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Abstract

Background: Genome-scale metabolic networks and flux models are an effective platform for linking an organism

genotype to its phenotype. However, few modeling approaches offer predictive capabilities to evaluate potential

metabolic engineering strategies in silico.

Results: A new method called “flux balance analysis with flux ratios (FBrAtio)” was developed in this research and

applied to a new genome-scale model of Clostridium acetobutylicum ATCC 824 (iCAC490) that contains 707

metabolites and 794 reactions. FBrAtio was used to model wild-type metabolism and metabolically engineered

strains of C. acetobutylicum where only flux ratio constraints and thermodynamic reversibility of reactions were

required. The FBrAtio approach allowed solutions to be found through standard linear programming. Five flux ratio

constraints were required to achieve a qualitative picture of wild-type metabolism for C. acetobutylicum for the

production of: (i) acetate, (ii) lactate, (iii) butyrate, (iv) acetone, (v) butanol, (vi) ethanol, (vii) CO2 and (viii) H2. Results

of this simulation study coincide with published experimental results and show the knockdown of the acetoacetyl-

CoA transferase increases butanol to acetone selectivity, while the simultaneous over-expression of the aldehyde/

alcohol dehydrogenase greatly increases ethanol production.

Conclusions: FBrAtio is a promising new method for constraining genome-scale models using internal flux ratios.

The method was effective for modeling wild-type and engineered strains of C. acetobutylicum.
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Background

Modeling clostridial metabolism

Butanol is of considerable research interest as a potential

biofuel, and its renewable production through fermenta-

tion is sought largely from the clostridia. In particular,

Clostridium acetobutylicum ATCC 824 has been one of

multiple clostridia researched for butanol production over

the past few decades. In fact, the first applications of meta-

bolic flux balancing were performed using a model of C.

acetobutylicum primary metabolism to understand what

caused this organism to produce butanol and the compet-

ing metabolic byproducts: (i) acetate, (ii) butyrate, (iii) lac-

tate, (iv) acetone, (v) ethanol, and several others in small

amounts [1,2]. Flux modeling of the primary metabolism

of C. acetobutylicum has led to a better understanding of

the role cofactor balancing plays in directing global meta-

bolic changes. It has played a significant role in metabolic

engineering by identifying bottlenecks and critical flux dis-

tributions at metabolic branch points [3-8]. Multiple

“genome-scale” metabolic network reconstructions now

exist for C. acetobutylicum [9-12]. Similar networks and

their corresponding genome-scale models have been

reviewed extensively [10,13-20]. In general, they are used

to (i) complete genome annotation [21], (ii) predict opti-

mal culturing conditions [22-24], (iii) discover genomic

regulation [20,25,26], (iv) identify essential genes and drug

targets [27-33], (v) study strain evolution [34,35], and (vi)

design productive strains [36-38]. Modeling results on the

genome-scale have been applied to both “acidogenic” and

“solventogenic” programs of clostridial metabolism [9].

The acidogenic program is characterized by high acids (i.

e., acetate and butyrate) production and high growth rates,

and the solventogenic program (i.e., acetone and butanol
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production) largely coincides with the stationary growth

phase of the culture. During solventogenesis, acetate and

butyrate are re-consumed by the culture and converted to

acetone and butanol. The genetic program of this meta-

bolic shift between acids and solvents production has been

studied in detail [39]. Several insights into C. acetobutyli-

cum metabolism have been gained from “gap filling” the

metabolic network by locating previously unknown

enzymes and biochemical reactions [11,12]. The total rate

at which a cell produces/consumes protons through the

several membrane transport mechanisms is termed the

specific proton flux (SPF), and this parameter has shown

to significantly reduce the total number of flux “solutions”

available for the under-determined genome-scale model of

C. acetobutylicum [12]. Reducing the number of degrees

of freedom of these genome-scale models through applica-

tion of genetic regulation and physicochemical constraints

has been recognized as a key strategy for generating meta-

bolic flux predictions that coincide with experimental

observations [20].

Engineering clostridial metabolism

Knowledge of the metabolic pathways of butanol fermen-

tation has allowed for targeted engineering approaches. As

acids (acetate and butyrate) and alcohols (ethanol and bu-

tanol) are competing products of fermentation, metabolic

engineering strategies have been designed to silence acid

producing pathways in attempt to re-direct carbon flow

into the alcohol producing pathways. The primary meta-

bolic network of C. acetobutylicum is shown in Figure 1

(adapted from [6,8]). An example of this strategy is the

knockdown of the butyrate kinase (buk) (BK in Figure 1)

and phosphotransacetylase (pta) (PTA in Figure 1) genes

in clostridial metabolism [40]. The proximity of the pta

gene in the genome to the acetate kinase (ak) (AK in Fig-

ure 1) gene resulted in the silencing of both genes simul-

taneously, further decreasing acetate production. The

results of this engineering strategy showed that eliminating

genes of the acetate pathway had little effect compared to

the wild-type, while knockdown of butyrate pathway genes

resulted in 10% more butanol and 50% less acetone than

the wild-type [41]. The aldehyde/alcohol dehydrogenase

gene (aad or adhE1) (AAD in Figure 1) was over-

expressed in the presence of a buk knockout, and this

strain yielded a 300% increase in butanol production and

400% increase in ethanol production over the wild-type

strain [42]. In a separate metabolic engineering strategy,

the aad was over-expressed while knocking-down the

gene for subunit B of acetoacetyl-CoA transferase (ctfB)

(CoAT in Figure 1). This led to a strain with similar buta-

nol productivity but the ability to produce extraordinary

ethanol concentrations of 200 mM (23-fold higher than

the wild-type) [43]. However, when the aad gene was put

under control of the ptb gene promoter (to increase

expression during the early acidogenic phase of the cul-

ture) an increase in butanol concentrations to 300 mM (a

record high) was observed along with faster accumulation

of butanol in the culture [44].

Metabolic engineering in silico

The goal of metabolic engineering in silico is to derive (or

at least evaluate) potential metabolic engineering strategies

prior to constructing them in the laboratory. For example,

will a particular gene over-expression or knockout in C.

acetobutylicum increase butanol production? Answering

questions of this type is one of the potential uses of

genome-scale modeling. However, with the initial genome-

scale model for C. acetobutylicum [11,12], these questions

could not be addressed without constraints on acid/solv-

ent production. These constraints artificially specified

ranges for secretion rates of acid and solvent products.

These were necessary due to the large number of degrees

of freedom that exist in the under-determined genome-

scale model and the high degree of branching in the pri-

mary metabolism of clostridia. Simply, too many flux solu-

tions were available if the user was only to define the

substrate uptake rate and a proper objective function. The

production of products/byproducts by a metabolic net-

work not only completes elemental balances but it also

regenerates and balances cofactors. In clostridial metabol-

ism, ATP is regenerated by the production of acetate or

butyrate, and NAD+ is produced by the production of (i)

lactate, (ii) ethanol, or (iii) butanol. With several options to

balance cofactors available, information about enzyme spe-

cificity is necessary to achieve reasonable selectivity. If

constraints in a genome-scale model are simply placed

around secretion of a product or byproduct, the model

does not represent the cellular mechanisms that result in

proper selection. Thus, an effective metabolic engineering

strategy cannot be formulated in silico given these types of

constraints.

With the ultimate goal of re-directing metabolic flux

through the butanol production pathway in C. acetobuty-

licum, few tools, with the notable exception of OptKnock

[36], exist for deriving a metabolic engineering strategy.

Even with its many successes, OptKnock is restricted to

gene knockouts and cannot suggest over-expression and

partial gene knockdown strategies to engineer metabol-

ism. However, the recently published OptForce algorithm

[38] provides the capability to identify both gene over-

expressions and knockdowns required of a metabolic

network to produce a targeted amount of a specified

product. Ultimately, methods that target the regulatory

network of the cell and re-direct metabolic flux at net-

work branch points will enable even more effective

metabolic engineering in silico. The research presented

here is a first step to constraining metabolic branching

based on enzyme specificity. This approach also enables
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simulation of gene over-expressions and partial gene

knockdowns in addition to gene knockouts.

Considering metabolic flux ratios

The experimental determination of metabolic flux and

pathway usage through the use of isotope tracers has sig-

nificantly contributed to the overall understanding of

regulated metabolism. One approach to characterize me-

tabolism is through the use of metabolic flux ratio ana-

lysis (METAFoR) [45-47]. This method is used to

determine the degree of converging pathway usage to

produce a metabolite pool when multiple synthesis

routes exist. For example, METAFoR can reveal the rela-

tive contributions of anaplerosis and the TCA cycle to

Figure 1 Primary central carbon metabolism of C. acetobutylicum. Cofactors consumed by each reaction are listed as (−) and cofactors

produced (+) (H+ ions are not shown). The following enzymes are shown in bold: (LDH) lactate dehydrogenase, (PFO) pyruvate ferredoxin

oxidoreductase, (FNO) ferredoxin NAD+ oxidoreductase, (FNPO) ferredoxin NADP+ oxidoreductase, (HYDA) hydrogenase, (AAD) acetaldehyde/

alcohol dehydrogenase, (PTA) phosphotransacetylase, (AK) acetate kinase, (THL) thiolase, (CoAT) acetoacetyl-CoA transferase (for acetate and

butyrate), (AADC) acetoacetate decarboxylase, (BHBD) β-hydroxybutyryl-CoA dehydrogenase, (CRO) crotonase, (BCD) butyryl-CoA dehydrogenase,

(PTB) phosphotransbutyrylase, (BK) butyrate kinase, (BDHA) butanol dehydrogenase A, and (BDHB) butanol dehydrogenase B. The CoAT can

function with either acetate or butyrate substrate; it does not require both. The AAD can catalyze three reactions in the model. These are listed as

(i) AAD_1, (ii) AAD_2, and (iii) AAD_3.
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the formation of the oxaloacetate pool. Early results

revealed the robustness of central carbon metabolism of

Escherichia coli [45,47] as many calculated flux ratios

were found impervious to genetic perturbations. Add-

itional computational method development led to the

formulation of constraints for flux balancing from mea-

sured flux ratios [48,49]. The resulting algorithm was ef-

fective given small metabolic networks of primary

metabolism and the use of nonlinear programming

methods. Unfortunately, these aspects have limited the

applicability to large genome-scale metabolic networks,

which often must rely on linear programming.

Genome-scale modeling with flux ratios

Of the several successful (and unsuccessful) metabolic en-

gineering strategies applied to clostridia (many of which

are not mentioned here), it was not immediately apparent

which design(s) would be successful upon conception. The

mutant strains had to be created in the laboratory and ana-

lyzed. From these results, hypotheses were formed that

guided more advanced designs. The purpose of metabolic

engineering in silico is to analyze and optimize engineering

strategies a priori so that only the most promising candi-

dates are constructed in the laboratory. While genome-

scale modeling has provided the necessary platform for

metabolic engineering in silico, the large number of

degrees of freedom of these models has been limiting.

Here, a new approach called “flux balance analysis with

flux ratios (FBrAtio)” is developed and applied. One signifi-

cant advantage of FBrAtio is that flux ratio constraints are

built into the stoichiometric matrix directly. This approach

allows for multiple flux ratio constraints to be included

simultaneously, and the flux balancing problem can be

solved using simple linear programming. In particular,

FBrAtio is used to show that the butanol to acetone pro-

duction ratio of C. acetobutylicum increases in the pres-

ence of CoAT knockdown by antisense RNA (asRNA).

This metabolic engineering strategy is also simulated in the

presence of AAD knockdown and over-expression to show

this method can predict these published outcomes [43,50].

Methods

Genome-scale model

A new genome-scale model for C. acetobutylicum ATCC

824 was constructed by expanding the previously pub-

lished model by Senger and Papoutsakis [11,12]. The new

model is called iCAC490 and contains 707 metabolites

involved in 794 biochemical reactions, including 66 mem-

brane transport reactions. The model includes 490 genes

from the C. acetobutylicum genome. The newly updated

iCAC490 model differs from the original Senger and

Papoutsakis model [11,12] in that it contains 242 more

reactions (a 44% increase) and 285 more metabolites (a

68% increase). The new reactions added to create the

iCAC794 model were obtained from the KEGG database

[51] and recent literature. The iCAC490 model also con-

tains an updated TCA cycle that operates in both oxidative

and reductive directions to succinate, as shown by recent

fluxomics studies [52,53]. The model allows the export of

succinate since its metabolic fate has not yet been resolved

conclusively. The iCAC490 model is also fully compart-

mentalized and allows the presence of chemical reactions

in the extracellular environment. Thermodynamic reaction

reversibility constraints based on Gibb’s free energy calcu-

lations from the group contribution method [54,55] have

also been applied. The biomass equation was also updated

for the iCAC490 model, using the initial version by Senger

and Papoutsakis [11,12] as a template. A nonlinear

optimization procedure was applied (manuscript in prep-

aration) to optimize the biomass equation given specific

environmental conditions. The biomass equation derived

for exponential growth was used extensively in simulation

studies reported here. It was found that the exponential

growth biomass equation could result in qualitatively ac-

curate model predictions. It is acknowledged that an

updated and dynamic biomass equation will be required to

obtain model predictions that are quantitatively accurate.

The reconstructed metabolic network of the iCAC490

model is included as Additional file 1. The SBML format-

ted model is included as Additional file 2.

Flux balance analysis

The iCAC490 genome-scale model was simulated using

flux balance analysis through the COBRA toolbox [56].

The open-source GLPK linear programming software

was used to solve the flux balance equation (S � v = 0),

where S is a stoichiometric coefficient matrix and v is a

vector of flux values. Methods related to construction of

the stoichiometric matrix and the required steady-state

approximation for intracellular metabolite concentra-

tions have been detailed elsewhere [57]. The objective

functions used for all simulations were (i) maximizing

the specific growth rate of the cell while (ii) minimizing

the total flux of the system.

The specific proton flux

The concept of the specific proton flux (SPF) was first

introduced by Senger and Papoutsakis [12] and describes

the total rate of proton influx/efflux through all membrane

transport mechanisms. This value is negative when pro-

tons are leaving the cell and positive when protons are

taken-up by the cell. For the case of C. acetobutylicum, the

SPF is highly negative during exponential growth (acido-

genesis) and turns slightly positive during the stationary

phase (solventogenesis). In this research, the SPF was con-

strained to specific values by constraining the proton ex-

change reaction (the total flux of protons in/out of the

systems boundary). The SPF range was between −30
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mmol Hþ

hr�gDCW (proton efflux) and 5 mmol Hþ

hr�gDCW (proton influx), and

the limits were chosen from experimental observations.

FBrAtio algorithm

Metabolic engineering in silico was enabled through the

application of flux ratio constraints. In the FBrAtio

method developed in this research, flux ratio constraints

were incorporated into the stoichiometric matrix dir-

ectly, enabling the flux balancing problem to be solved

by simple linear programming. Several flux ratios were

investigated, and a critical metabolic branch point was

identified around the use of the acetyl-CoA metabolite

pool. In clostridial metabolism, acetyl-CoA can be used

to produce multiple acids, solvents, or macromolecules

to produce biomass. The routes taken by acetyl-CoA ei-

ther regenerate or consume different amounts of ATP

and NAD(P)+. Ultimately, the balancing of these cofac-

tors determines the production of acids and solvents.

The large number of degrees of freedom associated with

the genome-scale model of clostridial metabolism allows

a large number of acid/solvent production combinations

that satisfy cofactor balancing and the overall mass bal-

ance, while satisfying the objective functions of the

optimization. Thus, flux ratios ultimately reduce the

number of degrees of freedom of the system and can be

used to define selectivity. The following example demon-

strates the application of a flux ratio related to the con-

sumption of acetyl-CoA and the incorporation of this

flux ratio into the stoichiometric matrix. As shown in

Figure 1, two possibilities for acetyl-CoA are (i) usage by

the thiolase enzyme (THL) for conversion to acetoacetyl-

CoA and (ii) usage by the phosphotransacetylase enzyme

(PTA) for conversion to acetyl phosphate. The reactions

catalyzed by these enzymes are given Equations. 1 and 2.

2acetyl-CoA !
THL

acetoacetyl-CoAþ CoA ð1Þ

acetyl-CoAþ orthophosphate !
PTA

acetyl � phophateþ CoA

ð2Þ

Next, a ratio of fluxes for these reactions is assumed.

For this hypothetical example, it is assumed that twice as

much flux proceeds through the THL reaction (Equa-

tion 1) than the PTA reaction (Equation 2). Ultimately,

biochemical origins of differing fluxes through compet-

ing reactions, where known, can be used to calculate flux

ratios. The flux through the reaction catalyzed by THL is

f(rTHL) and the flux through the PTA catalyzed reaction

is f(rPTA). This flux ratio is called f(rTHL):f(rPTA) and is

represented as Equation 3.

f rTHLð Þ : f rPTAð Þ ¼
f rTHLð Þ

f rPTAð Þ
¼ 2 ð3Þ

To build this flux ratio constraint into the stoichiometric

matrix (S), first Equation 3 is rearranged to the following.

f rTHLð Þ � 2f rPTAð Þ ¼ 0 ð4Þ

Next, a new row is added to the stoichiometric matrix.

In this new row, two values are added (all other values in

the row are zero). In the column representing the reac-

tion catalyzed by THL (Equation 1), the coefficient 1 is

added to the matrix. In the column representing the re-

action catalyzed by the PTA, the coefficient −2 is added

(in the new row). With these additions, when the flux

balance equation (S � v = 0) is solved, the ratio of fluxes

for the reactions of Equation 1 and Equation 2 will be

exactly 2. If the flux ratio chosen leads to an impossible

solution of the metabolic network, no solution will be

found to the flux balance equation.

Simulations performed

The goal of this research was to develop a method of con-

straining a metabolic network so that metabolic engineer-

ing can be performed in silico. Until now, gene knockouts

have been the dominant strategy for designing metabolic

engineering strategies in silico. However, flux ratios offer

the ability to include over-expression and flux re-direction

at key branch points in a metabolic network. These results

can offer a snapshot of the metabolic potential of the engi-

neered cell and offer the metabolic engineer an experi-

mental target to achieve these results. Simulations

performed in this research focus on using FBrAtio to re-

produce metabolic engineering strategies that have been

experimentally validated in C. acetobutylicum [6,43,50]. In

particular, simulations were performed with the iCAC490

model in which the glucose uptake rate and the SPF were

the only specified membrane transport fluxes. Next, FBrA-

tio was applied to achieve the experimentally observed

wild-type metabolic activity of C. acetobutylicum. The fol-

lowing metabolic characteristics were sought on a qualita-

tive level: (i) at highly negative values of SPF

(acidogenesis), acetate and butyrate are produced in high

quantities, (ii) high hydrogen production accompanies

acidogenesis, (iii) solvents are produced at SPF values close

to zero and slightly positive, (iv) hydrogen production

decreases during solventogenesis, (v) the maximum

growth rate of the culture occurs during acidogenesis, (vi)

the production of butyrate is slightly greater than the pro-

duction of acetate and much greater than the production

of lactate, and (vii) the production of butanol is greater

than the production of acetone and is much greater than

the production of ethanol. Following obtaining a qualita-

tively accurate simulation of wild-type metabolism, add-

itional flux ratios were applied through FBrAtio in attempt

to predict the following experimental observations [43,50].

Knockdown of the CoAT (by asRNA) resulted in increased

butanol to acetone selectivity, but this strategy resulted in
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decreased ethanol and butanol production [50]. The asRNA

was designed against the mRNA of the cftB gene in particu-

lar, which is a part of the tricistronic operon (aad-ctfA-ctfB).

It was hypothesized that AAD activity was also compro-

mised by this asRNA construct, so aad was over-expressed

under its native promoter. Significantly higher ethanol and

butanol yields were observed as a result of this metabolic

engineering strategy [43]. Flux ratios were designed to (i)

knockdown CoAT activity only, (ii) knockdown activity of

both CoAT and AAD, and (iii) knockdown CoAT while

over-expressing AAD at and above wild-type levels.

Results

Simulations with a minimal set of constraints

The iCAC490 model was simulated with a glucose uptake

rate constrained to 10 mmol
hr�gDCW and the SPF was varied be-

tween −30 and 5 mmol Hþ

hr�gDCW . Only thermodynamic reversibility

constraints were used initially. Results showed acidogenic

and solventogenic metabolic phases that coincided with

SPF values [12]. Results also showed a maximum specific

growth rate at an SPF value of −10 mmol Hþ

hr�gDCW , which is consist-

ent with previous findings [2,12]. However, during acido-

genesis, acetate was the primary acid produced, and acetone

was the primary solvent produced during solventogenesis.

Hydrogen (H2) production was also maximized during sol-

ventogenesis. These characteristics are not consistent with

experimental observations. Since only acetate was produced

in acidogenesis, this demonstrates that the network required

the generation of ATP. Since butyrate or ethanol was not

produced, this means that NAD+ was regenerated in a futile

cycle elsewhere in the network. The ability of the network

to artificially balance NAD(P)+/NAD(P)H also explains why

hydrogen production remained high during solventogenesis.

By maximizing the specific growth rate of the cell and min-

imizing the total flux of the system, flux in longer pathways,

such as butyrate/butanol production were minimized in

favor of shorter ATP (acetate) and NAD+ (futile cycle) re-

generating pathways.

Approximating wild-type metabolism with FBrAtio

Obvious futile cycles allowing artificial NAD(P)+/NAD(P)H

balancing were located and corrected, but the problems

described above remained. Given the ability of the meta-

bolic network to artificially balance NAD(P)+/NAD(P)H

without using the acid/solvent production pathways,

additional constraints and flux ratio constraints were

implemented. First, the reactions involving the ferredoxins

were further constrained for irreversibility. These reactions

and their updated constraints are given in Table 1. Simula-

tion of metabolism, given these and glucose uptake and

SPF constraints are shown in Figure 2. In this simulation,

the following results do not coincide with experimental

observations: (i) succinate was produced in high levels dur-

ing acidogenesis, (ii) the production of acetate and lactate

far exceed butyrate production, (iii) only butyrate was re-

consumed (negative flux values), (iv) the amount of butyr-

ate re-consumed exceeded the amount of butyrate pro-

duced, (v) butanol was produced well before acetone, and

(vi) hydrogen (H2) production fell to zero and rose during

solventogenesis. These results show that during early pro-

duction of butanol (before production of acetone), butyrate

was consumed through the production pathway. This is

consistent with previous findings [7,58], and the thermo-

dynamic reversibility calculations [54] insist the reactions

catalyzed by the butyrate kinase (BK) and the phospho-

transbutyrylase (PTB) (see Figure 1) remain reversible.

A total of five flux ratio constraints were found neces-

sary to generate simulations of metabolism that were

qualitatively consistent with experimental observations.

First, the butyrate to acetate uptake ratio was con-

strained according to previously published findings [8].

The assumption was made that the extracellular butyrate

concentration was twice that of the extracellular acetate

concentration. From the original relationship [8], this

meant that the flux of butyrate uptake through the

CoAT, f(rCoAT, butyrate), to acetate uptake, f(rCoAT,

acetate), was equal to 0.63, as shown in Equation 5. This

flux ratio is referred to as f(rCoAT, butyrate):f(rCoAT,

acetate).

f rCoAT ; butyrateð Þ : f rCoAT ; acetateð Þ

¼
f CoAT ; butyrateð Þ

f CoAT ; acetateð Þ
¼ 0:63 ð5Þ

Implementing this flux ratio alone led to high initial pro-

duction of succinate, and hydrogen production increased

Table 1 Reactions and updated constraints involving the ferredoxins

Enzyme Name Reaction Lower Bound Upper Bound

PFO: pyruvate ferredoxin
oxidoreductase

CoAþ pyruvateþ FdOx !

CO2 þ acetyl-CoAþ Hþ þ FdRed

0 1000

HYDA: hydrogenase 2 Hþ þ FdRed ! H2 þ FdOx 0 1000

FNO: ferredoxin NAD+

oxidoreducatase
NADþ þ Hþ þ FdRed !

NADH þ FdOx

0 1000

FNPO: ferredoxin NADP+

oxidoreductase
NADPþ þ Hþ þ FdRed !

NADPHþ FdOx

0 1000

*The reduced ferredoxin (FdRed) and the oxidized ferredoxin (FdOx).
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during solventogenesis. Over-production of ethanol and

lactate was also observed. So, a flux ratio was installed to

direct the conversion of pyruvate to either lactate, through

the lactate dehydrogenase (LDH), or to acetyl-CoA

through the pyruvate ferredoxin oxidoreductase (PFO)

(see Table 1). This flux ratio is shown as Equation 6. This

ratio was set equal to 10 to coincide with published experi-

mental observations that lactate production is much less

than acetate and butyrate production [2].

f rPFOð Þ

f rLDHð Þ
¼ 10 ð6Þ

Simulations with these two flux ratios were character-

ized by (i) high acetate and ethanol production, (ii) low bu-

tyrate and butanol production, (iii) high initial secretion of

succinate, and (iv) low initial production of hydrogen. The

secretion of succinate was investigated next. This is indica-

tive of high fluxes through the TCA cycle. No significant

succinate export has been reported for C. acetobutylicum,

so an optimized metabolic model must produce only min-

imal succinate (if any). In the iCAC490 model, production

of oxaloacetate from pyruvate requires HCO-
3. When CO2

is produced, it is either (i) transported out of the cell or (ii)

converted to HCO-
3. The fate of CO2 is determined by

physicochemical properties of the intracellular environ-

ment and has a significant impact on intracellular metab-

olism. Thus, a ratio constraint for CO2 export against

conversion was derived. This ratio is shown in Equation 7

and was set equal to 5 to approximate intracellular

conditions. This value was chosen because it led to effect-

ive simulations. The physicochemical nature of this flux

ratio constraint is currently under investigation.

f CO2 exportð Þ

f CO2 conversionð Þ
¼ 5 ð7Þ

This flux ratio constraint corrected hydrogen produc-

tion (i.e., high hydrogen production during acidogenesis

and reduced during solventogenesis) and minimized suc-

cinate secretion, which is consistent with experimental

observations. This constraint also resulted in increased

CO2 production during solventogenesis, relative to pro-

duction during acidogenesis. However, metabolic activity

was still characterized by (i) high acetate and ethanol

production and (ii) low butyrate and butanol production

(results not shown). To address this, flux ratios were

constructed around the use of the acetyl-CoA metabolite

pool in clostridial metabolism (see Figure 1). Acetyl-CoA

can be utilized to (i) produce ATP through acetate pro-

duction, (ii) regenerate NAD+ through ethanol produc-

tion, or (iii) balance both ATP and NAD+ by producing

butyrate. However, the shorter metabolic pathways result

in acetate and ethanol production and accommodate

minimizing the total flux of the metabolic network. To

approximate wild-type clostridial metabolism, flux must

proceed from acetyl-CoA through the thiolase (THL)

with greater flux than through the phosphotransacetylase

(PTA) towards acetate or through the bifunctional alde-

hyde/alcohol dehydrogenase (AAD). To ensure this,

Figure 2 FBA results of wild-type metabolism using iCAC490. The model was simulated given (i) a glucose uptake rate of 10 mmol
hr�gDCW, (ii) varied

SPF, and (iii) constraints listed in Table 1. These results do not coincide with experimental observation.
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additional flux ratio constraints were derived. The ratio

of metabolic flux through the THL relative to the PTA,

f(rTHL):f(rPTA), was set equal to 2, and the flux through

the THL relative to the AAD, f(rTHL):f(rAAD_1), was set

equal to 10. This ensured the majority of acetyl-CoA was

sent to the butyrate producing pathway while a greater

amount of acetyl-CoA was converted to acetate than was

converted to ethanol. These flux ratios are shown in

Equations 8 and 9. Simulation results are shown in Fig-

ure 3. Due to the constant glucose uptake rate, solutions

to the flux balance equation were only possible for SPF

values greater than −17 mmol Hþ

hr�gDCW . In a previous study [12],

much higher glucose uptake rates enabled flux solutions

at SPF values approaching −55 mmol Hþ

hr�gDCW . In the simula-

tions shown in Figure 3, a roughly 1:1 production ratio

of H2/CO2 was observed during exponential growth, and

the production of H2 decreased in solventogenesis, while

the production of CO2 increased. This is consistent with

experimental observations [59]. Butyrate was produced

in greater amounts than acetate, and both acids were

taken up during solventogenesis. The production of bu-

tanol was greater than that of ethanol and was similar to

that of acetone. The production of lactate was minimal,

as was the secretion of succinate. The maximum specific

growth rate of the culture occurred towards the end of

acidogenesis but prior to solventogenesis onset. Thus,

when the flux ratio constraints of Equations 5–9 were

applied through FBrAtio, the iCAC490 genome-scale

model was able to capture the major properties of wild-

type metabolism. This was done for the first time with-

out constraining acids and solvents production rates dir-

ectly using constraints on transporters or exchange

fluxes.

f rTHLð Þ:f rPTAð Þ ¼
f rTHLð Þ

f rPTAð Þ
¼ 2 ð8Þ

f rTHLð Þ:f rAAD 1ð Þ ¼
f rTHLð Þ

f rAAD 1ð Þ
¼ 10 ð9Þ

asRNA knockdown of CoAT only

Previous research found that knockdown of the CoA

transferase using asRNA technology resulted in a more fa-

vorable butanol to acetone selectivity. Although, overall

reduced butanol yields were observed [50], possibly due to

simultaneous AAD knockdown. To determine if FBrAtio

can predict of these findings, a flux ratio constraint was

derived to simulate knockdown of the CoAT. It was

assumed this knockdown led to a decreased flux of acetate

and butyrate re-uptake. As shown in Figure 1, the CoAT

converts acetoacetyl-CoA to acetoacetate while transport-

ing acetate or butyrate into the cell and converting them

to acetyl-CoA or butyryl-CoA, respectively. Acetoacetyl-

CoA, on the other hand, can also be converted to β-

hydroxybutyryl-CoA by the β-hydroxybutyryl-CoA de-

hydrogenase (BHBD). So, a flux ratio constraint was

Figure 3 FBrAtio results of wild-type metabolism using iCAC490. The model was simulated model given (i) a glucose uptake rate of 10
mmol

hr�gDCW , (ii) varied SPF, (iii) constraints listed in Table 1, (iv) unidirectional acetate and butyrate secretion by diffusion, and (v) f (rTHL) f (rPTA) = 2,

(vi) f (rTHL): f (rAAD_1) = 10, (vii) f (CO2 export): f (CO2 conversion) = 5, (viii) f (rPFO): f (rLDH) = 10, (ix) f (rCoAT, butyrate):f (rCoAT, acetate) = 0.63.

Results qualitatively fit wild-type metabolism.
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derived to specify the distribution of β-hydroxybutyryl-

CoA utilized by the CoAT and the BHBD. This flux ratio

is called f(rCoAT): f(rBHBD), where the flux through the

CoAT includes fluxes for both acetate and butyrate re-

uptake. In the wild-type simulations shown in Figure 3,

given an SPF of 5 mmol Hþ

hr�gDCW , the flux through the CoAT was

2.03 mmol
hr�gDCW for acetate re-uptake and 1.28 mmol

hr�gDCW for bu-

tyrate re-uptake (total CoAT flux of 3.31 mmol
hr�gDCW ). The

wild-type flux through BHBD was 3.04 mmol
hr�gDCW to yield a

wild-type f(rCoAT): f(rBHBD) flux ratio of 1.09. The flux

ratio is given in Equations 10. However, this flux ratio in

the wild-type was a function of the SPF, and this relation-

ship is shown in Figure 4. To simulate knockdown of the

CoAT, two separate approaches were attempted. The first

approach continued to treat this flux ratio as a function of

the SPF. The flux ratio was constrained to values of (i)

75%, (ii) 50%, and (iii) 25% of the wild-type value, as

shown in Figure 4. The second approach was to fix the

flux ratio to a specified value for all values of the SPF.

The flux ratios chosen were: (i) 1, (ii) 0.5, (iii) 0.1, and

(iv) 0.01.

f rCoATð Þ

f rBHBDð Þ
¼ 1:09 ð10Þ

FBrAtio results with the f(rCoAT):f(rBHBD) flux ratios

of Figure 4 are shown in Figure 5. In particular, results of

acetone, butanol, and ethanol predictions are shown to

focus on the impact of CoAT asRNA knockdown on

solvent production. The SPF range shown is from −10 to

5 mmol Hþ

hr�gDCW . Consistent with published experimental results

[43,50], simulated knockdown of the CoAT resulted in

an increased butanol to acetone ratio. Significantly lower

acetone production (~50% reduction) was predicted with

increased butanol production (~25% increase) when

CoAT activity was down-regulated by 75%. Significant

about these simulation results is that the impact of “fine-

tuning” an asRNA construct can be observed through

simulations using flux ratio constraints.

It was important to determine whether the f(rCoAT):f

(rBHBD) flux ratio must be represented as a function of

the SPF (Figure 4). In further simulations, this flux ratio

constraint was artificially set and held constant for all

values of the SPF. FBrAtio results are shown in Figure 6

for flux ratios of: (i) 1, (ii) 0.5, (iii) 0.1, and (iv) 0.01. Similar

trends were obtained. As the f(rCoAT): f(rBHBD) flux ratio

decreased, metabolic flux was forced through the BHBD

enzyme (rather than through CoAT), resulting in (i)

decreased acetate/butyrate re-uptake, (ii) decreased acet-

one production, and (iii) increased flux through the buta-

nol production pathway. The exaggerated flux ratio

simulations of Figure 6 (ratios of 0.1 and 0.01) show the

potential of effective asRNA or gene knockout of the

CoAT. However, even though CoAT knockdown simula-

tions resulted in predicted phenotypes with improved bu-

tanol to acetone selectivity, these phenotypes did not show

overall reduced ethanol and butanol production. This sug-

gests AAD knockdown may be required to impact alcohol

yields, which is discussed in the next section.

Knockdown of both CoAT and AAD

In published research [43,50], it was suspected that the

aad gene was knocked-down when the asRNA for cftB

Wild -type

25% Knock-

down

50% Knock-

down

75% Knock-

down

Figure 4 The wild-type f(rCoAT):f(rBHBD) flux ratio. Knockdowns of the CoAT of (i) 25%, (ii) 50%, and (iii) 75% are shown.
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(CoAT) was applied. The resulting strain produced very

little ethanol or butanol. Since these two genes reside in

the same operon, this hypothesis is valid. The previous

results (Figures 5 and 6) showed that the butanol to acet-

one ratio was increased with CoAT knockdown. Simula-

tions of the knockdown of both CoAT and AAD to

defined levels using FBrAtio are shown in Figure 7. The

AAD was knocked-down by the use of two flux ratio

constraints. In these simulations, knockdown of AAD

must be accommodated at two metabolic branch points

(i) acetyl-CoA and (ii) butyryl-CoA (see Figure 1). To

simulate the AAD knockdown, the ratio of flux diverted

through AAD, relative to its other choices, was decreased

by 80%. This factor was chosen based on the published

effectiveness of the originally designed asRNA [50]. To

incorporate the knockdown into flux ratio constraints,

the f(rTHL):f(rAAD_1) flux ratio constraint was increased

from a value of 10 to 50. To implement the flux ratio

constraint at butyryl-CoA, a new f(rPTB):f(rAAD_2) flux

ratio constraint was created. In wild-type simulations

(see Figure 3), this flux ratio was unconstrained and had

an average value of 0.52 at an SPF value of 0 mmol Hþ

hr�gDCW and

0 at an SPF value of 5 mmol Hþ

hr�gDCW (assumed value of 0.25

during solventogenesis). At highly negative values of the

SPF, this ratio becomes infinite (since no butanol is pro-

duced). The f(rPTB):f(rAAD_2) was constrained to 1.25

(80% knockdown over 0.25) over all values of the SPF.

The f(rTHL):f(rAAD_1) flux ratio constraint was held

constant at 50 (also 80% knockdown). The CoAT was

knocked-down 80% by adjusting the f(rCoAT):f(rBHBD)

flux ratio to 0.2 over all values of the SPF. Results for

solventogenesis (SPF = 5) are shown in Figure 7. Initial

simulations revealed a large ethanol production that was

not consistent with experimental findings. A closer in-

spection of genome-wide metabolic fluxes revealed sev-

eral reactions were involved in futile cycles to produce

excess acetaldehyde. To correct this, a new flux ratio

constraint was created between AAD_1 and AAD_3 and

is shown in Equation 11. This new flux ratio constraint

was set to 1.2 since it is known that acetaldehyde is not

produced exclusively through AAD_1 (although the

exact ratio has not been measured). FBrAtio results given

the f(rAAD_3):f(rAAD_1) flux ratio constraint yielded

significantly reduced ethanol production. Results with

80% knockdown of CoAT and AAD still showed signifi-

cant butanol production; however, this was significantly

25% Down-regulation 

75% Down-regulation 50% Down-regulation 

Wild-type

Figure 5 FBrAtio predictions of solvent production using the iCAC490 model and ratios of Figure 4. The model was simulated given (i) a

glucose uptake rate of 10 mmol
hr�gDCW , (ii) varied SPF, (iii) constraints listed in Table 1, (iv) unidirectional acetate and butyrate secretion by diffusion, (v) f

(rTHL): f (rPTA) = 2, (vi) f (rTHL): f (rAAD_1) = 10, (vii) f (CO2 export): f (CO2 conversion) = 5, (viii) f (rPFO): f (rLDH) = 10, (ix) f (rCoAT, butrate): f (rCoAT,

acetate) = 0.63, and (x) f (rBHBD) flux ratios defined in Figure 4 as a function of the SPF. The following curves are shown: acetone (cyan), butanol

(red), and ethanol (green).
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reduced (towards zero) as the percent knockdown was

increased.

f rAAD 3ð Þ

f rAAD 1ð Þ
¼ 1:2 ð11Þ

Over-express AAD and knockdown CoAT

The AAD was over-expressed using the f(rTHL):f(rAAD_1)

and f(rPTB):f(rAAD_2) flux ratio constraints. In this case,

the f(rTHL):f(rAAD_1) flux ratio constraint was adjusted

from 10 (wild-type) to values of (i) 5, (ii) 2.5, and (iii)

0.3125 to simulate over-expression (over wild-type levels)

by (i) 100%, (ii) 200%, and (iii) 500% respectively. The

f(rPTB):f(rAAD_2) flux ratio constraint was also adjusted

accordingly to simulate these levels of over-expression.

FBrAtio results of solventogenesis (SPF= 5) are shown in

Figure 8. The over-expression of AAD under control of its

native promoter led to large increases in ethanol produc-

tion in experimental observations [43]. However, in this

simulation study, an increase in AAD expression of 500%

was required to see this dramatic increase. As AAD over-

expression reached 1000% (results not shown), ethanol

production was increased an additional 60% (relative to

the 500% AAD over-expression level). This result is pos-

sibly explained by the presence of multiple copies of the

plasmid present in the cell during the experimental trials.

Discussion

The large number of degrees of freedom in primary clos-

tridial metabolism makes this system challenging to

model. Initial efforts [1,7,8] relied on experimentally

measured data to fit a basic metabolic model and back-

calculate pathways fluxes. With the development of

genome-scale models, there was initial enthusiasm that

this approach would result in a model capable of predict-

ing the metabolic response of the organism to genetic

and environmental manipulations. However, this level of

prediction was not achieved by the first genome-scale

model for C. acetobutylicum [11,12]. This original

genome-scale model was updated in this research with

additional reactions and thermodynamic constraints.

Even with a more complete model and updated con-

straints, the number of degrees of freedom of the pri-

mary metabolic network proved too large to generate

meaningful predictions, even of wild-type metabolism.

Flux Ratio = 1

Flux Ratio = 0.1 Flux Ratio = 0.01

Flux Ratio = 0.5

Figure 6 FBrAtio predictions of solvent production using the iCAC490 model and fixed ratios. The model was simulated given (i) a glucose

uptake rate of 10 mmol
hr�gDCW, (ii) varied SPF, (iii) constraints listed in Table 1, (iv) unidirectional acetate and butyrate secretion by diffusion, (v) f (rTHL): f

(rPTA) = 2, (vi) f (rTHL): f (rAAD_1) = 10, (vii) f (CO2 export): f (CO2 conversion) = 5, (viii) f (rPFO): f (rLDH) = 10, (ix) f (rCoAT, butrate): f (rCoAT, acetate)

= 0.63, and (x) constant f (rCoAT): f (rBHBD) flux ratios of 1, 0.5, 0.1, and 0.01. The following curves are shown: acetone (cyan), butanol (red), and

ethanol (green).
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This is evident from the results shown in Figure 2. To

build a truly predictive model, care must be taken when

determining how proper constraints are imposed. It is

important that these constraints not only lead to accur-

ate representations of metabolism but can be manipu-

lated to mimic genetic and environmental perturbations.

For example, a common method is to artificially con-

strain the glucose uptake rate (as was done in this re-

search). From there, constraints can be imposed on

product (e.g., acetate, butyrate, butanol, etc.) secretion

fluxes to mimic the wild-type metabolism. This approach

is detrimental to metabolic engineering. For example, if

constraints are placed on secretion of the end-products,

how do these constraints change when a genetic ma-

nipulation is made elsewhere in the metabolic network

(e.g., at the thiolase enzyme)? There is no clear mathem-

atical relationship between a secretion flux constraint

and the metabolic flux through an enzyme elsewhere in

the network. Thus, constraints that are imposed to

achieve accurate representations of metabolism must be

imposed at the metabolic engineering targets themselves.

However, this leads to the questions, what is a metabolic

engineering target? And, how can constraints be imposed

there? This research has focused on “branch points” (or

critical nodes) of the metabolic network as potential sites

of metabolic engineering. The use of acetyl-CoA in clos-

tridial metabolism is a good example of a metabolic

branch point. Acetyl-CoA can be used in the production

of (i) acetate, (ii) butyrate/butanol, (iii) ethanol, and (iv)

macromolecules required for cell growth. Each of these

routes produces/consumes different cofactors, and the

balancing of these cofactors ultimately determines the

cellular phenotype.

The use of metabolic flux ratio constraints through

FBrAtio enabled qualitatively accurate modeling of

acidogenic and solventogenic metabolism of C. acetobu-

tylicum using the new iCAC490 genome-scale model.

The use of flux ratios allows for constraints to be placed

directly at points where metabolic engineering strategies

can be applied. For example, flux ratios can be manipu-

lated to achieve a desired result (e.g., maximized butanol

production). Then, genetic manipulations such as (i)

over-expression, (ii) knockout, and (iii) asRNA knock-

down can be applied to achieve the optimum ratios. In

this research, flux ratio constraints were implemented to

achieve a qualitative picture of metabolism that mimics

experimental observations. As a proof of concept, the

wild-type and two engineered strains analyzed were con-

sistent with published experimental results. The case of

AAD over-expression went a step further and exposed a

( ) ( )=1_: rAADfrTHLf

( ) ( )=rBHBDfrCoATf :

( ) ( )=2_: rAADfrPTBf

( ) ( )=1_:3_ rAADfrAADf

50

0.2

1.25

unconstrained

50

0.2

1.25

1.2

100

0.1

2.5

1.2

1000

0

1000

1.2

CoAT: 80%

AAD: 80%

CoAT: 80%

AAD: 80%

CoAT: 90%

AAD: 90%

CoAT: 100%

AAD: 100%

Figure 7 FBrAtio predictions using the iCAC490 model given various levels of CoAT and AAD knockdown. Shown are predictions of

growth (x10) (blue), acetone (cyan), butanol (red), and ethanol (green) during solventogenesis (SPF = 5). The following flux ratio constraints were

applied: (i) f(rTHL):f(rAAD_1), (ii) f(rCoAT):f(rBHBD), (iii) f(rPTB):f(rAAD_2), and (iv) f(rAAD_3):f(rAAD_1). The following were held constant: (i) glucose

uptake rate of 10 mml
hr�gDCW, (ii) constraints listed in Table 1, (iii) f(rTHL):f(rPTA) = 2, (iv) f(CO2 export):f(CO2 conversion) = 5,

(v) f(rPFO):f(rLDH) = 10, and (vi) f(rCoAT, butyrate):f(rCoAT, acetate) = 0.63.
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possible metabolic engineering limit to re-routing flux into

the alcohol production pathways. This suggests that the

approach of flux ratio constraints is tunable. The flux

values obtained here were not converted into concentra-

tions of metabolites and biomass and compared directly to

published values. The results obtained here are qualitative

(not quantitative) pictures of metabolism. There are sev-

eral reasons for this. First, a fixed glucose uptake rate of 10
mmol

hr�gDCW was used for all values of the SPF examined. Previ-

ous results [12] have shown that the glucose uptake rate

varies with the SPF. However, the relationship between the

glucose uptake rate and the SPF remains uncharacterized.

At best, a causal relationship can be established between

these two with the current level of knowledge. Next, a

single biomass equation was used for all values of the SPF

examined. Previous research has shown that the biomass

composition, including the maintenance ATP require-

ment, of C. acetobutylicum changes with the SPF [10,12].

To obtain quantitatively accurate predictions, one must

first understand the relationships that exist between glu-

cose uptake and biomass composition with the SPF. While

research is underway to uncover these relationships, the

use of parameters associated with exponential growth

seemed to be sufficient with the FBrAtio approach.

FBrAtio is a new method to derive metabolic engineer-

ing strategies to achieve optimum phenotypes. The con-

cept of using metabolic flux ratios was initially developed

with the METAFoR approach [45,47]. It enabled research-

ers to determine how multiple biosynthetic pathways

contributed to the production of a metabolite pool. This

enabled identification of new metabolic pathways and

regulatory mechanisms. Since the implementation of

FBrAtio accommodates the use of linear programming,

flux ratios found with METAFoR can now easily be ap-

plied to appropriate genome-scale models using the

techniques described in the Methods section (see Equa-

tions 1–4). The FBrAtio approach is different from

METAFoR in that it considers how a metabolite pool is

distributed as a substrate among competing enzymes.

Of course, this process is governed by thermodynamics.

This means that enzyme availability and intermediate

accumulation downstream (among other factors) are re-

sponsible for flux ratios in physical systems. The FBrA-

tio approach can lead a metabolic engineer to optimum

flux ratios, and enzyme availability can be manipulated

through gene (i) over-expression, (ii) knockout, or (iii)

partial knockdown. However, the FBrAtio approach can-

not predict the potential accumulation of downstream

( ) ( )=1_: rAADfrTHLf

( ) ( )=rBHBDfrCoATf :

( ) ( )=2_: rAADfrPTBf

( ) ( )=1_:3_ rAADfrAADf

5

0.2

0.125

unconstrained

5

0.2

0.125

1.2

2.5

0.2

0.0625

1.2

0.3125

0.2

0.0078

1.2

CoAT: 80%

AAD: 100%

CoAT: 80%

AAD: 100%
CoAT: 80%

AAD: 200%

CoAT: 80%

AAD: 500%

Figure 8 FBrAtio predictions using the iCAC490 model at various levels of CoAT knockdown and AAD over-expression. Shown are

predictions of growth (x10) (blue), acetone (cyan), butanol (red), and ethanol (green) production during solventogenesis (SPF = 5). The following

flux ratios were applied: (i) f(rTHL):f(rAAD_1), (ii) f(rCoAT):f(rBHBD), (iii) f(rPTB): f (rAAD_2), and (iv) f(rADD_3):f(rAAD_1). The following were held

constant: (i) glucose uptake rate of 10 mmol
hr�gDCW, (ii) constraints listed in Table 1, (iii) f(rTHL):f(rPTA) = 2, (iv) f(CO2 export):f(CO2 conversion) = 5,

(v) f(rPFO):f(rLDH) = 10, and (vi) f(rCoAT, butyrate):f(rCoAT, acetate) = 0.63.
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intermediates once flux is redirected. This remains a prob-

lem for the experimentalist that may be addressed through

additional gene over-expression or enzyme engineering.

The FBrAtio approach is presented in detail here and

is applied to model previously published metabolic en-

gineering approaches in C. acetobutylicum. Obviously,

the full potential of FBrAtio will be realized when it can

be used systematically. To do this, algorithms are needed

to identify critical nodes (metabolite pools) in the meta-

bolic network where flux ratios can be optimized to pro-

duce a desired phenotype. Research is currently

underway to address this challenging task. The end result

will provide the metabolic engineer with a list of flux

ratios that can be manipulated using existing toolsets.

Although additional complications may be encountered

in some cases due to unforeseen regulatory interactions,

the FBrAtio approach has the potential to provide effect-

ive “fine-tuned” metabolic engineering strategies.

Conclusions

The FBrAtio approach for -incorporating metabolic flux

ratio constraints into a genome-scale metabolic network

and generating solutions using simple linear program-

ming was developed in this research. The approach

proved effective in modeling wild-type metabolism of C.

acetobutylicum. FBrAtio was then applied to metabolic-

ally engineered strains, and a high ethanol producing

strain was effectively modeled. A nonlinear relationship

exists between the flux ratios at a critical node and the

resulting phenotype. FBrAtio is capable of capturing

these nonlinearities. How flux ratio constraints can be

used to design metabolic engineering strategies is cur-

rently a subject of much future research, and the devel-

opments presented here represent the first steps toward

truly predictive genome-scale models that can accurately

reflect the impacts of genetic and environmental

manipulations.
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