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Abstract

Most natural microbial systems have evolved to function in environments with temporal and 

spatial variations. A major limitation to understanding such complex systems is the lack of 

mathematical modeling frameworks that connect the genomes of individual species and temporal 

and spatial variations in the environment to system behavior. The goal of this review is to 

introduce the emerging field of spatiotemporal metabolic modeling based on genome-scale 

reconstructions of microbial metabolism. The extension of flux balance analysis to account for 

both temporal and spatial variations in the environment is termed Spatiotemporal Flux Balance 
Analysis (SFBA). Following a brief overview of flux balance analysis and its established dynamic 

extension, the SFBA problem is introduced and recent progress is described. Three case studies 

are reviewed to illustrate the current state-of-the-art and possible future research directions are 

outlined. The author posits that SFBA is the next frontier for microbial metabolic modeling and a 

rapid increase in methods development and system applications is anticipated.
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Introduction

Metabolic flux balance analysis (FBA)

Whole cell metabolic modeling is highly challenging due to the large-scale and 

interconnected nature of microbial metabolic pathways. Rigorous modeling of metabolism 

requires descriptions of enzyme synthesis, kinetics and regulation at the individual reaction 

level. With the notable exception of primary metabolic pathways in model organisms [1–3], 

the development of such kinetic models is currently impractical due to lack of in vivo data 

on enzyme kinetics and regulation. As a result, a less detailed modeling approach commonly 

termed Flux Balance Analysis (FBA) based purely on metabolite mass conservation and 

reaction stoichiometry has emerged as the dominant methodology for describing whole cell 

metabolism [4, 5]. A stoichiometric model can be constructed by incorporating reactions 

derived from an annotated genome and augmented with additional “gap filling” reactions 

required to complete otherwise incomplete pathways [6–9]. Due to the key role of the 

annotated genome in reaction identification, the resulting model is usually called a Genome-

HHS Public Access
Author manuscript
Biochem Soc Trans. Author manuscript; available in PMC 2017 September 06.

Published in final edited form as:
Biochem Soc Trans. 2015 December ; 43(6): 1164–1171. doi:10.1042/BST20150146.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scale Metabolic Reconstruction (GSM). GSMs are now available for dozens of microbial 

organisms [10–12], and new GSMs are published on a monthly basis.

Given the stoichiometric matrix and a specified set of available nutrient uptake rates, the 

goal is to solve the GSM for the unknown intracellular reaction rates (i.e. intracellular 

fluxes) and the metabolic byproduct secretion rates (i.e. secretion fluxes). Because the 

stoichiometric equations invariably contain more unknown fluxes than mass balance 

equations, the GSM has an infinite number of solutions and the flux distribution cannot be 

uniquely determined. To overcome this limitation, cell metabolism is assumed to be 

regulated to achieve some type of cellular objective [13, 14]. The most common objective is 

maximal growth, which requires the incorporation of a biomass stoichiometric equation in 

terms of biomass precursors (e.g. RNA, DNA, proteins, carbohydrates, etc.) [15]. The 

combination of the stoichiometric equations and the growth rate maximization objective 

produces a linear programming (LP) problem, which can be efficiently solved to generate 

predictions of the intracellular flux distribution, uptake and secretion (exchange) fluxes and 

the growth rate (Figure 1). FBA and other so-called constraint-based computational tools 

[16, 17] have been widely used to analyze the metabolism of both wild-type [18–22] and 

engineered [23–27] microbial strains.

Dynamic flux balance analysis (DFBA)

FBA is based on assumptions that both intracellular metabolism and the extracellular 

environment are time invariant. While removal of the intracellular steady-state assumption 

requires the incorporation of enzyme kinetics, the steady-state assumption on the 

extracellular environment is more easily relaxed through an extension of FBA commonly 

termed Dynamic Flux Balance Analysis (DFBA) [28, 29]. A DFBA model is formulated by 

combining a GSM of intracellular metabolism with kinetic expressions for the uptake rates 

of growth limiting nutrients and dynamic mass balance equations for cellular biomass, 

limiting nutrients and secreted metabolic byproducts under the assumption that cells rapidly 

equilibrate to environmental changes (Figure 2). While difficult to verify, this assumption 

has been accepted for many systems including batch biochemical reactors where nutrient 

concentrations varying due to cellular consumption and possibly nutrient feeding [29]. A 

major advantage of DFBA is that the model outputs include biomass and extracellular 

metabolite concentrations rather than just the growth rate and exchange fluxes as in FBA 

[30]. Furthermore, the extracellular concentrations as well as intracellular fluxes are 

predicted with temporal resolution.

A DFBA model is comprised of ordinary differential equations (ODEs) describing the 

extracellular environment and a LP describing intracellular metabolism. As compared to 

FBA, a notable disadvantage of DFBA is the computational complexity of this hybrid 

ODE/LP system. Initial attempts to solve DFBA models were based on sequential strategies 

in which the LP was repeatedly solved according to a prespecified time step and the ODEs 

were integrated between time steps using the most current LP solution [28, 31]. Due to the 

unpredictable accuracy and stability of these sequential methods, more current solution 

techniques are typically based on simultaneous strategies in which the LP is embedded with 

the ODE solution [32, 33]. DFBA has emerged as a standard tool for the analysis [34–39] 
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and optimization [32, 40–42] of individual species as well as microbial communities [43–

45] in dynamic environments. While some DFBA models can be effectively solved by a 

straightforward combination of ODE and LP solvers, more advanced techniques may be 

required due to complications associated with the LP unpredictably becoming infeasible or 

producing alternative optima characterized by non-unique exchange fluxes. Sophisticated 

simulation methods that explicitly address and effectively overcome these complications are 

now available [46, 47].

Spatiotemporal Flux Balance Analysis (SFBA)

While DFBA accounts for the effects of extracellular dynamics on intracellular metabolism, 

the method is based on the assumption that the extracellular environment is well mixed and 

spatially homogeneous. Many engineered microbial systems such as biochemical reactors 

are carefully designed to achieve spatial homogeneity through liquid mixing [48]. However, 

most naturally occurring microbial systems exist in spatially heterogeneous environments 

that also exhibit time variations. The presence of spatial heterogeneity plays an essential role 

in the evolution and function of natural microbial species [49–52]. Perhaps the most 

common and important example of spatially heterogeneous environments is that established 

due to biofilm formation and development (Figure 3a) [53–56]. Concentration gradients in 

key nutrients due to limited diffusion establish unique metabolic niches within the biofilm 

that produce spatial variations in biomass density in the case of single species biofilms [57] 

and additionally spatial partitioning of species in the case of biofilm consortia [53]. The 

development of metabolic models that capture such spatial and temporal variations is 

important to analyze and manipulate complex microbial systems.

Model formulation

Mathematical models that account for both spatial and temporal variations are commonly 

termed spatiotemporal models [58, 59]. Therefore, we refer to the extension of DFBA to 

include spatial heterogeneity in the environment as Spatiotemporal Flux Balance Analysis 
(SFBA). The author believes that SFBA is the next frontier for microbial metabolic 

modeling and that the nascent activities to date will soon be followed by a rapid increase in 

methods development and system applications.

A SFBA model is formulated by replacing the time-varying ODEs in DFBA with partial 

differential equations (PDEs) expressed in terms of time and some spatial coordinate(s) as 

independent variables [60]. The PDEs represent extracellular mass balance equations for 

biomass, metabolite and possibly other chemical species concentrations and account for the 

transport mechanisms that induce the spatial variations, which commonly include metabolite 

diffusion and liquid/gas phase convection. Boundary conditions must be imposed at the 

boundaries of the spatial domain to ensure that the PDEs are well posed. As in DFBA, the 

GSM and the extracellular mass balance equations are linked through nutrient uptake 

kinetics.

Some systems such as microbial biofilms involve mixed boundary conditions when nutrients 

enter and/or byproducts exit the biofilm at different locations [60, 61]. Furthermore, the 

spatial domain may shrink and/or grow with time due to cellular growth and/or death [62]. 
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For the sake of illustration, consider a single species biofilm (Figure 3b) with a fixed 

thickness L in which a single growth limiting nutrient is available at the bottom of the 

biofilm (z = 0) and a single synthesized byproduct exits the top of the biofilm (z = L). The 

PDEs describing biofilm diffusional processes can be written as follows assuming that 

spatial variations occur only in the axial direction z of the biofilm,

(1)

Here X(z, t), S(z, t) and P(z, t) represent the biomass, substrate and byproduct concentrations 

at location z and time t. The growth rate μ, substrate uptake rate vS and byproduct synthesis 

rate vP are obtained by solution of the GSM. The substrate and byproduct diffuse through 

the biofilm with efficient diffusion coefficients DS and DP, respectively, while the biomass is 

assumed to be non-motile. The second column lists the boundary conditions at the bottom of 

the biofilm, which are based on the assumptions that substrate is available at a concentration 

S0 and the biomass and byproduct do not flux across this boundary. The boundary conditions 

at the top of the biofilm listed in the third column are based on the assumptions that the 

biomass and substrate do not flux across this boundary while the byproduct removal rate is 

sufficiently high that the boundary concentration is zero. Finally, the initial conditions in the 

fourth column are based on the assumption that the biofilm is spatially uniform at t = 0.

Model solution

A SFBA model is comprised of PDEs describing the extracellular environment and LPs 

describing intracellular metabolism [60]. Pure species systems have a single LP [63], while 

multispecies systems require solution of a LP for each species [64]. Because no 

computational methods exist to directly solve such hybrid PDE/LP models, the PDE 

transport behavior must be approximated in some manner to generate a solvable model. To 

date, three alternative methods have been proposed for implementing this approximation: 

(M1) table lookups of computed FBA solutions combined with integration of the PDEs on a 

coarse spatial grid [61, 63, 65]; (M2) real-time FBA solution combined with lattice-based 

descriptions of metabolite transport [62, 64]; and (M3) spatial discretization of the PDEs 

followed by time integration of the resulting ODE/LP system (Figure 4) [60, 66]. These 

methods differ according to whether the LP solutions are precomputed (M1) or generated in 

real-time (M2, M3) and whether the PDEs are discretized directly (M1, M3) or 

approximated indirectly (M2). While exhaustive studies of these methods have not yet been 

performed, the most appropriate method is very likely to be problem dependent.

Representative studies

To illustrate the current state-of-the-art, three representative studies that represent the 

breadth of the spatiotemporal modeling methods described above are reviewed. In the first 

study [61], method M1 was used to study electricity generation in a microbial fuel cell 

where the anaerobic bacterium Geobacter sulfurreducens formed a biofilm on the anode. A 
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metabolic model was developed to analyze the biofilm that oxidized acetate (the electron 

donor) to carbon dioxide with electron transfer to Fe(III) (the electron acceptor) mimicking 

the anode. Cellular growth was assumed to create an axial velocity that drove biofilm 

expansion and along with acetate diffusion created spatial heterogeneities across the biofilm. 

The steady-state assumption was invoked such that time was eliminated as an independent 

variable and the transport equations only involved spatial derivatives in the axial direction, 

thereby simplifying the spatiotemporal model to a time-invariant spatial model. The spatial 

model consisted of a published G. sulfurreducens GSM [67], Michaelis-Menten uptake 

kinetics for acetate and Nerst kinetics for Fe(III) reduction, and reaction-convection-

diffusion type equations for the fractions of active, respiring and inert biomass, acetate 

concentration, current density, local potential and axial velocity.

The G. sulfurreducens GSM was solved off-line at different values of the acetate uptake and 

Fe(III) reduction rates to generate a 20×20 lookup table of LP solutions. The boundary value 

ODEs representing the reaction-diffusion-convection equations were solved using a 

continuation method [68] with the LP lookup table queried as needed to resolve intracellular 

metabolism at different points in the biofilm. Unfortunately, details concerning the 

continuation solution method and the spatial grid used are not reported. The spatial 

metabolic model was solved for varying extracellular conditions (i.e. the presence/absence 

of NH4) and maintenance energy demands to investigate their effects on biofilm thickness 

and electrical current production. Simulations combined with validation experiments 

provided key predictions into biofilm and fuel cell behavior including that: (1) limited 

acetate diffusion through the biofilm induced low local acetate concentrations that restricted 

biomass formation and current generation; and (2) respiring cells that did not grow but 

produce current located in acetate limited regions had a substantial impact on fuel cell 

performance.

In the second study [64], a spatiotemporal modeling framework called Computation of 

Microbial Ecosystems in Time and Space (COMETS) was developed to investigate the 

emergent behavior of two- and three-member synthetic communities. A two-dimensional 

lattice was defined, with each box within the lattice representing a distinct spatial location. 

GSMs of the participating species were used to solve an independent DFBA problem for 

each box assuming that each species had the potential to consume available carbon sources 

according to the same uptake kinetics. A sequential solution strategy was used where the 

species LPs were solved to generate local growth rates and fluxes, and then the extracellular 

ODEs were integrated over a fixed time step with these constant LP solutions to generate 

local biomass and metabolite concentrations. Before resolving the LPs to start the next 

iteration, two-dimensional diffusion equations were solved over the same time step to allow 

species cell mass and metabolites to diffuse between boxes.

COMETS was used to investigate engineered metabolite cross-feeding in a two-species 

synthetic community consisting of Salmonella enterica and Escherichia coli. The 

spatiotemporal model was able to reproduce experiments showing the two species robustly 

co-existed and converged to a population fraction of 79% E. coli regardless of the initial 

fractions. Similar results were obtained for a considerably more complex three-species 

synthetic community consisting of S. enterica, E. coli and Methylobacterium extorquens. 
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The two-species system was used to investigate the impact of spatial structure. The model 

correctly predicted that community growth would diminish as the two species were 

inoculated further apart from each other due to diffusional limitations of the cross-fed 

metabolites. Moreover, the model reproduced experiments showing community growth 

would be enhanced by placement of a second colony of engineered S. enterica between the 

S. enterica and E. coli populations but that placement of a wild-type S. enterica colony 

which did not require the cross-fed metabolite from E. coli would reduce community 

growth.

In the third study [66], method M3 was used to predict synthesis gas (CO, H2) conversion to 

ethanol by the anaerobic bacterium Clostridium ljungdahlii in a vertical bubble column 

reactor. Synthesis gas and liquid media feed streams were introduced into the bottom of the 

column and flowed up the column with different velocities, producing large spatial gradients 

due to cellular growth and gas depletion. The metabolic byproducts ethanol and acetate were 

recovered in the liquid phase stream exiting the top of the column. The spatiotemporal 

metabolic model consisted of a published C. ljungdahlii GSM [69], Michaelis-Menten 

uptake kinetics for CO and H2, and reaction-convection type PDEs for C. ljungdahlii 
biomass, liquid phase CO, H2, ethanol and acetate, and gas phase CO and H2. The PDEs 

were discretized with 100 spatial node points, and lexicographic optimization [47] with 6 

LPs at each node point was used to ensure unique exchange fluxes. The large discretized 

model consisting of 900 ODEs in time and 600 LPs was efficiently solved within MATLAB 

(MathWorks, Natick, Massachusetts, USA) using the DFBAlab tool (Figure 4) [46].

Dynamic simulations performed for a wide range of column operating conditions and 

nutrient uptake parameters generated predictions about column behavior and bottlenecks to 

ethanol production consistent with available experiments including: (1) typical CO rich 

syngas will produce substantial acetate due to H2 depletion in the upper part of the column, 

suggesting that H2 augmentation of the syngas feed may be beneficial; (2) efficient gas-

liquid mass transfer is critical to achieve high ethanol production and high conversions, 

demonstrating the need for continued development of advanced bubble column designs that 

achieve very high gas-liquid mass transfer rates; and (3) enhanced H2 uptake rates 

substantially increase the ethanol titer and the ethanol/acetate ratio, suggesting that C. 
ljungdahlii engineering efforts should focus on increasing H2 uptake rates.

Conclusions

Spatially heterogeneous environments are the rule rather than the exception for naturally 

occurring microbial systems. Our continued ability to fundamentally understand and 

rationally manipulate microbial systems will depend on the development of predictive 

modeling frameworks that connect the genetic capabilities of individual species and the 

spatiotemporal characteristics of growth environments to system function. Over the past five 

years, spatiotemporal metabolic modeling techniques that leverage the increasing availability 

of genome-scale reconstructions have been developed and evaluated. Despite their 

limitations with regard to intracellular organization, dynamics and regulation, these 

Spatiotemporal Flux Balance Analysis (SFBA) methods hold great promise for analysis of 

natural microbial systems as well as the design of engineered systems that exploit the 
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evolved capabilities of microbes to optimally function in highly dynamic and spatially 

heterogeneous environments [70, 71]. Possible research directions for the nascent SFBA 

field are myriad and include: (1) continued identification and study of microbial systems 

such as the human microbiome [72, 73] and lignocellulosic degrading communities [74, 75] 

that would benefit from spatiotemporal analysis; (2) incorporation of higher fidelity 

intracellular models that extend beyond just reaction stoichiometry [76, 77]; (3) 

development of alternative methods for formulating SFBA models that are more amenable to 

efficient numerical solution; (4) development and testing of general purpose software such 

as DFBAlab [46] for the solution of the large-scale differential equation and linear program 

systems that result from SFBA models; and (5) experimental testing of SFBA model 

predictions through the collection of omics data with both temporal and spatial resolution 

[78–80]. Based on the overarching importance of the problem and the initial successes 

reported this review, SFBA can be expected to become the next major frontier for microbial 

metabolic modeling.
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COMETS computation of microbial ecosystems in time and space

DFBA dynamic flux balance analysis
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FBA flux balance analysis

GSM genome-scale metabolic reconstruction

LP linear program

ODE ordinary differential equation

PDE partial differential equation
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Figure 1. Genome-scale flux balance analysis
A GSM is used to formulate a LP to compute the unknown fluxes v from knowledge of the 

stoichiometric matrix A, biomass composition weights w, flux bounds vmin and vmax, and 

specified bounds on the nutrient uptake rates. This specific example shows glucose (g) and 

oxygen (o) as the growth limiting nutrients and ethanol (e) as the primary metabolic 

byproduct. From specified transport bounds on the two nutrient (vg, min, vo, min), the cellular 

growth rate (μ), the actual nutrient uptake rate (vg, vo), and the ethanol secretion rate (ve) are 

computed.
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Figure 2. Genome-scale dynamic flux balance analysis
FBA is performed with a GSM to predict the growth rate, nutrient uptake rates and 

byproduct secretion rates under the assumption that the intracellular dynamics are fast 

compared to the extracellular dynamics. The FBA fluxes serve as inputs to the ODEs for the 

extracellular environment, which are integrated to yield time resolved predictions of the 

biomass, nutrient and byproduct concentrations. These concentrations serve as inputs to the 

nutrient uptake kinetics, which are used to compute transport bounds on the nutrient uptake 

rates for the FBA problem. This specific example shows glucose (g) and oxygen (o) as the 

growth limiting nutrients and ethanol (e) as the primary metabolic byproduct where X, G, E 
and O are the biomass, glucose, ethanol and oxygen concentrations, respectively.
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Figure 3. Spatial heterogeneities in microbial biofilms
(a) Limited diffusion of a carbon containing nutrient (substrate) and oxygen can create 

metabolic niches with the biofilm that lead to aerobic and anaerobic regions with differential 

cell growth and product synthesis (image courtesy of the MSU Center for Biofilm 

Engineering). (b) A single species biofilm with thickness L in which a single growth 

limiting nutrient is available at the bottom of the biofilm and a single synthesized byproduct 

exits the top of the biofilm.
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Figure 4. Genome-scale spatiotemporal flux balance analysis [60]
A microbial system with temporal and spatial variations is described by a spatiotemporal 

model that accounts for relevant transport processes within the system. PDEs are written 

with respect to the species concentration (Xi), liquid-phase metabolite concentrations (Mj) 

and gas-phase metabolite concentrations (Pj) assuming that spatial variations are limited to a 

single direction z. FBA is performed with GSMs of the participating species to predict the 

growth rates, nutrient uptake rates and byproduct secretion rates. The PDEs are spatially 

discretized to yield a large-set of ODEs with embedded LPs that are solved with the 

MATLAB code DFBAlab [46] to generate time and spatially resolved predictions.
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