pology is used to provide the significance of a node in com-
municating with other nodes. Scale-free networks share two 
important functional characteristics. First, they are different-
ly sensitive to damage. So if a small, peripheral node stops 
functioning, the network is very likely to continue working 
without problem. By contrast, if a hub is damaged, the func-
tionality of the entire network is likely to be jeopardized. 
These topological characteristics are seen in biological net-
works. In other words, if a hub node is closed, most of the 
nodes and edges will be affected. Degree distribution of a 
scale-free network having k connections to other nodes satis-
fies the following relation:

P(k) ~ k�

where � is power-law parameter. The “betweenness” centrali-
ty Cb(n) of a node n is computed as follows: 

Cb(n) = �s�n�t (�st (n) /�st),

where s and t are nodes in the network different from n, �st
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denotes the number of shortest paths from s to t, and �st (n) is 
the number of shortest paths from s to t that n lies on.

In comparison to random networks, scale-free networks 
exhibit a few nodes with higher degrees, the hubs, and a lot 
of nodes with low degree. In systems biology, we consider 
the following three types of graphs.

Undirected graph: As indicated by the name, the edges 
are undirected, i.e. one edge can be considered as a multi-edge
of two edges of opposite direction. A multi-edge connec-
tion consists of two or more edges that have the same end-
points (Fig. 3A). Such multi-edges are especially important for 
biological networks in which two nodes can be linked by more 
than one connection. In such networks, each edge indicates a 
different type of information [9]. This is an important feature, 
since there are networks, such as protein-protein interaction 
(PPI) networks in which two proteins might be evolutionary 
related, co-occur in the literature, or are co-expressed in some 
experiments, resulting by this way in three different connec-
tions, each one with a different meaning [10].

Directed graph: A directed graph is defined as an or-
dered triple G = (V, E, f), where f is a function that maps each 
element in E to an ordered pair of nodes in V. The ordered 
pairs of nodes are called directed edges, arcs, or arrows. An 
edge E = (i, j) is considered to have a direction from i to j
(Fig. 3B).

Directed graphs are most suitable for the representation 
of schemes, describing biological pathways or procedures 
which show the sequential interaction of elements at one or 
multiple time points and the flow of information throughout 
the network. These are mainly signal transduction, metabol-
ic, and gene regulatory networks [9, 11].

These graphs are often bipartite graphs, meaning that the 
edges connect only nodes of different types, such that edges 
divide the node set into two different disjoint sets. In biolo-
gy, the two types of nodes describe the reactions and bio-
chemical species, respectively.

Weighted graph: A weighted graph is defined as a 
graph G = (V, E), where V is a set of nodes and E is a set of 
edges between the vertices, E = ((u, v) | u, v� V), associat-
ed with a weight function w: E�R, where R denotes the set 
of all real numbers (Fig. 2C). Most of the times, the weight 
wij of an edge between nodes i and j represents the relevance 
of the connection. Typically, a larger weight corresponds to 
higher reliability of a connection. Currently, weighted graphs 
are the most widely used network description throughout the 
field of molecular biology, bioinformatics and systems biol-
ogy. As an example, relations whose importance varies are 
frequently assigned to biological data to capture the rele-
vance of co-occurrences, identified by literature and text
mining, sequence homology or structural similarities be-
tween proteins or co-expression of genes in microarray ex-
periments [9, 12].

In all multi-cellular organisms, especially in human, most 
cellular components exert their functions through interac-
tions with other cellular components. The totality of these 
interactions represents the human interactome. The potential 
complexity of this network is daunting with approximately 
22,000 protein-encoding genes, about a thousand of metabo-
lites, and as yet undefined number of distinct proteins (alter-
natively spliced and more than 300 different post-
translationally modified forms) and non-coding functional 
RNA molecules (especially miRNA). The individual cellular 
components that serve as the nodes of the interactome easily 
exceed one hundred thousand. The number of functionally 
relevant interactions between the components, representing
the links of the interactome, is expected to be much larger 
and until now, remains largely unknown [13].

Networks of molecular interactions are widely studied to 
reveal the complex roles played by genes, gene products, 
controlling elements, and the cellular environments in bio-
logical processes. In these networks, the nodes represent 
genes or gene products and the edges specific interactions. In 
gene regulatory networks such as a protein–DNA network, 
an edge may represent the binding of a transcription factor to 

Fig. (2). Schematic representation of developing a model cell from a real cell using high-throughput omics technologies.
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a promoter region of the DNA sequence, while in a protein–
protein physical interaction network; it might characterize a 
recorded evidence of co-immunoprecipitation or a two-
hybrid interaction. The nodes of the network are usually as-
sociated with additional information about the genes (or gene 
products), such as their Gene Ontology (GO) classification, 
or positions in the chromosome (or localization sites) [14].
We can distinguish between four types of molecular biology 
networks:

Metabolic networks (MN): These networks aim to de-
scribe the basic biochemistry in a living cell. Biologically, 
important reactions have been described in terms of reaction 
pathways catalyzed by enzymes, and metabolic networks are 
systematic collections of such biochemical data. Cellular
metabolism (anabolism and catabolism) covers extensively 
studied processes that are essential to the survival of any 
free-living organism. The cellular metabolic process can be 
characterized as a set of biochemical transformations, each 
of which involves the consumption as well as the production 
of one or more metabolites. Subject to the law of mass con-
servation, the net sum of metabolites and electrical charge is 
conserved in each reaction and thus in the network as a 
whole [15]. For metabolic networks, often the stoichiometry 
is known, also are known the metabolite concentrations in 
many cases, and even the reaction rates and / or reaction 
constants for some special networks.

(Fig. 4) depicts a typical metabolic network in KEGG 
representation. Networks are represented as directed, bipar-
tite graph, where the vertices (circles) are the metabolites, 
and the edges the reactions indicated by the corresponding 
enzyme number surrounded by a rectangle. 

Gene Regulatory Networks (GRNs): GRNs are repre-
sented as directed graphs. They consist of genes connected 
by directed edges, if one gene regulates the transcription of 
the other gene (Fig. 5). However, interactions within these 
networks are very subtle, intricate, and ill understood. While
GRN sections of a few tens to a few hundreds of genes are 
known in details for several organisms, the quality of the 

data drops dramatically as the network size grows. Neverthe-
less, GRNs are currently considered among the most im-
portant frontiers of biological sciences and are at the center 
of tremendous research efforts for the biological community. 
The increase of quantity and quality of the data generated in 
the field, fostered by modern high-throughput technologies 
such as microarray, is bound to follow the same exponential 
trend as the gene sequencing did in its time. In the meantime, 
however, it is possible, and useful, to abstract many details 
of the individual GRNs in the cell and focus on the system-
level properties of the whole network dynamics [16].

Protein-Protein Interaction Networks (PPINs): PPINs
are represented as undirected graphs. In such networks, an 
undirected edge is drawn between each pair of proteins for 
which there is evidence of a physical or biochemical interac-
tion (Fig. 6). A PPIN mainly holds information on how dif-
ferent proteins as functional macromolecule within the cell, 
operate in coordination with others to enable the biological 
processes. Despite the fact that for the majority of proteins 
the complete sequence is already known, their molecular 
function and interaction are not yet fully determined. Deter-
mining and predicting protein structure and function are still 
a bottleneck in computational biology research. So, many 
experimental and computational techniques have been de-
veloped in order to infer protein function from interactions 
with other biomolecules [8, 9].

Making these distinctions and simplifications must nec-
essarily neglect details of the biological processes. In fact,
the PPINs will be highly and intricately interconnected, so 
factorizing them into distinct networks will ultimately un-
derestimate the biological complexity [17].

Signal Transduction Networks (STNs): STNs are main-
ly represented as bipartite graphs, similar to MN. Here, reac-
tions mainly describe complex formation, phosphorylation, 
dephosphorylation, activation, deactivation and other. These
networks exhibit various properties and regulatory patterns. 
These include the ability to process the signals to functions 
such as switches and oscillations. The processes underlying

Fig. (3). A) Undirected graph. B) Directed graph. C) Weighted directed graph.
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Fig. (4). Citrate cycle (TCA cycle) from KEGG (map 00020). Metabolites are represented as circles and reactions as rectangles labeled by the 

EC number of the enzyme that catalyzes the reaction. The directed edges exist only between metabolites and reactions. The dashed edges lead 

to or come from other pathways.

Fig. (5). Example from part of E. coli GRN in which the nodes Cbl and CysB are transcription factors which regulate other genes.

this complex system involve many interacting molecules and 
cannot be understood by reductionism approach alone. In 
reality, signal transduction networks act as a bridge between 
extracellular environment and intracellular response. The 
integration of computational models with experimental re-

sults provides valuable insight into system-level understand-
ing of cellular signal transduction networks.

Several experimental techniques were used to measure 
the dynamics of STNs, such as flow cytometry, immunofluo-
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rescence microscopy, protein arrays, and mass spectrometry. 
These techniques generate large amounts of data that require 
systems biology approaches.

3. FORMALISMS FOR MODELING MOLECULAR 
INTERACTIONS

Modeling of biological processes helps to incorporate 
existing knowledge about molecule interactions. Knowing 
the interaction structure of a set of functionally related cellu-
lar components, computational or mathematical models can 
be constructed. The model representation can then be used to 
simulate and predict the system’s behavior. Several modeling 
algorithms for describing properties of pathways as a system, 
taking also into account the interactions between compo-
nents, differ in their ability to represent the temporal and 
stochastic behavior as well as in their level of granularity 
[19].

Since the properties of biological systems are not similar 
to the properties of their components and interactions, it is 
essential to consider the strength of interactions and dynamic 
behaviors [20]. The dynamics of the system are its behavior 
over time, such as an oscillatory behavior. The system struc-
ture includes the system components, interactions between 
components, and processes regulation of these interactions. 
The dynamics of system controls by processes are based on 
the design principles of its structure, such as feedback con-
trol. The interactions between different parts of a system 
refer to a protocol. The properties that arise from the struc-
ture of a system and the interactions between parts of the 
system (protocols) are called emergent properties [20]. The 
factors, such as the concentrations of the molecules or the 
reaction rates are defined on the component interactions in 
terms of system parameters or state variables. Mathematical 
equations use parameters for discovery of universal proper-
ties and dynamic behavior of a system [21]. This procedure 
is called model building. The models produce hypotheses 
that guide the experimental design, while experimental re-
sults are used to develop the mathematical models. Model 
development is an iterative process with the aim of further 

improvement of the model to reflect known system proper-
ties and the experimental observations. The parameter esti-
mation can be done by comparing modeling and experi-
mental results to estimate unknown parameters [22]. The 
final model can be subjected to various conditions and may 
be allowed to evolve in time - a step typically referred to as 
simulation [23]. The general goal of simulation is to model 
complex systems, which often behave in a nonlinear (the 
nonlinearity between stimulus and response) and adaptive 
(modification to response more appropriately) way. The at-
tributes of a good model are clear structure and relations, 
nearly realistic results, should be as simple as possible, and 
applicable to many different objects (generality) [24].

3.1. Static Modeling of Biological Network (Graph Rep-
resentation)

A simple and intuitive way to represent knowledge about 
molecules and their interaction structure is a graph consisting 
of nodes and edges. Nodes correspond to molecules and edg-
es refer to interactions among the molecules. Graphs enable 
the analysis of the interaction structure by graph theoretic 
approaches. In that way, topological features like connectivi-
ty of compounds or network motifs can be revealed [25].
This kind of modeling approach lacks the temporal aspect of 
molecular interactions, and therefore cannot reflect the de-
tailed dynamic behavior of network, but can often give in-
sight into possible pathways. However, a graph representa-
tion is often the starting point for further study of a biologi-
cal network. 

Network and Pathway inference or static modeling of 
networks has become a very active area of research. So, re-
construction and disruption of biological networks and
pathways, including metabolic pathways, protein-protein
interaction networks (PPI), signal transduction pathways, 
and gene regulatory networks (GRN), have been some of the 
valuable tools in the abstraction of biological concepts. 
Therefore, network and pathway analyses and their changes 
in different conditions achieve valuable knowledges for di-
agnosis, treatment, and further experimental designs. Nu-

Fig. (6). Protein-protein interaction network for human TP53 produced from STRING database. The nodes represent genes and the edges 

interactions. Thicker lines indicate a stronger association.
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merous methods for network and pathway analysis have 
been proposed that among them SafeExpress [26] (a R pack-
age) is useful for gene expression mapping and statistics 
analyses of biological networks and pathways.

3.2. Dynamic Modeling of Biological Networks

In the past few years, there has been a considerable effort
in the computer science community to develop languages 
and software tools for modeling and analyzing biological 
systems. Among the challenges which must be addressed in 
this regard, are: the definition of languages powerful enough 
to express all the relevant features of biochemical systems, 
the development of efficient algorithms to analyze models 
and interpret the results, and the implementation of modeling 
platforms which are usable by non-programmers. Computa-
tional and mathematical modeling, in conjunction with the 
use of formal intuitive modeling languages, enables biolo-
gists to define models, using a notation very similar to the 
informal descriptions they commonly use, but formal and, 
hence, automatically executable. Discrete, computational 
models are suitable for pathway modeling if precise quantita-
tive relationships or parameters are unknown [27].

4. MODELING ALGORITHMS

Biological networks and pathways are inherently com-
plex. To understand the functioning of these pathways, we 
not only need to identify the constituent elements (gene, pro-
tein, and metabolite) and their interactions, but also we need 
to know how their dynamics evolve over the time [28].

(Table 1) shows a different type of models and their uses. 
A general system consists of an input (E), a system object 
(S), and an output (R). The modeling algorithm is selected 
based on the type of the problem or goals of modeling and 
data requirements. 

E R

Table 1. Type of models used in biological modelling.

Type of Problem Given To Find Uses of Models

Synthesis E and R S Understand

Analysis E and S R Predict

Instrumentation S and R E Control

These days, several different algorithms and tools have 
been developed for the modeling and simulation of extracel-
lular and intracellular signaling pathways, metabolic path-
ways, and gene regulatory networks. (Fig. 8) illustrates some 
of these methods classified according to their properties. 

In systems biology, different modeling and simulation 
techniques are used, such as the systems of ODEs (Ordinary 
Differential Equations), stochastic methods, Petri nets, �-
calculus, PDEs (Partial Differential Equations), cellular au-
tomata methods, agent-base systems, and hybrid approaches. 

In this survey, we consider ODEs, Petri nets, Boolean net-
works, cellular automata, and agent-base as some of the most 
important of these algorithms. 

4.1. ODE Modeling

One of the most commonly applied methods for modeling 
biological systems is based on ODEs. A differential equation is 
known as an equation indicating the relationship between a 
function and some of the derivatives of it. Basically, a differ-
ential equation designates how a variable, such as [Substrate], 
i.e. the concentration of Substrate, changes by the passing of 
time. This is done through inter-relating the rates of changes 
regarding the concurrent concentrations [30].

In the study of GRNs, analytical approaches represent the 
more realistic end of the model spectrum. Such models com-
prise nonlinear systems of ordinary differential equations 
(ODEs), where each variable denotes the concentration of a 
different gene product [31].

As an example, suppose the following reaction in which 
product P1 produced:

��
����

���� �

This is an ordinary reaction without any catalyst which 

can be modeled by means of mass action kinetics. Mass ac-

tion explains the behavior of reactants and products in an 

elementary chemical reaction. Mass action kinetics describe 

such a behavior by an equation in which the rate of a chemi-

cal reaction is directly proportional to the concentration of 

the reactants, where k1 represents the reaction rate constant. 

Reaction (1) is called a zero-order reaction. (Fig. 9A)

demonstrates a zero-order reaction kinetics in the condition 

that k1 is 1 micromole/s.

With a first-order reaction, the reaction rates correlate 
with the concentration of one reactant, here S2. As an in-
stance, assume the following reaction in which the substrate 
S2 is converted into the product P2:

���
����

����

The reaction rate goes on as below:

� � �� �� .

It is clear that the reaction rate (v) is directly dependent 
on some factors [S2], namely, the more the concentration of 
the S2, the higher the reaction rate. Hence, the faster S2 is
consumed the faster P2 is produced. According to the above 
equation, it would not be difficult to introduce differential 
equations defining the rate of change in [S2] and [P2]:

� ��

��
� ����� �� �

� ��

��
� ���� �� �

For modeling and simulating reactions, it is necessary to 
know substrate’s and product’s initial concentrations. (Fig. 
9B) shows the first-order reaction kinetics in the condition 
that the initial concentration of S2 is 2 micromole/liter and k1

is 1 s-1.

S
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Fig. (7). A static model of cell cycle created by CellDesigner (http://www.pantherdb.org).

Fig. (8). A comparison between modeling algorithms and their ability in modeling of biological processes.

On the other hand, a second-order reaction is correlated 
with the square of the concentrations of an individual reac-
tant or both reactants:

�� � ��
����

���� � �

Where the reaction rate is:

� � �� �� � �.

(Fig. 9C) indicates a second-order reaction kinetics in the 
condition with the initial concentrations of S3 and R as much 
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as 2 micromole/liter and 1.5 micromole/liter, respectively, 
and k3 as 1 �M-1S-1.

It is feasible to model reversible reactions by two distinct 
reactions or by one reaction. For example: 

� � �� �
������

���
� � .

The reaction rate by which C is produced is:

� � ��� � � � ����� � ,

Where k4 is the rate constant of the forward direction and kr4

is for the reverse one. (Fig. 9D) shows the above reversible 
reaction kinetics in the condition that initial concentrations A 
and B are 2 and 1.5 micromol/liter, respectively, and k4 and
kr4 are 1 �M-1S-1 and 0.1 S-1, respectively. 

The consecutive reaction is an example of the complex 
reactions in which several biochemical reactions are done 
consecutively

� � �� �
������

���
� ��

����

�
����

�.

(Fig. 9E) shows the consecutive reaction kinetics above 
for which the initial concentrations of E and D are presumed 

2 micromol/liter and 1.5 micromol/liter, respectively. Also, k7,
k6, and k5 are 1 �M-1S-1 and kr5 is considered to be 0.1 S-1.

According to what mentioned above, consider the enzy-
matic reaction below

� � �� �
������

���
� ���

������

�� � �

Basically, enzymes (E) and substrates (S) bind together to 
form complexes (ES). The enzyme facilitates circumventing 
activation barrier by accelerating the chemical change of the 
substrate into the product (P). Then enzymes and the prod-
ucts are separated to form E and P. ES formation is explained 
by a second order (in units of �M-1 s-1) forward rate constant 
(k1), a reversal rate constant (kr1; in s-1) of the first order, 
and a first order catalytic rate constant (k2; in s-1) as well. 
The enzymatic reaction rate above, regarding Michaelis-
Menten equation is:

V=
����� �

��� �
�

Here, [S] presents the concentration of substrate, Vmax is 
the maximum rate. The Michaelis constant Km is the sub-

Fig. (9). Computational simulation of reaction rates with mass action kinetics. A) Zero-order reaction kinetics. B) First-order reaction kinet-

ics. C) Second-order reaction kinetics. D) Reversible reaction kinetics. E) Consecutive reaction kinetics. The unit of vertical coordinate is 

micromol/liter.
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strate concentration at which the reaction rate is half of the 
Vmax.

�� ������������������ � �
�� � ���

��

with Vmax = k2 [Et], where [Et](the total amount of en-
zyme)= [E] + [ES], Where k2 is rate limiting and as below:

V=
�� �� �

��� �
�

Types of models which have been used in the literatures 
can be classi�ed mathematically as: ordinary differential 
equations (ODEs) [32], delayed differential equations 
(DDEs), partial differential equations (PDES), Fredholm 
integral equations (FIES) (in the estimation of parameter 
problem), stochastic differential equations (SDEs), and in-
tegro-differential equations (IDEs). Different software pack-
ages can be used for different types of models for numerical 
analysis and simulations [33].

4.2. Petri Nets

Petri nets represent a refinement of monopartite graph 
models to bipartite, directed graphs that are used to model 
concurrent, causal systems. Also they have been used suc-
cessfully in many areas; in biology, for example, to simulate 
metabolic networks [34], but also signal transduction path-
ways [35] and gene regulatory systems [36].

Petri nets (PN) have been named after Carl Adam Petri 
who developed the basic definitions in his PhD thesis in 
1962 [37]. The main ideas are the consequent distinction 
between active and passive nodes and the use of discrete 
movable objects to express system’s dynamics. The set of 
nodes consists of places for the passive part, representing 
biochemical species, and transitions as the active part, repre-
senting chemical reactions. The movable objects are called 
tokens. They are associated with each place and correspond 
to discrete amounts of the biochemical species, for example, 
number or a mole of molecules. The directed, weighted arcs 
connect places with transitions and divide the places into 
intput places or pre-places, representing reactants or sub-
strates, and pre-conditions, and output places or post-places,
representing the products of a reaction and post-conditions.
The arc weights indicate the minimal number of tokens that 
are necessary for firing a transition, i.e., taking place of a 
reaction, and the number of tokens that will be produced on 
the output places, respectively. In metabolic networks, these 
arc weights exactly correspond to the stoichiometric coeffi-
cients of the underlying chemical reaction. 

By firing rules, tokens are transferred through the PN 
from one place to another, simulating a flux, for example, of 
substances or information, through the network. Originally,
PN were restricted to qualitative simulation with discrete 
time steps. However, advanced PN are able to mimic Boole-
an, timed-discrete [38], Bayesian, Fuzzy [39], stochastic 
[40], continuous systems of ordinary differential equations 
[41], and even hybrid systems [42]. Note that in case of sto-
chastic modeling, the same concepts and algorithms are then 
used as known in classical systems biology since the 70ies 
[43]. The same holds for continuous PN that solve exactly 
the same systems of differential equations as known, for ex-
ample, from Metabolic Control Analysis [44]. The necessary 
kinetics can be found in each biochemical text book. 

(Fig. 10) illustrates the PN model of the chemical equa-
tions

(1) r1: A + 2 B � 2 C + 3 D, 

(2) r2: 3 D � E

(3) f (forward) and b (backward): 2 C + E � F, and

(4) fb (feedback): F �A + 2B.

Fig. (10). PN model of the chemical equation system: (1) r1: A + 2 

B � 2 C + 3 D, (2) r2: 3 D � E, (3) f (forward) and b (backward):

2 C + E � F, and (4) fb (feedback): F �A + 2B in the initial mark-

ing (1,2,0,0,0,0), giving the token distribution on all places 

(A,B,C,D,E,F) and in the marking after firing of r1, resulting in the 

system state (0,0,2,3,0,0). The figures were drawn using MonaLisa.

In the initial marking (A=1,B=2,C=0,D=0,E=0,F=0), 
giving the token distribution on all places (A,B,C,D.E,F), 
only the transition r1 is enabled and can therefore fire, reach-
ing the new system state (0,0,2,3,0,0) defined by the token 
distribution over all places. Evolving the dynamics of the PN 
in (Fig. 10), five different system states can be reached. The-
se states can be compiled in the reachability graph, where the 
nodes represent the system states and the arcs the corre-
sponding transformations of one state into another one. The 
directed arcs are labeled by the transition that has then to 
fire. The reachability graph of the PN in (Fig. 10) is depicted 
in (Fig. 11).

PN provide methods for analysis as well as for simula-
tion. For example, system’s invariants can be defined. Invar-
iants define important analysis methods to describe the over-
all dynamic behavior of the system. Based on the incidence 
matrix place-invariants (p-invariants) and transition-
invariants (t-invariants) can be defined. The incidence matric 
C of a PN is an n x m matrix, where n is the number of plac-
es and m the number of transitions. Each matrix entry cij in-
dicates the change in the token number on place pi by firing
of transition tj. Then, a t-invariant is a semi-positive integer 
vector that fulfills C � x = 0 and a p-invariant a semi-positive
integer vector that fulfills CT

� y = 0. 

A p-invariant defines a set of places whose weighted sum 
of tokens always remains constant, representing a substance 
conservation rule. A t-invariant is a multi-set of transitions 
whose (multiple) firing leads to the initial marking M0. Al-
ways, non-trivial and minimal solutions are considered. The 
complete set of these minimal t-invariants describes the basic 
dynamics of a system under steady-state conditions, if each 
transition is part of at least one t-invariant. The importance 
of these system’s invariants is well-known in systems biolo-
gy; they are called elementary modes there [46]. Using that 
concept, new possible pathways have been predicted, which 
were experimentally confirmed, e.g., the phosphoenolpy-
ruvate glyoxylate pathway in hungry E. coli bacteria [47].
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Fig. (11). The reachability graph RG of the PN in Fig. 10. Each node represents a system state and the arcs the corresponding transformations 

of one state into another one labeled by the transition that has then to fire.

Table 2. The incidence matrix of the PN in Firgure 11, indicating the change in the token number of each place when a transition 

fires. The columns are the transitions and the rows the places.

Incidence Matrix r1 r2 f b fb

A –1 0 0 0 +2

B –2 0 0 0 +2

C +2 0 –2 +2 0

D +3 –3 0 0 0

E 0 +1 –1 +1 0

F 0 0 +1 –1 –1

(Table 2) shows the incidence matrix for the PN in (Fig. 
11). The resulting linear algebraic equation systems are then 
for t-invariants (A) and for p-invariants (B):

(A) (B)

-x1 + 2 x5 = 0 -y1 – 2 y2 + 2 y3 + 3 y4 = 0

–2 x2 + 2 x5 = 0 – 3 y4 + y5 = 0

2 x1 – 2 x3 + 2 x4 = 0 – 2 y3 – y5 + y6 = 0

3 x1 – 3 x2 = 0 2 y3 + y5 – y6 = 0

x2 – x3 + x4 = 0 2 y1 + 2 y2 – y6 = 0

x3 – x4 – x5 = 0

The t-invariants for the PN in (Fig. 11) are illustrated in 
(Fig. 12). The second t-invariant is called as trivial, because 
it just represents a reversible reaction, consisting of a for-
ward and a backward transition.

The computation of all t-invariants is NP-hard [48].
Many algorithms have been developed to improve existing 

implementations (for an overview and study see Ackermann 
& Koch, 2011). Nevertheless, if even all t-invariants can be 
computed, their number grows exponentially with increasing 
complexity and size of the network. Thus, an exhaustive 
analysis becomes not only time-consuming, but also not 
manageable anymore. Therefore, further network decompo-
sition methods have been developed. These methods are 
based on t-invariants and try to find a structure within a set 
of them. One possibility is to summarize the common parts 
of the support of the solution vectors, i.e., all its non-zero
elements, in such a way that only transitions are grouped 
together which exclusively belong to the same t-invariants
[35]. The resulting transition sets called maximal common 
transitions sets (MCTS or MCT-sets) are disjunctive. In con-
trast to t-invariants, MCT-sets must not necessarily be con-
nected.

As this decomposition criterion does not allow that a 
transition is a member of two MCT-sets, clustering methods 
have been applied, allowing overlapping transition sets. 
Support-based methods resulting in t-clusters were devel-
oped [49] and also methods that consider the complete solu-
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tion vector, for example, as aggregations around common 
motifs [50]. Another decomposition that is also based on the 
support vectors of t-invariants has been proposed as minimal
cut sets [51], which cover a minimal set of those transitions 
whose knockout would inhibit a special biological function 
defined by a transition set in the model.

Fig. (12). The two t-invariants of the PN of Fig. 10 each colored in 

red. The second t-invariant (right side) is trivial t-invariant, it repre-

sents just a reversible reaction, consisting of a forward and a back-

ward reaction.

There are many further benefits in using PN. PN have a 
firm mathematical foundation that allows analysis of per-
formance measures and analysis of properties. The following 
properties are relevant also for biochemical systems.

1. Liveness, meaning that all transitions (biological process-
es and reactions) are live, i.e., each transition can always
fire again and again. This property depends on the initial 
marking. Liveness should hold for biochemical systems, 
because a deadlock would mean an interruption of the 
metabolism, signal transduction or gene regulation. 

2. K-boundedness, meaning that in every place, the number 
of tokens is always less than an integer number k. That 
could be important if, for example, the toxic accumula-
tion of metabolites should be avoided. Another advantage 
is that the number of states could be enumerated and used 
in model checking techniques to verify the model.

3. Soundness, represents a combination of liveness and 
boundedness that ensures a proper termination in the 
simulation. If we add a source place with one token and 
one sink place without any token to the model, then, the 
procedure terminates and there will be a token in the sink 
place and all other places would be empty. In addition, 
there would be no dead transitions (i.e., activities that 
never happen). In terms of biochemical systems, sound-
ness ensures that all biochemical processes and reactions 
could be carried out while the system executes.

4. Reachability, meaning that, given a certain system state 
(marking), M, another state, M’, can be reached from M.
The reachability graph, RG, compiles all possible system 
states, the vertices in RG, with the transformations be-
tween the states, the edges in RG labeled by the firing 
transition, see also (Fig. 11). For unbounded models, i.e., 
having places with an infinite number of tokens, the RG
becomes infinite and cannot be explored for all states. 
Then, those questions as the following cannot be an-
swered: If we block the immune system, can we still 
reach a state where the parasite is cleared from the blood 
system?

PN have been applied to very different biological systems 
and problems, such as in medical sciences for modeling iron 
homeostasis in human [52] and processes in the Duchenne 
Muscle Dystrophy in human [36a], complex assembly pro-
cesses of the spliceosome [53], and many other processes 
[54]. Also new PN editing and analysis tools have been de-
veloped for the application to biology, for example Cell Il-
lustrator [55] or MonaLisa [45]. For more detailed PN theo-
ry, Reisig 1985 and David & Alla 2005 can be considered. 

4.3. Boolean Models

The simplest dynamic models – synchronous Boolean 
network models – were used as a model for gene regulatory 
networks already in the 1960s by Stuart Kauffman. Boolean 
dynamic models assign values of 1 or 0 to each node, which 
reflects a molecule’s state in terms of on/off or ac-
tive/inactive. A Boolean function (AND, OR, NOT and com-
binations of these) or logic rule takes into account the state 
of the variables at a certain time-point in order to get an 
evaluation for the next time point. In that way, Boolean
models enable the study of the causal and temporal relation-
ships on a coarse grained modeling level [56].

Boolean network modeling as a qualitative approach has 
been wildely used wherein the knowledge of mechanistic 
details and kinetic parameters is scarce [57]. The fundamen-
tal steps of Boolean modeling of biological regulatory net-
works can be found in [58].

Actually, the Boolean models are a kind of graph: G(V, 
F)

• V is a set of nodes (genes or proteins) as x1 , x2, …, xn

• F is a list of Boolean functions f(x1 , x2, …, xn)

Fig. (13). A simple representation of Boolean network model and 

their regulation functions.
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4.4. Bayesian Network

Another computational method for modeling, based on a 
graph representation, is Bayesian Networks (BNs). Bayesian 
modeling is valuable modeling approach because its biology 
is complex and biological data are noisy. BNs models illus-
trate the effects of pathway components (nodes) upon each 
other in the form of an influence diagram. The Bayesian 
formalism can handle discrete and continuous values, while 
Boolean networks can only handle discrete values. In Bayes-
ian Network, a node represents a random variable for the 
conditional probability distribution of each pathway compo-
nent. Bayesian modeling offers the ability to describe sto-
chastic processes and to deal with uncertainty, incomplete 
knowledge and also noisy observations. In this network, lim-
itations are the static and the acyclic nature of Bayesian net-
works [59].

In BNs, the relationships between variables (e.g., gene or 
protein) are encoded by conditional probability distributions
(CPDs) of the form p(G2|G1)—the probability of G2 given
G1. For discrete variables, probability distributions are ex-
pressed as conditional probability tables (CPTs) containing
probabilities that are the model parameters. For BNs, which 
use continuous variables, conditional probability densities 
are used in a similar way to CPTs [60].

Fig. (14). A simple Bayesian network with two nodes.

There are several attractive properties of BNs for the in-
ference of signaling pathways from biological datasets. They 
can represent complex stochastic nonlinear relationships 
among multiple interacting molecules, and their probabilistic 
nature can accommodate noise inherent to biologically de-
rived data. They can describe direct molecular interactions as 
well as indirect influences that proceed through additional, 
unobserved components – including crosstalk between path-
ways. They can also incorporate prior biological knowledge 
when available, by assigning increased or decreased likeli-
hoods to particular inter-molecular connections. 

Although not directly focused on signaling pathways, the 
pioneering works of Pe’er and Friedman [61], and Harte-
mink et al. [62], were some of the first efforts to learn bio-
logical regulatory pathways directly from high-throughput
data.

4.5. Cellular Automata and Dynamic Cellular Automata

Cellular Automata (CA) is a discrete dynamical system, it 
means space, time, and the states of the system are discrete. 
Each point in a regular spatial lattice, called a cell, could 
have any one of a finite number of states. The states of the 
cells in the lattice are updated according to a local rule. That 
is, the state of a cell at a given time depends only on its own 
state and the states of its nearby neighbors at the previous 
time step. All cells on the lattice are updated synchronously. 
Thus the state of the entire lattice advances in discrete time 
steps. The theory of CA is immensely rich, with simple rules 
and structures being capable of producing a great variety of 
unexpected behaviors. Von-Neumann was one of the first 
people to consider such a model, and incorporated CA into 
his "universal constructor" [63]. Comprehensive studies of 
CA have been performed by S. Wolfram starting in the 1980s 
[64].

The CA approach has been widely used in some complex 
systems studies, such as biological systems, traffic issues, 
economic systems, environmental problems, engineering 
methods, social networks, and complex industrial systems, 
and has produced many meaningful results.

Application of CA in biology mainly shows itself in the
subject of systems biology such as shape space simulations 
of the immune system [65], development of an artificial
brain [66], a study of morphogenesis in simple cellular sys-
tems [67], modeling the competitive growth of two underwa-
ter species C. aspera and P. Pectinatus [68], a model of an 
enzymatic reaction [69], and especially in the study of excit-
able media [70]. Recently, CA has been widely used in the 
Center for the Study of Biological Complexity at VCU in 
Richmond, Virginia as a modeling approach for simulation 
biological problems [71].

We consider two simple examples of simulation biologi-
cal networks using CA. The first example is a model used by 
Kier and Cheng [69] in setting up modeling of enzyme activ-
ity. The enzymatic reaction mechanism is assumed to start 
with an interaction between the substrate (S) and enzyme 
(E), which form a SE complex. The complex is rearranged to 
a complex PE and this will go to the enzyme E and the prod-
uct P, which are then separated and the enzyme molecule E is 
free to take part in another interaction. Here is the summary 
of such reaction:

S + E � SE � PE � P + E    (1)

This system can be described by some rate law, usually in 
the form of a Michaelis-Menten (MM) law:

max[ ][ ][ ]

[ ]m

V E Sd S

dt K S
=

+
    (2)

in which Vmax is the maximum conversion rate and Km is 
the Michaelis-Menten coefficient.

The quasi-steady state of the system has been reached 
after many iterations, rather than on the temporal changes. 
Hence, the model is a spatial one. A network to be studied is 
consisted of different cell groups, each group including one 
of the network species: enzymes, substrates, or products. The 
number of cells in each group reflects the relative concentra-
tions of each network species. Each group of cells moves 
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freely in the lattice. When an encounter between a specific 
substrate and a specific enzyme occurs, an enzyme-substrate
complex is formed. The formed complex has an assigned 
probability of changing to a new complex which is the en-
zymatic product. Following this, another probability is as-
signed for separation of the product from the enzyme. The 
movement probability determines extent of any movement. 
Thus, zero probability for an enzyme cell would designate a 
stationary state. All cells compute their states at the same 
time. All three types of probabilities were assumed equal to 
unity. This means all cells may interact, join, and break apart 
with equal probability. Therefore the collection of rules asso-
ciated with a network species represents a profile of the spe-
cies structure and its relationship with other species. One 
could obtain the influences of different species at the final 
profile of the network by systematically varying the rules. 
The output of the system is shown in (Fig. 15).

Fig. (15). Comparison of the MM reaction simulation using CA 

(dots) in two different Km values (3.0 and 0.3) with the analytical 

result (two gray curves) (Vmax = 1).

In another example, we present evidence that the CA 
method is capable of providing an insight on the dynamics of 
a signaling pathway. In modeling the dynamics of a signaling 
pathway, the first goal is to show whether the model repro-
duces the amplification of the signal through the pathway. 
The next goal is to test the pathway sensitivity to a variety of 
initial conditions, and to reproduce experimentally patterns 
found on substrate and product variations. 

Here, we demonstrate a CA approach to the mitogen-
activated protein kinase (MAPK) signaling pathway trans-
mits signals from the plasma membrane to targets in the cy-
toplasm and nucleus. This pathway plays an important role 
in intracellular signaling related to different diseases such as 
Parkinson and cancer [73]. It contains three levels of phos-
phorylations, i.e., posttranslational protein modification reac-
tions which are catalyzed by E1–E4 enzymes (Fig. 16).

The CA approach for the system has been obtained using 
a two-dimensional lattice with the size of 100�100. Similar 
to the previous example, the cells obeyed probabilistic rules 
for moving, joining and breaking away (for details of the 
rules see [71b].).

The complete list of elementary steps is shown below:

A + E1 �AE1� BE1� B + E1

B + E2 � BE2�AE2�A + E2

C + B � CB� DB� D + B

D + B � DB� EB� E + B

D + E3 � DE3� CE3� C + E3

E + E3 � EE3� DE3� D + E3

F + E � FE� GE� G + E

G + E � GE� HE� H + E

G + E4 � GE4� FE4� F + E4

H + E4 � HE4� GE4� G + E4 (3)

in which A=MAPKKK, B=MAPKKK*, C=MAPKK, 
D=MAPKK-P, E=MAPKK-PP, F=MAPK, G=MAPK-P, 
H=MAPK-PP, E3=MAPKK-protease, E4=MAPK-protease,
and E1 and E2 are the hypothetical enzymes.

First, the CA simulation produces temporal plots, which 
include changes in substrates and product concentrations 
from the beginning of the reaction till reaching a steady 
state. Then, this information is used to construct spatial mod-
els of concentration depending on the enzyme propensity and 
other variables of the process. The inhibitory control of en-
zyme activities is also simulated by CA for the entire proba-
bility range of 0–1. A CA simulation example of the concen-
tration profile of the MAPK cascade versus the propensity of 
enzyme E3 is shown in (Fig. 17). The figure demonstrates 
the potential of CA modeling to produce stable patterns of 
the pathway (network) ingredient concentrations, and to de-
fine optimal parameter ranges for obtaining certain goals.

There is also another type of CA called Dynamic CA 
(DCA) which differs from conventional CA in that the DCA 
model attempts to simulate real motions via Brownian dy-
namics. In other words, motions of particles are intended to 
mimic motions observed in real macromolecules. Therefore, 
random objects cannot be taken up and randomly scattered 
over the lattice in each time step as they are in most CA 
models. Rather, DCA requires that regular time steps be tak-
en in which the lattice size and time steps could be suffi-
ciently small to be consistent with physical laws or experi-
mentally measured parameters (i.e. diffusion rates).

Finally, it should be considered that CA models have a 
relative validity and need experimental calibration and vali-
dation. At present, applying CA to large-scale networks in-
cluding thousands of genes, proteins and metabolites may be 
out of reach, because of the extremely high computational 
price. A reasonable strategy to deal with seems to be in ob-
taining stable dynamic patterns in small networks, and then 
extrapolation these patterns under specific conditions.

4.6. Agent-based Modeling

In the following, the characteristics of multi-agent sys-
tems and the Adequacy of Multi-Agent Systems (MAS) for 
Modeling and Simulating Biological Systems are described. 
Then, the advantages of Multi-Agent Systems compared to 
Non-Agent-Based approaches are studied and finally, in or-
der to illustrate the multi-agent system approach applicabil-
ity, different literatures that are exemplar applications of 
modeling and simulation of biological systems are referred.

In computational science, an agent is an interactive com-
puter system that is situated in some environment and that is 
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capable of autonomous action in this environment in order to 
meet its design objectives. Multi-agent systems are a set of 
agents interacting in a given dynamic environment. A good
introduction to MAS can be found in [74].

In order to apply multi-agent systems for modeling and 
simulating biological systems, it is necessary to understand 
how the characteristics of multi-agent systems contribute to 
the field.

Fig. (17). A spatial model of the eight MAPK molecules’ concentra-

tion dependence on the propensity of enzyme E3.

We identified the characteristics that make multi-agent
systems an appropriate tool to tackle biological systems 
modeling and simulation problems through the following 
claims:

• Agents are autonomous entities: an agent is capable of 
acting without direct external intervention;

• Agents are interactive entities: an agent communicates 
with the environment and other agents;

• Agents are pro-active entities: an agent is goal-oriented,
i.e., it does not simply react to the environment;

• Agents and multi-agents systems have the capacity for
adaptation: an agent is capable of responding to other 
agents and/or its environment to some degree, and a mul-
ti-agent system might adapt itself to a specific state 
through the learning processes;

• Agents can have the capability of learning: an agent is
able to modify its behavior based on its experience;

• Agents can be rational: an agent is able to choose an 
action based on internal goals;

• Agents can be mobile: an agent is able to transport itself 
from one environment to another.

• Multi-agent systems can handle the complexity of solu-
tions through decomposition, modeling and organizing
the interrelationships between components [75].

• Multi-agent systems provide abstractions that allow de-
composing a biological system to a set of agents;

• Multi-agent systems provide flexibility for modeling 
more sophisticated, globally emergent behavior;

• Multi-agent systems by their nature are powerful tools 
for modeling complex systems [75]. Modeling complex 
systems implies a deep understanding of the system both 
in terms of its structure and its behavior and multi-agent
systems allows this specification.

• Software agents embody distribution and heterogeneity 
and, thus, they are indicated as the new abstraction for 
the engineering of complex distributed systems;

• Multi-agent systems are capable of being open systems:
agents may enter and leave the environment at their will, 
and the systems have no single point of control.

• Multi-agent systems are capable of being self-organized:
agents could be organized in a structure that might evolve 
into a different structure according to the agents’ behav-
ior, performance, and others.

Fig. (16). The MAPK signaling cascade. Dashed lines indicate catalyst action.
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• Multi-agent systems can produce the emergent behav-
ior: the global effect resulting from the interaction of the 
individuals is often unpredictable and non-deterministic.

• Finally, the locality is an intrinsic feature of an agent: the 
agents’ decisions are taken considering only the local en-
vironment and not the global average.

Considering the nature of the biological systems, all of 
these characteristics make the multi-agent system a suitable 
paradigm for modeling and simulating these complex sys-
tems. The complex system biology problems can be modeled 
as hybrid systems, i.e., systems with both continuous and 
discrete dynamics. In the (Fig. 18), a multi-level control 
structure with local control agents at the lowest level, and 
one with higher supervisory control levels are shown.

Fig. (18). A schematic representation of a hierarchical multi-agent

framework (http://www.negenborn.net/rudy/phd).

None of the mathematical models used for describing 
biological systems allows expression of partial information 
about a system, i.e. to formally describe open systems. 
Moreover, depending on the system’s complexity, there 
would be an explosion of differential equations; for example, 
to model it with more than 50 equations to model a subsys-
tem. Another drawback is the absence of an abstraction for 
the models. Physicians must deeply understand mathematical 
methods in order to model the system, while multi-agent
systems can provide the right level of abstraction for that 
[76].

Compared to the Monte Carlo methods, multi-agent sys-
tems are not just probabilistic. More than reproducing the 
emergent behavior, they can provide advanced mechanisms 
existent in biological systems, such as learning and adapta-
tion that, as far as we know, are not possible to implement 
through Monte Carlo simulation. Those mechanisms not 
only make the model more complete but also allow the opti-
mization of self-organization, for instance.

Considering the cellular automata approach, the multi-
agent system approach for modeling and simulating biologi-
cal systems might be more suitable since it provides an easi-
er way of representing the interactions between entities

through the agents’ interactions. Moreover, the software en-
gineering for multi-agent systems can provide powerful 
techniques, methods and tools for the engineering of model-
ing and simulation of biological systems. For instance, self-
organization of biological systems could be modeled through 
the self-organization modeling techniques existing in agent-
oriented methodologies that accomplish this purpose [77].

Addressing the Petri Nets approach for modeling biologi-
cal systems, they are not suitable for studying systems exhib-
iting continuous dynamic behavior that: (1) cannot be de-
scribed by a set of discrete states, (2) cannot be broken down 
to atomic processes, or (3) are dependent on spatial proper-
ties [54b]. Examples include fluid dynamics and protein 
folding. And multi-agent systems could address all of these 
different kinds of behaviors.

The MAS model is a powerful tool used to describe local 
behavior and leaves the system free to simulate all events 
just by interactions between agents. However, the goal here 
is not to prove that multi-agent systems simulation is better 
or not than the non-agent-based related work cited. They are 
all powerful ways of modeling and simulating biological 
systems and have been proven to work. Instead, it is im-
portant to understand how multi-agent systems complement 
these approaches in nature and behavior. Some exemplar
applications of Multi-Agent Systems for modeling and simu-
lating biological systems are surveyed:

In order to give an overview of modeling and simulation 
of biological systems using multi-agent systems, different 
literatures that are exemplar applications of modeling and 
simulation of biological systems are referred through the 
following claims:

• Agent Based Modeling of Cancer and Tumor Biology 
[78].

• Agent Based Modeling of Vascular Biology [79].

In this paper uses a Starlogo model to simulate the effect 
of growth factors on angiogenesis. It is a good example of 
the use of the spatial characteristics of ABM in the validation 
process.

• Agent Based Modeling of Intracellular Signalling and
Metabolic Processes [80]. The paper presents the for-
mation of cell membrane structures based on relatively 
simple interaction rules drawn from classical flocking 
models. This project is related to the ongoing CyberCell 
project.

5. STRUCTURAL MODELING

Structural modeling has a further advantage and needs 
less information to build the model than kinetic modeling. 
Structural modeling consists of two distinct analyses; topo-
logical analysis and Flux Balance Analysis (FBA), as stated 
in (Fig. 19). For topological analysis of metabolic networks, 
we need a branch of discrete mathematics named graph theo-
ry, in which a metabolic network model is represented as a 
graph. In these graphs, vertices and edges represent the me-
tabolites and enzymatic reaction, respectively. Many compu-
tational tools are available for analyzing global and local 
properties of this network such as; finding the essential 
nodes of a network. All information we need in this model-
ing is a list of biochemical reactions.
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Fig. (19). Different kinds of analyses of reconstructed metabolic models and their applications.

Genome scale metabolic models have emerged as a valu-
able tool for illustrating whole cell function, based on a 
complete set of reactions of biochemical networks. These 
models are used for the prediction of organism's behavior. 
All information we need in this modeling is a list of bio-
chemical reactions and their stoichiometry [81].

6. RESOURCES AND DATABASES

Today different database systems for molecular structures 
(genes and proteins) and biological networks and pathways 
are available. The most important resources for such infor-
mation include the scientific literatures and human expertise 
curated in public databases. In particular, for the develop-
ment of mathematical models standardized resources that 
provide their data in a computerized amenable and reusable 
manner are a preferable resource.

6.1. Primary Data Resources

The National Center for Biotechnology Information 
(NCBI), the European Bioinformatics Institute (EMBL-EBI)
and the DNA Database of Japan (DDBJ) (http://
www.ddbj.nig.ac.jp) provide several primary databases that 
are widely used in biological research, offering information 
about nucleotide and protein sequences, genes, genomes, 
molecular structures and gene expression that are generated 
in worldwide laboratories. Similarly to nucleotide sequence 
databases, UniProt (www.uniprot.org), provides infor-
mation on protein sequences and their annotations and Pro-
tein Data Bank (PDB) focuses on protein structures 
(www.rcsb.org). These databases are primary database. 
Moreover, there are many databases for protein families, 
domains and functional groups; such as InterPro, PFAM, 
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CATH, SCOP and many other secondary databases. Recent-
ly, also non-coding RNAs (ncRNAs) and microRNAs have 
been revealed to be highly important in the control of cellu-
lar systems, giving rise to the implementation of related da-
tabases, like RNAdb or miRBase, with the objective of gath-
ering current information.

Microarray data provide a valuable resource in the inter-
pretation of the transcriptome levels of genes. Large reposi-
tories store these data from multiple studies such as the Gene 
Expression Omnibus (GEO) at NCBI and the ArrayExpress 
at EMBL-EBI. These databases provide free distribution and 
shared access to comprehensive gene expression datasets. 
Data includes single and dual channel microarray based on 
experiments measuring the abundance of mRNA (gene ex-
pression array), genomic DNA (CGH array, SNP array) and 
protein molecules (protein array). Also SAGE and mass 
spectrometry peptide profiling Data have been archived.

6.2. Pathway and Interaction Databases

Pathway and network databases are particularly interest-
ing for modeling approaches since they offer a straightfor-
ward way of building networks topologies by the annotated 
reaction systems. These databases provide integrated repre-
sentations of functional knowledge of the different compo-
nents of a biological system and constitute a basis for the 
topology of mathematical models. The on-line resource cen-
ter Pathguides (see http://www.pathguide.org/) contains in-
formation and clasification about 325 biological pathway 
resources. These databases have been grouped into four ma-
jor, slightly overlapping categories: protein interactions, 
metabolic pathways, signaling pathways, and transcription 
factors/gene regulatory networks. It also has a specific cate-
gory called Pathway Diagrams. The databases Kyoto Ency-
clopedia of Genes and Genomes (KEGG), Reactome and 
BioCyc as pioneer of interaction databases contain metabolic 
reactions and signal transduction pathways. KEGG is a ref-

erence knowledge-base offering information about genes and 
proteins, biochemical compounds, reactions and pathways. It 
provides many reference pathways that are linked to genes 
and reactions of over 38 eukaryotes and many microorgan-
isms. It can be accessed via the web, FTP and web ser-
vices.Also, Recon database [82] is a comprehensive meta-
bolic resource that contains metabolic reaction of human 
metabolism in health and disease. The total number of reac-
tions in Recon2 (latest version) is 7,440 and total number of 
metabolites is 5,063. Reactome has been managed as a col-
laboration of the Cold Spring Harbor Laboratory, the EBI 
and the Gene Ontology Consortium. It uses a very precise 
specification (ontology) of components and interactions and 
comprises details on stoichiometry, localization, references 
to external databases, etc. This covers also processes like 
complex formation events or translocations of molecules. A 
further pathway database with a similar scope is BioCyc that 
covers pathway data on Escherichia coli (EcoCyc), and pre-
dicts metabolic pathways of other microorganisms (Meta-
Cyc) and human (HumanCyc) as well. STRING (functional 
protein association networks) is an important PPI database 
that takes into account the different types of interactions be-
tween proteins in human and other model organisms. 

Databases with a specific focus on signaling events are 
BioCarta, Spike, Transpath, STKE, NetPath and the Pathway 
Interaction Database (PID). An inherent aspect of the path-
way concept is protein–protein interaction subject of the da-
tabases IntAct or database of interacting proteins (DIP). 
Gene regulation processes and gene regulatory networks are 
not yet covered in as much detail as metabolic processes or 
signaling. However, there are some databases that store in-
formation on transcription factor binding sites; such as Regu-
lonDB, TRED and Transfac databases. The lack of uniform 
data models and data access methods of the existing almost 
325 interactions and pathway databases make data integra-
tion very difficult. The figure illustrates the overlap of sever-
al of these pathway resources.

Fig. (20). Overlap between important network and pathway databases and their interaction.
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Besides topological information about cellular reaction 
networks, kinetic data, such as kinetic laws and kinetic con-
stants, are of particular interest in the generation of mathe-
matical models. Two databases that are concerned with such 
data are BRENDA and SABIO-RK.

6.3. Systems Biology Model Repositories

Systems have been made available to the scientific com-
munity in the form of publications, often depicting a diagram 
of the reaction system or a list of the reaction equations, 
along with a mathematical description (e.g. as a differential 
equation system), and lists of kinetic parameters and concen-
trations of specific states. Recently, model databases have 
been installed such as the BioModels database (www.
ebi.ac.uk/biomodels) or JWS (jjj.biochem.sun.ac.za/data
base). Both are public, centralized databases of curated, pub-
lished, quantitative kinetic models of biochemical and cellu-
lar systems. For instance, the BioModels database currently 
provides 409 curated and 420 non- curated models.

6.4. Species-specific Databases

Whereas most of the above-mentioned databases are fair-
ly general, there are multiple databases with a specific focus. 
For instance, there are databases that focus on a certain spe-
cies, for example MGD for moose, Flybase for Drosophila 
melanogaster, wormbase for Caenorhabditis elegans or SGD 
for yeast, either they contain information on specific diseas-
es, such as cancer (e.g. COSMIC) and diabetes (e.g. 
T1DBase), or they hold information on a specific subject,
such as chemical compounds found in biological systems 
(ChEBI, the Human metabolome database, PRIDE, Lipid-
Maps, and the Human serum metabolome project).

In conclusion, mining literature for systems biology, the 
integration of literature information is highly important. Lit-
erature is accessed in a derived form such as the concepts 
represented by the Gene Ontologies (GO) and Medical Sub-
ject Headings (MeSH). A further approach that has been re-
cently applied for building systems biology resources is text 
mining [84]. Text mining (manual or with the program) can 
either be used for pre-selection of appropriate literature or be 
used for the automatic extraction of data from literature. In 
particular, systems biology can benefit significantly from the 
extraction of data on molecular interactions of cellular com-
ponents and related information about the kinetics of the 
interactions [85]. However, text mining of scientific litera-
ture is still in its early phase and the precision of its results, 
as given by false-positive and false-negative rates, has to be 
improved. For further review of literature mining see [86].

7. SYSTEMS BIOLOGY TOOLS

The first question one might ask is why developing spe-
cialized software to model biochemical networks? Given the 
availability of both generic commercial and freely available 
tools for numerical analysis, one might ask if there is such a 
need? There are probably at least two reasons why research-
ers develop their own specialized tools for modeling bio-
chemical systems. The first is that specialized tools reduce 
the errors that occur while transcribing a reaction scheme 
(that is, a biological representation) into the mathematical 
formalism ready for simulation. Deriving the math equations 

by hand is often a source of error (especially in published 
papers), particularly in large models. The second important 
reason is that developing software offers an opportunity to 
codify and build up new numerical algorithms or new theo-
retical approaches that are specific to problems found in sys-
tems biology [87]. Today Researchers make use of a large 
number of different tools for modeling, analysis, visualiza-
tion and data manipulation.

7.1. Visualization Tools

Tools that allow users to draw pathways on a screen and 
turn them into simulatable models seem to be fairly rare. We 
confine your attention here to tools that are specifically de-
signed to assist in simulation, rather than pathway annota-
tion. Examples of the latter include the Edinburgh Pathway 
Editor [88], Cytoscape [89], BioUML [90], geWorkbench 
[91], Medusa [92], VANTED [93], and BioTapestry [94];
and many others also exist.

Cytoscape, is an open source bioinformatics software 
platform and has become a standard tool for integrated anal-
ysis and visualization of biological networks. Its central or-
ganizing principle is a network graph, with biological enti-
ties (e.g. genes, proteins, cells, patients), represented as 
nodes and biological interactions represented as edges be-
tween nodes. Data is integrated with the network using at-
tributes, which map nodes or edges to specific data values 
such as gene expression levels or protein functions. Attribute 
values can be used to control visual aspects of nodes and 
edges (e.g. shape, color, size) as well as to perform complex 
network searches, filtering operations and other analysis.

The latest Version of Cytoscape (2-8-3) has introduced 
two significant new features that improve its ability to inte-
grate and visualize complex datasets. The first feature allows 
non-programmers to map graphical images onto nodes, 
which greatly increases the power and flexibility with which 
integrated data can be visualized. The second feature is the 
introduction of spreadsheet-like equations into Cytoscape's 
Attribute Browser to enable the advanced transformation and 
combination of datasets directly within Cytoscape. Separate-
ly, each of these features provides useful new capabilities to 
Cytoscape. Taken together, however, these features provide a 
mechanism for expressing relationships between sets of data 
while simultaneously visualizing the integrated results [95].
For various kinds of network manipulations, there are a lot 
of Cytoscape plugins. BiNoM is a Cytoscape plugin, devel-
oped to facilitate the manipulation of biological networks 
represented in standard systems biology formats (SBML, 
SBGN, BioPAX) and to carry out studies on the network 
structure.

VANTED (Visualization and Analysis of Networks con-
taining Experimental Data) is a Java-based software which 
has been developed by an IPK group in order to create and 
analyze biological networks [93, 96]. A user could load and 
edit biological pathways or functional hierarchies in a graph 
representation. One could do some steady-state analysis such 
as Flux balance analysis (FBA), Knock-out analysis, Ro-
bustness analysis, and Flux variability analysis. It could also 
map experimental datasets onto the graph elements and 
could visualize time series data, data of different genotypes, 
or environmental conditions in the context of biological 
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Table 3. Selected data resources and databases for systems biology research.

Data Resource URL

Pathway Database

KEGG http://www.genome.jp/kegg/

Reactome http://www.reactome.org

Recon X http://humanmetabolism.org/

BioCyc http://biocyc.org/

Pathway interaction database (PID) http://pid.nci.nih.gov/

BioCarta http://www.biocarta.com/

IntAct http://www.ebi.ac.uk/intact/

Database of Interacting Protein (DIP) http://dip.doe-mbi.ucla.edu/dip/Main.cgi

Kinetics Database

BRENDA http://www.brenda-enzymes.org

UMBBD http://umbbd.msi.umn.edu

SABIO-RK http://sabio.villa-bosch.de/

Expression Data Resource

Gene Expression omnibus (GEO) http://www.ncbi.nlm.nih.gov/geo

ArrayExpress http://www.ebi.ac.uk/arrayexpress/

Ontology

Gene Ontology http://www.geneontology.org

Systems Biology Repositories

Biomodels http://www.ebi.ac.uk/biomodels-main/

CellML http://www.cellml.org/

JWS http://jjj.biochem.sun.ac.za/index.html

Fig. (21). An overview of Cytoscape start window.
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processes. More information is available through software 
tutorial which additionally contains example pathways and 
measurement datasets. 

VANTED contains some Add-ons for demonstration and 
analysis of biological networks in which we will describe 
them in the summary.

FBA-SimVis: The constraint-based analysis of metabolic 
models.

FluxMap: advanced visualization of simulated or meas-
ured flux data in biological networks. 

PetriNet: handle discrete and continuous place-transition
nets of varying complexity. 

DBE2 (Database of Biological Experiments): an exten-
sion of the original DBE system in which experimental
data can be easily shared and combined. 

MetaCrop: enable browsing the content of the handcu-
rated Metacrop database.

HIVE (Handy Integration and Visualization of multimod-
al Experimental Data): combines network-focused Systems 
Biology approaches with spatio-temporal information.

SBGN-ED: Editing, Translating and Validating of Sys-
tems Biology Graphical Notation (SBGN) Maps, an 
emerging standard for graphical representations of bio-
chemical and cellular processes studied in systems biolo-
gy.

CentiLib: computation and investigation of weighted 
and unweighted centralities in biological networks. 

GLIEP (Glyph-based Link Exploration of Pathways): 

navigation and exploration process of interconnected 
pathway visualization as well as providing insight into
the overall interconnectivity.

Using VANTED requires Java runtime version 6 or later 
and it has been tested on Windows, Mac OS X, Ubuntu 
Linux, and Sun Solaris platforms. At the time of writing this 
review, the latest version is 2.1.0.

Fig. (23). A) A simple pathway created by VANTED. B) Flux bal-

ance analysis of the pathway A using VANTED.

7.2. Modeling and Annotation Tools

Once the model topology is designed, a mathematical 
model can be created. If this is, for example, a kinetic model, 
further data on the kinetic laws and kinetic parameters have 
to be identified or appropriate assumptions have to be made. 
For this purpose, diverse software tools have been devel-

Fig. (22). An overview of VANTED start window.
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oped. One can use commercial tools like Mathematica or 
Matlab that are well elaborated and offer broad spectra of 
functionalities. One disadvantage of using these programs is 
that the differential equation system of the mathematical 
model has to be formulated explicitly by the user. Overviews 
of current software platforms and projects that face up this as 
well as an overview about computational requirements for 
this purpose hav been given. Common systems among others 
for this purpose are Gepasi, COPASI, E-Cell, ProMoT/Diva, 
Virtual Cell or the Systems Biology Workbench (SBW) and 
its add-ons. Some of these tools are shown in (Table 4).

A comprehensive list of modeling and simulation tools is
also given which reports the results of an online survey of 
systems biology standards. This report identified CellDe-
signer as the most popular stand-alone application in respect 
to its graphical functionalities [97].

Example by CellDesigner: (Fig. 23) illustrates the Ras / 
Erk pathway that is activated by EGF. These pathways are 
activated by EGF attachment to EGFR. After the interaction 
of EGF with the EGFR, the receptors undergo homo- or het-
erodimerization that causes auto phosphorylation of certain 
tyrosine residues in the cytoplasmic end. After phosphoryla-
tion, the Shc adaptor binds its site and Grb2 attaches to Shc, 
and then SOS (GTP exchange protein for Ras) is employed 
by Grb2 [98]. Also, Grb2 directly binds its receptor, accord-
ingly SOS binds Grb2. [99]. In the next step SOS converts 
Ras-GDP into Ras-GTP which is the activated form of Ras 
[98]. Activated Ras induces Raf phosphorylation and activa-
tion. Raf is a kind of Serin/Threonine kinase that phosphory-
lates and activates the MEK (MAP kinase kinase). The acti-
vated MEK, phosphoralates and activates ERK (extracellular 
signal-regulated kinase) [100]. ERK or MAPK (mitogen 
activated protein kinase) phosphorylate a variety of the pro-
teins that leads to cell growth and proliferation [101]. Also, 
receptor internalization from the cell surface and receptor
degradation were done by Cbl factor. 

Gepasi and COPASI come up with user-friendly interfac-
es for the simulation and analysis of bio- chemical systems. 
They support the definition of compartments. Common ki-
netic types as well as user-defined kinetic types are availa-
ble. They provide time-course simulation and steady-state
calculation and also the ability to explore the behavior of the 
model over a wide range of parameter values, using a param-
eter to scan that runs one simulation for each parameter
combination. Gepasi and COPASI can characterize steady 
states, using metabolic control analysis (MCA) and linear 
stability analysis and they are capable of performing parame-
ter estimation with experimental data and optimization [102].

SQUAD (standardized qualitative dynamical systems) 
program was introduced for the dynamic simulation of bio-
logical signaling networks [103]. SQUAD uses the standard-
ized qualitative dynamical systems and a binary decision 
diagram to identify the steady states of the signaling system. 
SQUAD can be used for perturbing networks in a manner 
similar to what is performed in knock out experiments. The 
network translates into a discrete dynamical system by:

xi(t+1)=
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Generalized Logical Analysis (GLA) is used to locate 
steady states, which is based on the analysis of the all the 
loops that constitute the network. Also, reduced Order Bina-
ry Decision Diagram (ROBDD) algorithm has been imple-
mented in SQUAD for the analysis of networks containing 
only binary nodes.

SQUAD aims at simulating and predicting the behavior 
of a regulatory network when subject to stimuli, such as 
drugs, or determines the role of specific components within 
the network. SQUAD provides a graphical interface, for the 
fast nonparametric simulation of large biological networks 
(Fig. 25). A good example of SQUAD application is that a 
study used it for simulation of apoptosis in liver cell signal-
ing network, and its modifications in response to viral infec-
tion were investigated [104].

E-Cell is based on the modeling theory of the object-
oriented Substance–Reactor Model. Models are constructed 
with three object classes, substance, reactor and system. Sub-
stances represent state variables, reactors describe operations 
on state variables and systems represent logical or physical 
compartments. The time - course calculation is done by the 
use of a simulation engine. Numerical integration is supported 
by first-order Euler or fourth-order Runge–Kutta method.

ProMoT/Diva consists of the modeling tool, ProMoT,
and the simulation environment Diva. The workbench deals 
with modular models and can handle Differential Algebraic 
Equation (DAE) systems. Modeling is supported with a 
graphical user interface and a modeling language. The mod-
eling tool provides the possibility to use existing modeling 
entities out of knowledge bases.

Virtual Cell (URL: www.nrcam.uchc.edu) is a web based 
tool that uses a user interface to input the data needed for the 
modeling [105]. Virtual Cell can be used to model different 
ranges of signaling mechanisms, including diffusion, flow, 
membrane & lateral membrane transport, and reaction kinet-
ics. The necessary parameters involved are topology of net-
work, respective kinetic parameters in reactions, and sub 
cellular localizations of each component of the network. For 
each model Virtual Cell automatically generates the mathe-
matical framework for running a simulation, and generate 
the appropriate program code. The model and its components 
can be reused and published using the Virtual Cell database. 
The output of data is in different formats including spread-
sheets, images that represent the system state over time, and 
QuickTime movies (Fig. 26). Import/export of models is 
possible via of SBML, CellML, and MatLab formats. 

NSIN (Nonparametric Simulator of Signal Transduction 
Networks) tool is a computational framework to describe the 
general profile of a process evolving and the time course of 
the proportion of active form of molecules in signal trans-
duction networks [106]. This continuous model, does not 
require biochemical or kinetic parameters in order to capture 
the system dynamics. The activity of nodes will change step 
by step acceding to the specific functions. During iteration 
nodes are updated to their new values in a semi-synchronous
manner. Also the possibility of perturbation experiments on 
the model is incorporated. 
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Table 4. Partial list of computational systems biology simulation tools.

Name Category Model Representation Function URL

MATLAB, with SimBiolo-

gyToolbox
Continuous and stochastic Mathematical (e.g.ODE)

General-purpose mathemat-

ical environments, simula-

tion and analysis

www.mathworks.com

XPPAut Continuous and stochastic ODE
General purpose; simula-

tion, analysis

www.math.pitt.edu/_bard/xp

p/xpp.html

Copasi Continuous and stochastic ODE Simulation and analysis www.copasi.org

Virtual Cell Continuous and stochastic ODE-based, PDE 
Simulation and parameter 

sensitivity analysis
www.nrcam.uchc.edu

Systems Biology Work-

bench, including Jarnac and 

JDesigner

Discrete, continuous and 

stochastic
ODE/SBML

Data-exchange framework 

for Data-exchange frame-

work for modeling, simula-

tion and analysis

sbw.kgi.edu

Narrator Continuous and stochastic Graphical,ODE-based Modeling and simulation www.narrator-tool.org

STOCHSIM Stochastic Probabilistic
General-purpose biochemi-

cal Simulator

www.pdn.cam.ac.uk/groups/

comp-cell/ StochSim.html

E-CELL Continuous Object-oriented Modeling and simulation www.e-cell.org

SPiM Stochastic calculus Simulation
http://www.doc.ic.ac.uk/_an

p/spim/

BioSigNet Discrete Graphical
Reasoning, hypothesis 

testing

www.public.asu.edu/_cbaral

/biosignet

BIOCHAM Discrete and continuous Logical + kinetic models Simulation and analysis contraintes.inria.fr/BIOCHAM

PRISM Discrete Stochastic process algebra 
General purpose; Analy-

sis((model checking))
www.cs.bham.ac.uk/_dxp/prism

PEPAWorkbench  Discrete Stochastic process algebra General purpose; Analysis www.dcs.ed.ac.uk/pepa/tools

Fig. (24). An output of CellDesigner.
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Fig. (25). Graphical interface of SQUAD program. The output of SQUAD program describes the identified steady states of T-helper cell net-

work. The network is loaded into SQUAD using an SBML file. State1: all the nodes inactive, State2: Active IFN�, and State3: Active IL-4.

Fig. (26). Simulation results of Virtual Cell program. The virtual Cell model used to model of an enzymatic reaction over ten stochastic trajec-

tories at t = 4.0 obtained from 1000 trials. The reactions and network topology imported into Virtual Cell from the KEGG database automati-

cally.

To analyze a signal transduction network, the program 
requires specification of network in terms of its source, tar-
get, and type of interaction matrices. An input is a directed 
graph in which the nodes represent the elements (e.g. pro-
teins), and the edges represent interactions (e.g. phosphoryla-
tion) between two types of elements. The program needs the 
two input files. The first input simply identifies the source 
and target of each interaction and the second identifies the 
type of interaction including activator or inhibitor. The simu-
lation starts from signal receptors, and iteratively traverses 

the whole network, and updates the state of every node. At 
each time point the state of a node is determined by the pre-
vious state, and the states of its upstream neighbors via a 
combination of two processes including the weighting edges, 
and simulation of signal flow from the initial(s) node(s). The 
simulator provides both single and set running modes. In 
single mode, users can specify the input node activity, and 
the activities of the nodes will change in the iteration. A set-
mode run consists of multiple inputs, each with different 
activities. The output includes continuing values for level of 
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activation of giving molecule (proportion of active mole-
cules) at discrete time-steps, at final time-steps, and the 
weight of edges in the network. The NSIN program is freely 
available at http://lbb.ut.ac.ir/Download/LBBsoft/NSIN.

The SBW provides a server that acts as a broker between 
different modeling and simulation tools (clients) via a com-
mon interface. These clients (add-ons) cover graphical tools 
for model population, deterministic and stochastic simulators 
and also analysis tools like the integration of MetaTool. 
Closely related to the SBW is the development of SBML that 
is used for communication by SBW.

7.2.1. Model Parameters

Once the topology of network has been set up, the next 
step is to collect the parameters for each of the interactions 
(Fig. 27) [20]. An example of available databases for param-
eter selection and development of models is DOQCS (URL: 
docqcs.ncbs.res.in). If for under consideration model param-
eters are incomplete, it is possible to create nonparametric 
models [21]. This approach can fill the model variable gap 
by experimentally verified assumptions and estimations [22].

8. STANDARDS USED IN SYSTEMS BIOLOGY

An important part of systems biology is data integration. 
Although data integration itself cannot explain the dynamical 
behavior of biological systems, it is useful for increasing the 
information content of the individual experimental observa-
tion, enhancing the quality of the data and identifying rele-
vant components in the model as a new pathway or network. 
On the basic level of complexity, data integration consists of 
the integration of heterogeneous data resources and data-
bases with the aim of parsing data from these databases, que-
ry for information and to make it usable for modeling. Tech-
nically, database integration requires the definition of data-
exchange protocols, languages and the development of 
parsers that interconnect the databases to a data layer that is 
able to display the heterogeneous data sources in a unified 
way.

A standard for representation, storage and exchange of 
data is a convention about the information items necessary to 
describe the experiment and the encoding of this information 
(e.g. expression data of microarray experiments or infor-
mation about the relations between components and interac-
tions of a pathway). The standard has to enable an unambig-
uous transfer and interpretation of the data and information. 
Developing a standard involves four steps: an informal de-
sign of a conceptual model, a formalization, the development 
of a data exchange format and finally the implementation of 
supporting tools [107].

8.1. Conceptual Design

The first step, the conceptual model design, gives an in-
formal description of the related domain and specifies its 
delimitation. The description should address the minimal 
number of most informative parameters but should still pro-
vide a common ground for all related applications. For in-
stance, for the microarray domain a conceptualization is pro-
vided with Minimum Information about a Micro- array Ex-
periment (MIAME) [108] and Minimum Information about a 
Proteomics Experiment (MIAPE) [109] which gives guide-
lines for the standardized collection, integration, storage and 
dissemination of proteomics data. Like specifications for 
experimental data also concepts for the description of math-
ematical models such as Minimum Information Requested in 
the Annotation of Biochemical Models (MIRIAM) [110]
have been elaborated.

8.2. Data Representation Formalisms and Languages

The description of a given domain can be represented in 
any format, but the use of common representation formal-
isms and languages makes it easier to compare and interpret 
data from similar domains and it also facilitates the integra-
tion, computational processing and comprehensive interpre-
tation of that data. 

Controlled vocabularies are a prerequisite for a consistent 
data description. They contain sets of words or phrases rep-

Fig. (27). Flow chart of the steps involved in the preparation of a computational model. Initially, the model is defined as the network. Once

the interactions between components are set up, parameters are collected from the different sources. The simulation results and predictions 

can be compared with the experimental results or use of experimental design.
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resenting particular entities, processes or abstract concepts. 
Within a particular controlled vocabulary, individual terms 
are usually associated with a unique identifier, an unambigu-
ous definition and occasionally also synonymous to prevent 
misinterpretations.

Furthermore, ontologies are used for the conceptualiza-
tion of a knowledge domain. An Ontology defines terms and 
relations along with a vocabulary of a topic area and thus, 
provides a common terminology over a certain domain. Re-
lations are, for example, ‘is-a’ relations that describe a gen-
eralization, forming a term hierarchy. An example is the GO 
that builds the basis for a generalized functional annotation 
of genes and their products. The naming of genes and gene 
products is not necessarily systematic and genes having iden-
tical functions are given different names in different organ-
isms or the verbal description of location and function might 
be different. To address this problem, the GO was initiated as 
a collaborative effort (www.geneontology.org). GO terms 
have a parent– child relationship. GO defines three top-level
categories, ‘molecular function’, ‘biological process’ and 
‘cellular component’ it organizes all keywords in a hierar-
chical graph-like structure. The terms, defined in GO, form a 
directed acyclic graph. The power of the GO project lies in 
the fact that many applications have been developed that use 
GO terms to validate other data for functional information.

8.3. Data Exchange Formats

During the last years, the eXtensible Markup Language 
(XML) has been proofed to be a flexible tool for the defini-
tion of standard formats not only for applications in different 
fields of information technology, but also for the manage-
ment of data from diverse experimental platforms. One ex-
ample designed for data from microarray experiments is 
MAGE-ML [111]. Others are, for instance, those dealing 
with pathway data and mathematical models. SBML, 
CellML and BioPAX have enough potential to become de 
facto standards for their respective application area [112].

With the surge in the number of incompatible simulation 
tools since the year 2000, it was realized by at least two 
communities that some forms of standardization for model 
exchange were necessary. CellML and SBML are the two 
standards that emerged. CellML is primarily a notation for 
representing biochemical models in a strict mathematical 
form; as a result it is, in principle, completely general. In 
contrast, SBML uses a biologically inspired notation to rep-
resent networks from which a mathematical model can be 
generated. Each one has its strengths and weaknesses, but 
SBML has a simpler structure than CellML and as a result 
there is more software support for SBML. Most software 
tools at the present time support import and export of SBML. 
Both standards have very active communities, intracellular 
models, being primarily the domain of SBML and physiolog-
ical models for CellML [113].

BioPAX [114] is defined by the BioPAX working group 
and is designed for handling information on the pathways 
and topologies of biochemical reaction networks. The Sys-
tems Biology Markup Language (SBML) is a format for 
describing dynamic models, common to research in many 
areas of computational biology, including metabolic path-
ways, cell signaling pathways, gene regulatory network and 

other biological networks and pathways. Major releases of 
the SBML standard are called levels, where level 2 is the 
most recent. SBML defines a list of species (entities of the 
model), compartments, parameters and reactions, among
others. SBML is widely used—it is supported by over 200 
software systems [115].

A comparison of SBML and BioPAX comes to the con-
clusion that, while the main structures of these formats are 
similar, SBML is tuned towards simulation models of mo-
lecular pathways. BioPAX turns out to be the most general 
and expressive format, even if it is lacking definitions for the 
representation of dynamic data such as kinetic laws and pa-
rameters [116].

It is argued that the syntactic and document- centric XML 
cannot achieve the level of interoperability required by the 
highly dynamic and integrated bioinformatics applications. 
Therefore, semantic web technology like resource-descrip-
tion framework (RDF) and the web ontology language 
(OWL) have been proposed as alternatives to current XML 
technology [117].

Using standards brings several advantages, e.g. Ontology 
along with a defined vocabulary is used to promote an accu-
rate description of the data and provides a software-
independent common representation of the data. One of the 
most important general problems in building standards in 
biology is that our understanding of living systems is not 
static but rather constantly developing what necessitates a 
regular update of these standards.

9. CONCLUSION AND PERSPECTIVES

Quantitative modeling methods are still in their infancy
for the analysis of biological networks. While describing 
biological processes at the system level (e.g. a cell), it is im-
portant to remember that the biological data is often very 
noisy, and the processes are highly complex: biomolecular 
concentrations and interactions change over time and in re-
sponse to internal or external stimuli as well as to dynamical 
intrasystem processes. Todays, the graph theory and its prop-
erties (static modeling) applied to describe biological net-
works may reach its limits when the contingency and condi-
tionality of interactions need to be considered. Computation-
al systems biology and predicting methods have seen tre-
mendous advances during this decade. In the past few years, 
research in computational systems biology has moved be-
yond interaction networks, based simply on clustering and 
correlation. Simple Petri nets modeling and boolean net-
works can reveal important topological network properties, 
but are too crude to explain some important aspects of net-
work dynamics. While, ODEs allow more detailed descrip-
tions of network dynamics, by explicitly modeling the con-
centration changes of molecules over time. In the biological 
systems both continuous and discrete aspects are present. 
Therefore, Hybrid models have been developed in an attempt
to describe both, discrete and continuous aspects in one 
model and such models have therefore been proposed for 
biological systems modeling.

In surveying the development of software in systems 
biology, we see a vibrant and sometimes innovative commu-
nity with a very wide range of tools to satisfy all manners of 
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users. There are still some areas that are lacking, most nota-
bly bifurcation analysis and model composition.
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