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ARTICLE

Genome-scale reconstructions of the mammalian
secretory pathway predict metabolic costs
and limitations of protein secretion
Jahir M. Gutierrez1,2,9, Amir Feizi3,9, Shangzhong Li1,2, Thomas B. Kallehauge4, Hooman Hefzi1,2, Lise M. Grav4,

Daniel Ley4,5, Deniz Baycin Hizal6, Michael J. Betenbaugh7, Bjorn Voldborg4, Helene Faustrup Kildegaard4,

Gyun Min Lee 4, Bernhard O. Palsson 1,2,4,8, Jens Nielsen 3,4 & Nathan E. Lewis 1,2,8*

In mammalian cells, >25% of synthesized proteins are exported through the secretory

pathway. The pathway complexity, however, obfuscates its impact on the secretion of

different proteins. Unraveling its impact on diverse proteins is particularly important for

biopharmaceutical production. Here we delineate the core secretory pathway functions and

integrate them with genome-scale metabolic reconstructions of human, mouse, and Chinese

hamster ovary cells. The resulting reconstructions enable the computation of energetic costs

and machinery demands of each secreted protein. By integrating additional omics data, we

find that highly secretory cells have adapted to reduce expression and secretion of other

expensive host cell proteins. Furthermore, we predict metabolic costs and maximum

productivities of biotherapeutic proteins and identify protein features that most significantly

impact protein secretion. Finally, the model successfully predicts the increase in secretion of

a monoclonal antibody after silencing a highly expressed selection marker. This work

represents a knowledgebase of the mammalian secretory pathway that serves as a novel tool

for systems biotechnology.
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T
o interact with their environment, cells produce numerous
signaling proteins, hormones, receptors, and structural
proteins. In mammals, these include at least 2641 secreted

proteins (e.g., enzymes, hormones, antibodies, extracellular
matrix proteins) and >5500 membrane proteins1, most of which
are synthesized and processed in the secretory pathway.

The secretory pathway consists of a complex series of processes
that predominantly take place in the endoplasmic reticulum (ER),
Golgi apparatus, and the endomembrane system. This pathway is
particularly important in biotechnology and the biopharmaceutical
industry, since most therapeutic proteins are produced in mam-
malian cell lines such as HEK-293, PerC6, NS0, and Chinese
hamster ovary (CHO) cells, which are capable of folding and adding
the necessary post-translational modifications (PTMs) to the target
product2. For any given biotherapeutic, different machinery in the
secretory pathway may be needed, and each step can exert a non-
negligible metabolic demand on the cells. The complexity of this
pathway, however, makes it unclear how the biosynthetic cost and
cellular needs vary for different secreted proteins, each of which
exerts different demands for cellular resources. Therefore, a detailed
understanding of the biosynthetic costs of the secretory pathway
could guide efforts to engineer host cells and bioprocesses for any
desired product. The energetic and material demands of the
mammalian secretory pathway can be accounted for by sub-
stantially extending the scope of metabolic models. Indeed, recent
studies have incorporated portions of the secretory pathway in
metabolic models of yeast3–5. Furthermore, Lund et al.6 recon-
structed a genetic interaction network of the mouse secretory
pathway and the unfolded protein response and analyzed it in the
context of CHO cells. However, such a network does not encom-
pass a stoichiometric reconstruction of the biochemical reactions
involved in the secretory pathway nor it is coupled to existing
metabolic networks of mammalian cells.

Here, we present the first genome-scale stoichiometric recon-
structions and computational models of mammalian metabolism
coupled to protein secretion. Specifically, we constructed these for
human, mouse, and CHO cells, called RECON2.2s, iMM1685s, and
iCHO2048s, respectively. We first derive an expression for com-
puting the energetic cost of synthesizing and secreting a product in
terms of molecules of ATP equivalents per protein molecule. We
use this expression and analyze how the energetic burden of protein
secretion has led to an overall suppression of more expensive
secreted host cell proteins in mammalian cells. Given its dominant
role in biotherapeutic production, we further focus on the biosyn-
thetic capabilities of CHO cells. We then demonstrate that product-
specific secretory pathway models can be built to estimate CHO cell
growth rates given the specific productivity of the recombinant
product as a constraint. We identify the features of secreted proteins
that have the highest impact on protein cost and productivity rates.
Finally, we use our model to identify proteins that compete for cell
resources, thereby presenting targets for cell engineering. Through
this study we demonstrate that a systems-view of the secretory
pathway now enables the analysis of many biomolecular mechan-
isms controlling the efficacy and cost of protein expression in
mammalian cells. We envision our models as valuable tools for the
study of normal physiological processes and engineering cell
bioprocesses in biotechnology. All models and data used in this
study are freely available at https://github.com/LewisLabUCSD/
MammalianSecretoryRecon.

Results
A stoichiometric expression of protein secretion energetics.
In any cell, the secretory machinery is concurrently processing
thousands of secreted and membrane proteins, which all compete
for secretory pathway resources and pose a metabolic burden.

To quantify this burden, we estimated the energetic cost of syn-
thesizing and/or secreting 5641 and 3538 endogenous proteins in
the CHO and human secretome and membrane proteome in
terms of total number of ATP equivalent molecules consumed
(see Methods). These protein costs were compared to the cost of
five recombinant proteins commonly produced in CHO cells
(Fig. 1a). To refine estimates, we predicted signal peptides7, GPI
anchor attachment signals8, and experimentally measured the
number of N-linked glycans in the CHO proteome and integrated
published numbers of O-linked glycans in CHO proteomic data9.
Across the CHO secretome, protein synthesis cost varies sub-
stantially, and recombinant products are on average more
expensive (Fig. 1a). For example, Factor 8 (F8) is a difficult-to-
express protein in CHO cells due to its propensity to aggregate
in the ER, which promotes its premature degradation10,11.
Our analysis further highlights that each molecule of F8 requires a
large amount of ATP for its production (9488 ATP molecules).
This imposes a significant burden to the secretory machinery of
CHO cells, which typically express much less expensive endo-
genous proteins.

Recombinant cells suppress expression of expensive proteins.
With the broad range of biosynthetic costs for different proteins,
we wondered if gene expression in mammalian cells that are
tasked with high levels of protein secretion have been influenced
by the ATP cost of secreted proteins. That is, have these secretory
cells suppressed their protein expression to more efficiently
allocate nutrients? To test this, we first looked at CHO cells,
which have undergone extensive selection to obtain cells that
secrete recombinant proteins at high titer, and then compared
different human tissues with a range of secretory capacity.

Unless specific proteins are essential, CHO cells may preferen-
tially suppress energetically expensive proteins. Thus, we analyzed
ribosomal profiling (Ribo-Seq) data from a recombinant CHO cell
line12 and compared translation of each transcript against the ATP
cost of the associated secreted protein (see Methods). Indeed, there
was a significant negative correlation of −0.43 (Spearman Rs,
p-value < 1 × 10−20) between ribosomal occupancy and ATP cost
during early exponential growth phase of culture (Fig. 1b).
Wondering if the reduced translation was regulated transcription-
ally, we further analyzed RNA-Seq data from the same recombinant
cell line and from another, non-recombinant CHO-K1 cell line13.
The RNA expression also negatively correlated with ATP cost (see
Supplementary Fig. 2).

To evaluate if this is a general trend in mammalian secretory cells,
we analyzed RNA-Seq data from human tissues and immortalized
cell lines in the Human Protein Atlas (HPA)1. For all RNA-Seq
datasets in the HPA, there was a negative correlation between
mRNA expression levels and ATP cost (Fig. 1d). Interestingly, we
found that highly secretory tissues such as liver, pancreas and
salivary gland had the strongest correlations, although none as
strong as that of the recombinant CHO cells, which have undergone
selection of high secretion. Feizi et al.14 recently found that these
tissues fine-tune the expression of protein disulfide isomerase genes,
suggesting that a similar regulatory process may take place in the ER
of CHO cells as the secreted monoclonal antibody (mAb) contains a
relatively high number (17) of disulfide bonds. In conclusion, there
is a clear preference in CHO and native secretory tissues to suppress
the expression and translation of proteins that are costly to
synthesize, fold, and secrete.

In silico reconstruction of the mammalian secretory pathway.
We mapped out the core processes involved in the synthesis of
secreted and membrane proteins in mammalian cells (i.e., human,
mouse, and Chinese hamster). This included 261 components
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(gene products) in CHO cells and 271 components in both
human and mouse. The components are involved in secretory
reactions across 12 subsystems (i.e., functional modules of the
secretory pathway; Fig. 2a). These components represent the core
secretory machinery needed in the transition of a target protein
from its immature state in the cytosol (i.e., right after translation)
to its final form (i.e., when it contains all post-translational
modifications and is secreted to the extracellular space). Each
component in the reconstruction either catalyzes a chemical
modification on the target protein (e.g., N-linked glycosylation
inside ER lumen/Golgi) or participates in a multi-protein com-
plex that promotes protein folding and/or transport. This dis-
tinction between catalytic enzymes and complex-forming
components is important for modeling purposes as a catalytic
component consumes or produces metabolites that are directly
connected to the metabolic network (e.g., ATP, sugar nucleo-
tides). As all components of the core secretory pathway were
conserved across human, mouse and hamster (Fig. 2b), we gen-
erated species-specific secretory pathway reconstructions and
used them to expand the respective genome-scale metabolic
networks (Recon 2.215, iMM141516, iCHO176617). Following the
naming convention of their metabolic counterparts, we named
these new metabolic-secretory reconstructions as follows:
iMM1685s, iCHO2048s, and Recon 2.2s, which account for 1685,
2048, and 1946 genes, respectively. A detailed list of the com-
ponents, reactions and the associated genes can be found in the
Supplementary Data 1.

Validation of iCHO2048s growth and productivity predictions.
We first validated the accuracy of iCHO2048s predictions using
growth and specific productivity rates of IgG-producing CHO
cell lines from two independent studies12,18. For this, we built an

IgG-secreting iCHO2048s model using the information in the
PSIM matrix for the therapeutic mAb Rituximab. We then con-
strained the model’s Rituximab-specific secretory pathway with the
reported productivity value in each study and used FBA to predict
growth (Fig. 3a). Later, to assess the ability of iCHO2048s to
predict growth rates in cases when CHO cells are producing non-
antibody proteins, we collected data from two batch culture
experiments using Enbrel- and C1-inhibitor-producing isogenic
CHO cell lines. We constructed two iCHO2048s models for each
case and predicted growth rates during the early exponential
growth phase of culture while constraining the protein secretion
rate to the measured specific productivity value (Fig. 3b). The
model predictions agreed well with the reported and measured
values. There were cases where iCHO2048s predicted a much
higher growth rate than what was measured in the first days of
batch culture (Fig. 3b). Since FBA computes theoretical maximum
growth rates given a set of constraints, these over-prediction cases
point at situations where CHO cells do not direct resources
towards biomass production (during very early stages of culture),
a discrepancy that is attenuated in later stages of culture. In con-
clusion, these results confirm the ability of protein-specific
reconstructions to capture the specific energetic requirements
that each recombinant product imposes on CHO cell metabolism.

Protein composition impacts predicted productivity. To pro-
duce a specific product, CHO cells may utilize different modules
of the secretory pathway based on the protein attributes and post-
translational modifications (PTMs). For example, the synthesis of
a mAb requires the use of multiple processes and consumes
several different metabolites, such as amino acids for protein
translation, redox equivalents for forming disulfide bonds, ATP
equivalents for vesicular transport, and sugar nucleotides for
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Kallehauge et al.12 during the early exponential growth phase of culture. d Spearman correlations between ATP cost and gene expression levels (measured by

RNA-Seq) across human tissues1,58,59. Gene transcription levels from the Human Protein Atlas were analyzed against the ATP cost of producing the translated

proteins. All p-values associated with each correlation are < 1 × 10-20. Highly secretory tissues show the strongest negative correlation of secreted protein cost

vs. mRNA expression levels. RPKM= reads per kilobase of transcript per million. Source data are provided as a Source Data file.
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protein glycosylation (Fig. 2c). Therefore, we generated eight
product-specific secretory pathway models for biotherapeutics
commonly produced in CHO cells (Fig. 4a): bone morphogenetic
proteins 2 and 7 (BMP2, BMP7), erythropoietin (EPO), Enbrel,
factor VIII (F8), interferon beta 1a (IFNB1), Rituximab, and
tissue plasminogen activator (tPA). The resulting iCHO2048s
models were used to compute Pareto optimality frontiers between
maximum cell growth (μ) and specific productivity (qP), given the
same measured glucose and amino acid uptake rates for each
model17 (see Supplementary Data 3).

We computed the trade-off between growth rate (h–1) and
specific productivity (picogram of protein produced per cell
per day, or PCD) as a Pareto optimal curve for each protein
(Fig. 4b). This curve defines the frontier of maximum specific
productivity and maximum growth rates under the assumption

that CHO cells can utilize all available resources towards
production of biomass and recombinant protein only. The hinges
in some of the curves are indicative of a transition between
regions that are limited by distinct protein requirements (e.g.,
amino acids).

An analysis of the Pareto optimal curves for the eight
biotherapeutics demonstrates that under the measured growth
conditions, maximum productivities vary from 20–100 PCD at
common growth rates (Fig. 4b, shaded region) to 70–150 PCD for
senescent CHO cells. Neither the molecular weight (MW) nor
product length can explain the twofold range differences in
maximum productivity for different proteins. For example, the
curves show tPA (MW= 61,917 Da) can express at higher PCD
than BMP2 (MW= 44,702 Da) despite being larger, because the
N-glycans in BMP2 reduce productivity due to the higher cost
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proteome annotation only contains one alpha and one beta proteasome subunits, whereas the human and mouse contain 12 subunits of different subtypes.

b High similarities were seen for proteins in CHO and human, with a high-mean percentage identity in each subsystem (calculated with the sequence

alignment tool BLAST). c Simplified schematic of reactions and subsystems involved in the secretion of a monoclonal antibody (mAb). A total of eight

subsystems are necessary to translate, fold, transport, glycosylate, and secrete a mAb. The color of the subsystem names indicates if the reactions occur in

the cytoplasm (orange), the ER lumen (red) or the Golgi apparatus (blue). The detailed description of all components can be found in Supplementary

Data 1. GPI glycosylphosphatidylinositol, ER endoplasmic reticulum, ERAD ER-associated degradation.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13867-y

4 NATURE COMMUNICATIONS |           (2020) 11:68 | https://doi.org/10.1038/s41467-019-13867-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


of synthesizing core N-glycans (see Table 1), consistent with
previous observations in yeast5. Furthermore, the degree and
directionality of these effects will depend on the nutrient uptake
rates (Fig. 4c and Supplementary Fig. 1), highlighting the need in
CHO bioprocessing to tailor culture media in a host cell and
product-specific manner. Thus, while intuitively larger proteins
would be expected to exert more bioenergetic cost on protein
secretion, we find that specific compositional attributes of both
the recombinant protein and the culture media significantly
impact biosynthetic capacity. An in-depth analysis of the effects
of PTMs on predicted productivities is provided in Jupyter
Notebook C.

To further evaluate what functions of the secretory pathway
had the greatest impact on the cost of protein synthesis and
secretion, we computed secretion rates for 5461 proteins in the
CHO secretome (see Methods) using iCHO2048s and its parent

metabolic reconstruction iCHO176617. While iCHO2048s cap-
tures all the required steps for protein synthesis, modification and
secretion, the secretion reactions in iCHO1766 only account for
the basic synthesis of the target protein in cytoplasm, and the
synthesis of necessary precursors (N-linked glycans, O-linked
glycans, and GPI anchors). We found that the secretory pathway
had non-negligible costs on most proteins (Supplementary
Fig. 3b). Furthermore, protein features associated with secreted
proteins that differ in cost by >15% beyond the amino acid and
glycan costs show a statistical enrichment (under the Hypergeo-
metric test) for O-linked glycans (p= 0.0065), GPI anchors (p=
0.0216), transmembrane domains (p= 0.0326), and proteins
destined to the ER lumen (p= 0.0142), the Golgi membrane
(p= 0.0065), or the plasma membrane (p= 0.0186, see Supple-
mentary Fig. 3d and Jupyter Notebook E). Thus, these PTMs and
transmembrane domains exert additional costs to their demands.
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time points. In all cases, the iCHO2048s models were constrained to produce the recombinant protein at the measured specific productivity rate. The

values used to constrain each of the iCHO2048s models are reported in Supplementary Data 3. Error bars represent the standard deviation of three

biological replicates. Source data are provided as a Source Data file.
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iCHO2048s recapitulates results following gene knock-down.
In a recent study, Kallehauge et al.12 demonstrated that a CHO-
DG44 cell line producing an antiviral mAb19 also expressed high
levels of the neoR selection-marker gene (Fig. 5a, b). Upon neoR
knock-down, the titer and maximum viable cell densities of the
CHO-DG44 cell line were increased. To test if iCHO2048s could
replicate these results, we constructed a model for the Kallehauge
et al. DG44 cell line and measured exometabolomics, and dry cell
weight to parameterize the model. Since expression of neoR uses
resources that could be used for antibody production, we pre-
dicted how much additional antibody could be synthesized with
the elimination of the neoR gene. We simulated antibody pro-
duction following a complete knockout of neoR (see Table 2
and Fig. 5b) and predicted that the deletion of neoR could
increase specific productivity by up to 4% and 29% on days 3

(early exponential phase) and 6 (late phase) of culture, respec-
tively (Fig. 5c). This was qualitatively consistent with the
experimentally observed values of 2% and 14% when neoR
mRNA was knocked down by 80–85%. We then computed the
Pareto optimality curves for both the control and the neoR in
silico knockout conditions on day 6. We found that the length of
the curve (denoted by Δ) increased by 18% when neoR produc-
tion is eliminated (Fig. 5d). Thus, iCHO2048s can quantify how
much non-essential gene knockouts can boost growth and pro-
ductivity in CHO cells by freeing energetic and secretory
resources. In fact, the ribosome-profiling data from Kallehauge
et al. revealed that only 30 secretory proteins in CHO cells
account for more than 50% of the ribosomal load directed
towards translation of protein bearing a signal peptide (Fig. 4e).
Indeed, we recently found that substantial resources can be

Table 1 Protein-specific information matrix of biotherapeutics secreted in eight iCHO2048s models.

Protein name Length [AA] Weight [Da] Disulfide bonds N-glycans O-glycans ATP cost

IFNB1 187 22,294 1 1 0 777

EPO 193 21,037 2 3 1 801

BMP2 396 44,702 4 5 0 1618

BMP7 431 49,313 4 4 0 1759

tPA 562 61,917 17 3 1 2286

Etanercepta 934 102,470 7 6 26 3784

Rituximabb 1328 143,860 17 2 0 5370

F8 2351 267,009 8 22 0 9488

aEtanercept is a dimer.
bRituximab is a tetramer (2 light and 2 heavy chains)
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liberated and recombinant protein titers can be increased when
14 high-abundance host cell proteins were knocked out20. An
analysis of other potential host cell gene knockouts using the
method proposed here can be found in Supplementary Data 4.

Discussion
Mammalian cells synthesize and process thousands of proteins
through their secretory pathway. Many of these proteins, including
hormones, enzymes, and receptors, are essential for mediating
mammalian cell interactions with their environment. Therefore,
many have therapeutic importance either as drugs or as targets.
The expression and secretion of recombinant proteins represents a
significant anabolic demand that drains several substrates from
cellular metabolism (e.g., amino acids, sugar nucleotides, ATP)21,22.
Furthermore, the recombinant proteins demand adequate expres-
sion of supporting proteins involved in their transcription, trans-
lation, folding, modification, and secretion. Thus, there has been an
increasing interest in engineering the mammalian secretory path-
way to boost protein production23–26. Despite important advances
in the field27, current strategies to engineer the secretory pathway
have remained predominantly empirical28,29. Recent modeling
approaches, however, have enabled the analysis of the metabolic
capabilities of important eukaryotic cells under different genetic
and environmental conditions17,30–32. With the development of
genome-scale models of protein-producing cells, such as CHO17,
HEK-29333, and hybridomas34,35, it is now possible to gain a
systems-level understanding of the mammalian protein production
phenotype36.

Efforts have been underway to enumerate the machinery
needed for protein production. For example, Lund et al.6 recently
reconstructed a comprehensive genetic network of the mouse
secretory pathway. By comparing the mouse and CHO-K1 gen-
omes and mapping CHO gene expression data onto this network,
the authors identified potential targets for CHO cell engineering,
demonstrating the potential of systems biology to interrogate and
understand protein secretion in animal cells. This genetic network
reconstruction, although useful for contextualizing omics data
(e.g., RNA-Seq), is not set up for simulations of protein pro-
duction, nor integrated with additional cellular processes such as
metabolism. Therefore, our work is complementary in that it
allows one to also to quantify the cost and cellular capacity for
protein production by delineating the mechanisms of all bio-
synthetic steps and bioenergetic processes in the cell.

Here, we presented the first genome-scale reconstruction of the
secretory pathway in mammalian cells coupled to metabolism. We
connected this to current metabolic networks, yielding models of
protein secretion and metabolism for human, mouse and CHO
cells. These models compile decades of research in biochemistry
and cell biology of higher eukaryotes and present it in a mathe-
matical model. Using our model, we quantitatively estimated the
energetic cost of producing several therapeutic proteins and all
proteins in the CHO cell and human secretomes. We also iden-
tified factors limiting the secretion of individual products and
observed that these depend on both the complexity of the product

and the composition of the culture media. Furthermore, by inte-
grating ribosomal profiling data with our model we found that
CHO cells have selectively suppressed the expression of energe-
tically expensive secreted proteins. Expanding upon this obser-
vation, we demonstrated that specific productivities can be
predictably increased following the knock-down of an energeti-
cally expensive, non-essential protein. Furthermore, consistent
with this, we have recently shown more than 50% reductions in
total host cell protein production, along with increases in mAb
titer when deleting 14 highly abundant proteins in CHO cells.
Future studies will likely further explore how much of the CHO
cell proteome can be deleted to further enhance recombinant
protein secretion20.

It is important to note that while our models capture major
features of secreted proteins, there are additional PTMs (e.g.,
phosphorylation, gamma carboxylation), pathway machinery
(e.g., chaperones), and cell processes that could possibly be cap-
tured in further expansions of the modeling framework6 (e.g., the
unfolded protein response). These could be included as energetic
costs associated with building and maintaining the secretory
machinery (chaperones3, disulfide oxidoreductases37, glycosyl-
transferases38); protein stability and turnover rates39; solubility
constraints40 and molecular crowding effects41. As these are
captured by the models in a protein product-specific manner,
predictions of protein production capacity will improve, and the
models could provide further insights for cell engineering for
biotechnology or to obtain a deeper understanding of mechan-
isms underlying amyloid diseases. Finally, a simplification of our
secretory model is that it only computes the bioenergetic cost of
synthesizing and attaching single representative N- and O-linked
glycans to secreted proteins (i.e., it does not include the micro-
heterogeneity and diversity of glycan structures of different pro-
teins). Thus, an immediate potential expansion of our secretory
model would involve coupling it to existing computational
models of protein glycosylation42,43. For example, given an N-
glycan reaction network that captures the glycoform complexity
of a target protein44, one could build secretory reactions for the
specific glycoforms of interest and compute the metabolic
demands associated with each of them to identify potential targets
and nutrient supplementations for glycoengineering.

In conclusion, the results of our study have important
implications regarding the ability to predict protein expression
based on protein-specific attributes and energetic requirements.
The secretory pathway models here stand as novel tools to
study mammalian cells and the energetic trade-off between
growth and protein secretion in a product- and cell-specific
manner. We presented algorithms that provide novel insights
with our models, and expect that many other methods can be
developed to answer a wide array of questions surrounding the
secretory pathway, as seen for metabolism45. To facilitate
further use of these models, we provide our code and detailed
instructions on how to construct protein-specific models
in the Jupyter Notebooks available at https://github.com/
LewisLabUCSD/MammalianSecretoryRecon.

Table 2 Experimental data used for validation of iCHO2048s predictive capabilities.

Measurement [units] Early growth phase Late growth phase

Growth rate [1 per day] 0.44 0.02

Specific productivity [picograms of IgG per cell per day]a 16 5.5

Total IgG ribosomal footprint [RPKM]b 40,258 13,356

Total neoR ribosomal footprint [RPKM] 36,952 25,679

aAverage cell dry-weight= 456.3 pg per cell
bSum of light and heavy chains ribosomal footprints
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Methods
Reconstruction of the mammalian secretory pathway. A list of proteins and
enzymes in the mammalian secretory pathway was compiled from literature
curation, UniProt, NCBI Gene, NCBI Protein and CHOgenome.org (see Supple-
mentary Data 1). To facilitate the reconstruction process, the secretory pathway
was divided into twelve subsystems or functional modules (Fig. 1) to sort the
components according to their function. These subsystems correspond to the
major steps required to process and secrete a protein. The components from a prior
yeast secretory pathway reconstruction3 were used as a starting reference. To build
species-specific models, orthologs for human, mouse and the Chinese hamster were
identified and used, while yeast components and subsystems that are not present in
the mammalian secretory pathway were removed. Additional subsystems were
added when unique to higher eukaryotes, such as the calnexin-calreticulin cycle in
the ER46. These were constructed de novo and added to the reconstruction. The
databases and literature were then consulted to identify the remaining components
involved in each subsystem of the mammalian secretory pathway. Since most
components in the mammalian secretory pathway have been identified in mouse
and human, BLAST was utilized to identify the corresponding Chinese hamster
orthologs by setting human as the reference organism and a cutoff of 60% of
sequence identity. See Supplementary Discussion for an overview of the mam-
malian secretory pathway and its comparison with the yeast secretory pathway.

Protein-specific information matrix (PSIM). The PSIM (Supplementary Data 2)
contains the necessary information to construct a protein-specific secretory model
from the template reactions in our reconstruction. The columns in the PSIM are
presence of a signal peptide (SP), number of disulfide bonds (DSB), presence of
Glycosylphosphatidylinositol (GPI) anchors, number of N-linked (NG) and O-linked
(OG) glycans, number of transmembrane domains (TMD), subcellular location,
protein length, and molecular weight. For most proteins, the information in the PSIM
was obtained from the Uniprot database. When necessary, computational tools were
used to predict signal peptides (PrediSi7) and GPI anchors (GPI-SOM8). Finally,
additional information on the number of O-linked glycosylation sites of certain
proteins were obtained from experimental data in previous studies9,47. The PSIMs of
the CHO and human secretomes are a subset of the full PSIM and contains only the
proteins with a signal peptide (predicted or confirmed in Uniprot). The distribution of
all PTMs across the human, mouse and CHO proteomes can be found in Jupyter
Notebook D. For analyzing secretomes, a total of 3378 human proteins were picked
based on the presence of a signal peptide in their sequence according to their
annotation in the UniProt database. Similarly, 5641 CHO proteins were picked based
on the presence of a signal peptide in their sequence and/or for being localized in the
cell membrane according to the UniProt database.

Detection of N-linked glycosylation sites in CHO proteome. The number of N-
linked glycosylation sites in the PSIM was determined experimentally as follows.
CHO-K1 cells (ATCC) were lysed, denatured, reduced, alkylated and digested by
trypsin. Desalted peptides were incubated with 10 mM sodium periodate in dark
for 1 h before coupling to 50 μL of (50% slurry) hydrazide resins. After incubation
overnight, non-glycosylated peptides were washed with 1.5 M NaCl and water. The
N-glycosylated peptides were released with PNGaseF at 37 °C and desalted by using
a C18 SepPak column. Strong cation exchange (SCX) chromatography was used to
separate the sample into 8 fractions. Each fraction was analyzed on an LTQ-
Orbitrap Velos (Thermo Electron, Bremen, Germany) mass spectrometer. During
the mass spectrometry data analysis, carbamidomethylation was set as a fixed
modification while oxidation, pyroglutamine, and deamidation were variable
modifications.

Construction of models and constraint-based analysis. We wrote a Jupyter
Notebook in Python (see Jupyter Notebook A) that takes a row from the PSIM as
input to produce an expanded iCHO2048s, Recon 2.2s, or iMM1685s metabolic
model with the product-specific secretory pathway of the corresponding protein.
Flux balance analysis (FBA48) and all other constraint-based analyses were done
using the COBRA toolbox v2.049 in MATLAB R2015b and the Gurobi solver
version 6.0.0. The analyses in Figs. 2, 3, 4 were done using the constraints in the
Supplementary Data 3. For the iCHO2048s models secreting human proteins, we
set the same constraints in all models and computed the theoretical maximum
productivity (maxqp) while maintaining a growth rate (in units of inverse hours) of
0.01. Finally, since the exact glycoprofiles of most proteins in CHO are unknown
and some even change over time in culture50, we simplified our models by only
adding the core N-linked and O-linked glycans to the secreted proteins.

Batch cultivation. Two isogenic CHO-S cell lines (Thermo Fisher Scientific, USA)
adapted to grow in suspension, one producing Enbrel (Etanercept) and the other
producing human plasma protease C1-inhibitor (C1INH), were seeded at 3 × 105

cells per mL in 60 mL CD-CHO medium (Thermo Fisher Scientific, USA) sup-
plemented with 8 mM L-Glutamine (Lonza) and 1 μL per mL anti-clumping agent
(Life Technologies), in 250 mL Erlenmeyer shake flasks. Cells were incubated in a
humidified incubator at 37 °C, 5% CO2 at 120 rpm. Viable cell density and viability
were monitored every 24 h for 7 days using the NucleoCounter NC-200 Cell
Counter (ChemoMetec). Daily samples of spent media were taken for extracellular

metabolite concentration and titer measurements by drawing 0.8 mL from each
culture, centrifuging it at 1000 × g for 10 min and collecting the supernatant and
discarding the cell pellet.

Titer determination. To quantify Enbrel and C1INH titers, biolayer inter-
ferometry was performed using an Octet RED96 (Pall Corporation, Menlo Park,
CA). ProA biosensors (Fortebio 18–5013) were hydrated in phosphate-buffered
saline (PBS) and preconditioned in 10 mM glycine pH 1.7. A calibration curve was
prepared using Enbrel (Pfizer) or C1INH at 200, 100, 50, 25, 12.5, 6.25, 3.13, 1.56,
0.78 μg per mL. Culture spent media samples were collected after centrifugation
and association was performed for 120 s with a shaking speed of 200 rpm at 30 °C.
Octet System Data Analysis 7.1 software was used to calculate binding rates and
absolute protein concentrations.

Extracellular metabolite concentration measurements. The concentrations of
glucose, lactate, ammonium (NH4

+), and glutamine in spent media were measured
using the BioProfile 400 (Nova Biomedical). Amino acid concentrations were
determined via High-Performance Liquid Chromatography using the Dionex
Ultimate 3000 autosampler at a flow rate of 1 mL per minute. Briefly, samples were
diluted 10 times using 20 μL of sample, 80 μL MiliQ water, and 100 μL of an
internal amino acid standard. Derivatized amino acids were monitored using a
fluorescence detector. OPA-derivatized amino acids were detected at 340ex and
450em nm and FMOC-derivatized amino acids at 266ex and 305em nm. Quan-
tifications were based on standard curves derived from dilutions of a mixed amino
acid standard (250 ug per mL). The upper and lower limits of quantification were
100 and 0.5 μg per mL, respectively.

Estimation of protein secretion cost. We estimated the energetic cost of synthe-
sizing and secreting all 5641 endogenous CHO cell proteins and 3538 endogenous
human proteins. These proteins were chosen for containing a signal peptide in their
sequence and/or for being localized in the cell membrane (according to the UniProt
database). The energetic cost (in units of number of ATP equivalents) of secreting
each protein (length L) was computed using the following formulas and assumptions.

Energy cost of translation: For each protein molecule produced, 2 L ATP
molecules are cleaved to AMP during charging of the transfer RNA with a specific
amino acid; 1 GTP molecule is consumed during initiation and 1 GTP molecule for
termination; L-1 GTP molecules are required for the formation of L-1 peptide
bonds; L-1 GTP molecules are necessary for L-1 ribosomal translocation steps.
Thus, the total cost of translation (assuming no proofreading) is 4 L.

Average cost of signal peptide degradation: On average, signal peptides have a
length of 22 amino acids. Thus, the average cost of degrading all peptide bonds in
the signal peptide is 22. This average cost was assigned to all proteins analyzed.

Energetic cost of translocation across the ER membrane: During activation of the
translocon, two cytosolic GTP molecules are hydrolyzed. From there, a GTP
molecule bound to the folding-assisting chaperone BiP is hydrolyzed to GDP for
every 40 amino acids that pass through the translocon pore46. Thus, the cost of
translocation is (L ÷ 40)+ 2.

Energetic cost of vesicular transport and secretion: We used published data51–53

(see Supplementary Data 1) to compute stoichiometric coefficients for reactions
involving vesicular transport. That is, the number of GTP molecules bound to RAB
and coat proteins in each type of vesicle (COPII and secretory vesicles). We found
that a total of 192 and 44 GTPs must be hydrolyzed to transport one COPII or
secretory (i.e., clathrin coated) vesicle from the origin membrane to the target
membrane, respectively. Since vesicles do not transport a single protein molecule at
a time, we estimated the number of secreted protein molecules that would fit inside
a spherical vesicle (see estimated and assumed diameters in the Supplementary
Data 1). For that, we assumed that the secreted protein is globular and has a
volume VP (nm3) that is directly proportional to its molecular weight MW54:

VP ¼ MW ´ 0:00121 ð1Þ

Finally, we assumed that only 70 percent of the vesicular volume can be occupied
by the target protein. Thus, the cost of vesicular transport via COPII vesicles with
Volume VCOPII is:

192 GTPs� VCOPII ´ 0:7� Vð Þ ð2Þ

Similarly, the cost of vesicular secretion is:

44 GTPs� VSecretory ´ 0:7� V
� �

ð3Þ

Constraints used in models and Pareto optimality frontiers. All models were
constrained using different sets of experimental uptake rates, which can be found in
Supplementary Data 3. To construct Pareto optimality frontiers, we used the
robustAnalysis function from the COBRA Toolbox v2.0 in Matlab 2015b using
biomass as the control and secretion of the recombinant protein as the objective
reactions, respectively.

Analysis of gene expression versus protein cost. Ribosome-profiling data12 were
used to quantify the ribosomal occupancy of each transcript in CHO cells. A cutoff of
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1 RPKM was used to remove genes with low expression (10,045 genes removed from
day 3 analysis and 10,411 from day 6 analysis). We used Spearman correlation to
assess the variation of expression levels with respect to protein ATP cost.

CHO-DG44 model and prediction of neoR knockout effect. Ribosome-profiling
data, specific productivity, product sequence, and growth rates of an IgG-
producing CHO-DG44 cell line were obtained from a previous publication12. From
the same cultures, we obtained further cell dry-weight and metabolomic data from
spent culture medium for this study. The mCADRE algorithm55,56 was used to
construct a DG44 cell line-specific iCHO2048s model. The specific productivity
and the RPKM values of the secreted IgG were used to estimate the translation rate
for the neoR selection-marker gene. We assumed that the flux (in units of mmol
per gram dry-weight per hour) through the neoR translation reaction (vneoR) should
be proportional to that of the IgG translation rate (vIgG, calculated from the
measured specific productivity) and related to their expression ratios (i.e., the
RPKM values of their genes in the ribosome-profiling data).

vneoR ¼ RPKMneoR

2 RPKMlight þ RPKMheavyð Þ
vIgG ð4Þ

Finally, a reaction of neoR peptide translation (which is expressed in the cytosol
and is not processed in the secretory pathway) was added to construct a neoR-
specific iCHO2048s model. Uptake and secretion rates of relevant metabolites on
days 3 and 6 of cell culture were used to constrain our model. As recombinant
proteins represent 20% of total cell protein57, we scaled the coefficients of all 20
amino acids in the model’s biomass reaction accordingly (i.e., each coefficient was
multiplied by 0.8). We then used FBA to predict the specific productivity of IgG
with or without neoR.

Cell dry-weight measurements. For cell dry-weight measurements, six tubes
containing 2 mL of culture samples of known viable cell density and viability were
freeze dried, weighed, washed in PBS, and weighed again. The difference in weight
was used to calculate the mass per cell. The procedure resulted in an average cell
dry-weight of 456 pg per cell. As a simplification, we assumed that cell dry-weight
does not significantly differ from this average measured value during culture and
thus was used when computing flux distributions in all simulations.

Calculation of growth and productivity rates. Supplementary Data 3 contains
the experimental uptake and secretion rates used to constrain the iCHO2048s
models12,22,23. When rates were not explicitly stated in the studies we consulted, we
used a method we developed previously27. Briefly, appropriate viable cell density,
titer, and metabolite concentration plots were digitized using WebPlot Digitizer
software and we computed the corresponding rates as follows:

Growth rate (in units of inverse hours):

μ ¼
1

VCD

d

dt
VCD ð5Þ

Where VCD is the viable cell density (in units of cells per milliliter) Specific
productivity (in units of picograms per cell per hour):

qp ¼
1

VCD

d

dt
Titer ð6Þ

Consumption or production rate vx of metabolite x (in units of millimoles per gram
dry-weight per hour):

vx ¼
1

VCD

d x½ �

dt
ð7Þ

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data that support the findings of this study, including the models, tables, and Jupyter
Notebooks, are available at https://github.com/LewisLabUCSD/MammalianSecretoryRecon,
as well as in the Supplementary Data and Source Data files. The Ribo-Seq and RNA-Seq
data from the study by Kallehauge et al.12 is available on the Gene Expression Omnibus
with GEO accession Number GSE79512. The RNA sequencing data for human tissue is
freely available at the Human Protein Atlas website (https://www.proteinatlas.org/about/
download).

Code availability
All code used to generate the results of this study, including Jupyter Notebooks,
MATLAB, and Python scripts, are freely accessible at https://github.com/LewisLabUCSD/
MammalianSecretoryRecon
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