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Abstract 

Background: The objective of this study was to evaluate the accuracy of genomic predictions for rib eye area (REA), 

backfat thickness (BFT), and hot carcass weight (HCW) in Nellore beef cattle from Brazilian commercial herds using 

different prediction models.

Methods: Phenotypic data from 1756 Nellore steers from ten commercial herds in Brazil were used. Animals were 

offspring of 294 sires and 1546 dams, reared on pasture, feedlot finished, and slaughtered at approximately 2 years 

of age. All animals were genotyped using a 777k Illumina Bovine HD SNP chip. Accuracy of genomic predictions of 

breeding values was evaluated by using a 5-fold cross-validation scheme and considering three models: Bayesian 

ridge regression (BRR), Bayes C (BC) and Bayesian Lasso (BL), and two types of response variables: traditional estimated 

breeding value (EBV), and phenotype adjusted for fixed effects (Y*).

Results: The prediction accuracies achieved with the BRR model were equal to 0.25 (BFT), 0.33 (HCW) and 0.36 (REA) 

when EBV was used as response variable, and 0.21 (BFT), 0.37 (HCW) and 0.46 (REA) when using Y*. Results obtained 

with the BC and BL models were similar. Accuracies increased for traits with a higher heritability, and using Y* instead 

of EBV as response variable resulted in higher accuracy when heritability was higher.

Conclusions: Our results indicate that the accuracy of genomic prediction of carcass traits in Nellore cattle is moder-

ate to high. Prediction of genomic breeding values from adjusted phenotypes Y* was more accurate than from EBV, 

especially for highly heritable traits. The three models considered (BRR, BC and BL) led to similar predictive abilities 

and, thus, either one could be used to implement genomic prediction for carcass traits in Nellore cattle.

© 2016 Fernandes Júnior et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any 
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The Brazilian beef cattle industry is mainly based on 

purebred and crossbred pasture-fed Zebu animals. Nel-

lore is the predominant beef cattle breed in Brazil, which 

makes it an important breed in the world beef mar-

ket [1]. In this context, carcass traits are of paramount 

importance. Typically, producers are remunerated by 

cold-storage plants on the basis of kilograms of carcass 

produced. Cold-storage facilities prefer carcasses with 

a high muscle/bone ratio and adequate finishing, which 

are commonly analyzed by rib eye area and fat coverage 

characteristics, respectively [2].

Although genetic evaluations of carcass traits recorded 

post-mortem are important to improve Nellore cattle, routine 

measurements of these traits are difficult and/or expensive 

to obtain. Therefore, estimating genetic merit of young ani-

mals becomes challenging, especially when using traditional 

pedigree-based methods, and breeding programs usually do 

not include these traits formally in their breeding goals [1]. 

Genomic selection could be an alternative method to achieve 

accurate genetic evaluations, which, in particular may, help 

contribute to genetic improvement for carcass traits.

Genomic selection has revolutionized animal breed-

ing by enabling the evaluation of animals based on 
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genome-wide single nucleotide polymorphism (SNP) 

data [3–6]. Genomic selection exploits the linkage dise-

quilibrium (LD) between SNPs and quantitative trait loci 

(QTL) [7]. A sufficiently dense panel of SNPs that cover 

the entire genome is used for this purpose, under the 

expectation that all QTL are in LD with at least one SNP 

[5, 8]. Regression of phenotype on SNP genotypes is per-

formed to capture the genetic effect of QTL. Accordingly, 

the sum of the estimated effects of all SNP genotypes of a 

selection candidate, i.e. the direct genomic value (DGV), 

can be interpreted as a predictor of its breeding value [9, 

10].

Decisions on which model should be used for genomic 

prediction are key steps in the implementation of 

genomic selection. The SNP-based regression models 

that are commonly used for genomic prediction differ 

mainly in terms of the assumptions used for the prior 

distribution of genetic effects. Most proposed priors vary 

from independent Gaussian distributions [as in Bayesian 

ridge regression (BRR)] to thick-tailed distributions [as in 

Bayes A or Bayesian Lasso (BL)] and finite mixtures [as in 

Bayes C (BC)], which can be modeled as scale mixtures of 

normal distributions [11]. A comprehensive review and 

comparison of these models are available in [12]. Tradi-

tional (pedigree-based) estimated breeding values (EBV), 

deregressed EBV (dEBV) and phenotypes adjusted for 

fixed effects, are pseudo-phenotypes that are commonly 

used to fit and evaluate prediction models [9, 10, 13–15].

Although the post-mortem measurement of carcass 

traits in Nellore cattle is economically important, to date, 

implementation of genomic selection for these traits has 

not been investigated for this breed. The objective of this 

study was to compare the accuracy of genomic predic-

tions obtained with different models and pseudo-phe-

notypes for hot carcass weight, rib eye area and back fat 

thickness in Nellore cattle.

Methods
Phenotypic and genotypic data file

Phenotypic and genotypic data from 1756 Nellore steers 

from commercial herds that are located in the southeast, 

mid-west and northeast of Brazil were used. These ani-

mals were offspring of 294 sires and 1546 dams, from ten 

farms and three different breeding programs (DeltaGen, 

Paint and Nelore Qualitas). The animals were reared on 

pasture, feedlot finished, and slaughtered when they were 

approximately 2 years old (731.9 ± 83.0 days).

The following traits were analyzed: hot carcass weight 

(HCW), rib eye area (REA), and backfat thickness 

(BFT). REA and BFT were measured over the longissi-

mus dorsi muscle between the 12th and 13th rib of the 

left half-carcass, according to the method proposed by 

the United States Standards for Grades of Carcass Beef 

[16]. Observations that were outside the interval between 

3.5 standard deviations above and below the mean of the 

contemporary group (CG) were removed. Each CG con-

tained at least three animals, and was defined by combi-

nations of year, farm of birth, and management group at 

yearling. There were 141 CG for REA and BFT and 131 

for HCW, with an average of 12 animals in each group. 

Phenotypic averages were equal to 68.6  ±  8.59  cm2, 

4.84 ± 2.59 mm and 277.9 ± 23.4 kg for REA, BFT and 

HCW, respectively.

Tissue samples were collected from the same muscle 

(longissimus dorsi) and were genotyped using a panel of 

777,962 SNPs (Illumina Bovine HD chip). Quality control 

of genotypes was performed using an iterative method. 

Only autosomal SNPs with a GenCall score greater than 

0.70 were considered. Fifty-four pairs of SNPs were 

excluded because the SNPs of each pair were assigned 

to the same genomic position. SNPs with a minor allele 

frequency (MAF) less than 0.02, a Hardy–Weinberg equi-

librium p value less than 10−5, and a call rate less than 

0.98 were excluded. Finally, pair-wise correlations (r2) 

between SNPs within 100-SNP windows were estimated 

and the SNP with the lowest MAF of each highly corre-

lated pair (r2 ≥  0.995) was excluded. Individuals with a 

call rate less than 0.90 were excluded as well. The pro-

cess was iterated until no further SNP or individual was 

excluded. After phenotypic and genotypic editing, the 

final dataset included 1567 animals and 369,776 SNPs for 

REA, 1566 animals and 369,835 SNPs for BFT, and 1409 

animals and 362,120 SNPs for HCW.

Since animals originated from three breeding pro-

grams, a principal component analysis (PCA) based on 

the genomic relationship matrix (G) produced according 

to [17] was performed to check for population stratifica-

tion. Results did not indicate the existence of subgroups 

among the individuals from different breeding programs 

(data not shown).

Response variables used for genomic predictions

According to [18] when individual phenotypic and gen-

otypic data are available, joint inference for all effects 

(fixed and random, including SNP effects) is preferable 

over genomic predictions using data pre-adjusted for 

non-genetic effects. However, the number of observa-

tions per CG was not sufficiently large to be able to esti-

mate all fixed effects for animals in the testing set from 

the animals assigned to the training population. Because 

of this, a multiple-step genomic evaluation was per-

formed. In the first step, we fitted an animal model that 

included pedigree-based random additive genetic effects 

(i.e. EBV), CG fixed effects, and the linear effect of the 

animal’s age at slaughter. For REA, HCW was also added 

to the model as a covariate to correct for the size of the 
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animal. Single-trait analyses were performed for all traits, 

except for HCW. In this case, weaning weight was used 

as an anchor trait in a bivariate analysis to correct for the 

effect of selection for this trait. The analyses were per-

formed by Bayesian inference using the BLUPF90 family 

programs [19]. A total of 1,000,000 Gibbs samples were 

generated, considering a burn-in period of 100,000 itera-

tions with samples taken every 50 cycles. Variance com-

ponents and heritability estimates are in Table 1.

From these analyses, two alternative quantities were 

computed and used as response variables for genomic 

prediction in the second step i.e. estimated breeding 

value (EBV) and phenotype adjusted for fixed effects 

(Y*). The corresponding EBV presented average accura-

cies equal to 0.47, 0.31 and 0.43 for REA, BFT and HCW, 

respectively. Accuracies of EBV were obtained using the 

following formula:

where PEV is the prediction error variance, and σ2g is the 

additive genetic variance of the trait. The descriptive 

statistics of the response variables are summarized in 

Table 2.

The choice of using EBV rather than deregressed EBV 

(dEBV) as response variable was based on the fact that 

available EBV had been predicted with low accuracy. 

According to [15], dEBV obtained under such conditions 

acc =
√

(

1 − PEV/σ2g

)

,

are expected to incorporate too much noise during the 

deregression process, in which parental contribution 

is removed. Thus, EBV were considered to be a better 

option for genomic prediction in this scenario [9].

Genomic predictions

Genomic predictors for both Y* and EBV were obtained 

using the Bayesian generalized linear regression (BGLR) 

package [20], considering three models: Bayesian ridge 

regression (BRR), in which independent normal distribu-

tions with homogeneous variance are assumed as prior 

distributions of the SNP effects; Bayes C (BC), in which 

the prior probabilities of the SNP effects consist of a mix-

ture of a probability mass point at zero (p = 1−π) and a 

Gaussian distribution (p = π); and Bayesian Lasso (BL) in 

which a double exponential distribution is assumed as a 

prior distribution of SNP effects.

The general model for genomic prediction was 

expressed in matrix notation as follows:

where y is the vector of pseudo-phenotypes (Y* or EBV), 

μ is the overall mean, g is the vector of marker effects, 

W contains the genotype (coded as 0 = AA, 1 = AB or 

2 = BB) for each individual and each marker, and e is the 

vector of residual effects. The prior distribution assigned 

to g differs depending on the model (BRR, BC or BL), as 

explained in the next sections.

In the case of BRR, independent normal distributions 

with zero mean and homogeneous variance σ 2
β were 

assigned to the marker-specific regression coefficients. 

Furthermore, a scaled inverse Chi squared distribution 

(X −2) was assigned as prior distribution for σ 2
β, with 

hyperparameters dfβ and Sβ. The number of degrees of 

freedom (dfβ) was equal to five and the scale parameter 

(Sβ) was considered as a function of raw measurements 

of the observed dispersion in the sample and of a prior 

R2 assigned to the model. By default, the BGLR package 

attributes a value of 0.5 to R2, which means that the val-

ues of the hyperparameters are determined so that 50 % 

y = 1µ + Wg + e,

Table 1 Variance components and  heritability estimates 

for each trait

σ
2
a  additive genetic variance, σ 2

e  residual variance, h2 heritability, SD standard 

deviation of the heritability estimates

Trait Estimates

σ
2
a σ

2
e

h2 (SD)

Rib eye area (cm2) 10.88 41.71 0.20 (0.10)

Backfat thickness (mm) 0.30 3.31 0.08 (0.06)

Hot carcass weight (kg) 47.80 238.25 0.17 (0.07)

Table 2 Descriptive statistics of the pseudo-phenotypes for rib eye area (REA), backfat thickness (BFT), and hot carcass 

weight (HCW)

Y* phenotype adjusted for fixed effects, EBV estimated breeding value, N number of animals with phenotypes, SD standard deviation

Trait N Types Mean SD Minimum Maximum

REA (cm2) 1567 Y* −0.08 6.90 −24.72 27.96

EBV −0.03 1.50 −5.50 5.79

BFT (mm) 1566 Y* 0.02 1.82 −7.51 11.48

EBV 0.01 0.16 −0.65 0.94

HCW (kg) 1409 Y* 0.24 16.23 −65.33 66.44

EBV 0.15 2.87 −10.81 10.22
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of the variability is attributed a priori to the linear predic-

tors and 50 % to the residuals of the model [20].

The prior distribution of SNP effects in BC is similar 

to that in BRR, but in addition, it considers a parameter 

π which expresses the proportion of SNPs with non-null 

effects. This parameter is treated as unknown and has a 

beta density function a priori, i.e. π ~ beta(p0, π0), with 

parameter spaces p0 > 0 and π0 ∊ [0, 1]. It was assumed 

that π0 was equal to 0.5 and p0 was equal to 10 [20].

For BL, the marginal prior distribution for each SNP 

effect is a double exponential function [18, 20], which 

includes a parameter λ2 that was treated as unknown, 

with a prior distribution λ2  ~  gamma(r, s). The BGLR 

package considers by default that r  =  1.1 and calcu-

lates the scale parameter s based on the “prior” R2 of the 

model, as for BRR [20].

In the analyses including EBV as the response vari-

able, the respective accuracies that were computed in 

the first step were used as weighting factors [15]. When 

Y* was used as response variable, weighting factors were 

calculated according to [18] as follows: the weight of the 

phenotype of the ith animal was the square root of the 

diagonal of the (co) variance matrix of the adjusted resid-

uals Σ, in such a way that Σ = (I−H)cov(y)(I−H′), where 

I is an identity matrix and H is the so-called hat matrix, 

given by H  =  X[X′V−1X]−1X′V−1, with X correspond-

ing to the incidence matrix of fixed effects. In addition, 

V = ZGZ′’ + R, where G and R are diagonal matrices of 

additive genetic and residual variances, respectively, and 

Z is the incidence matrix that links observations to their 

respective animal random effect.

For all models, the predicted DGV were computed 

using the following equation:

where p is the number of SNPs; wij is the genotype of ani-

mal i for SNP j (coded as 0, 1 or 2), and ĝj is the estimated 

SNP substitution effect for SNP j that was estimated from 

the training population.

The prediction ability of DGV was evaluated by 

cross-validation. The training and test datasets were 

generated completely at random from the reference 

population, so that the cross-validation scheme could 

better mimic how these prediction equations could be 

used in practice.

Before analysis, the animals were randomly divided 

into five groups so that a 5-fold cross-validation 

scheme was applied. More specifically, data from four 

groups (training dataset) were used to fit the models 

and the prediction quality resulting from the inferred 

marker effects was evaluated using the genotypes and 

DGVi =

p∑

j=1

wij ĝj ,

response variables of the remaining group (valida-

tion or test dataset). Each model was fitted five times, 

each time treating a different group as the validation 

set. The prediction quality attributed to each model 

was based on the average performance obtained for 

the validation set in the five evaluations. For REA 

and BFT, the average sizes of training and valida-

tion populations were equal to 1255 and 314, respec-

tively, and for HCW, they were equal to 1129 and 282, 

respectively.

Criteria for the comparison of models

Correlation and regression coefficients between response 

variable (Y* or EBV) and DGV, and the mean-squared 

error (MSE) of predictions, were used to evaluate and 

compare the prediction ability of the models. When EBV 

was used as the pseudo-phenotype, the simple correla-

tion of this quantity with the computed DGV was consid-

ered as an empirical measure of accuracy [9, 15]. On the 

one hand, in the analyses that used Y* as response vari-

able, prediction accuracy was obtained by dividing the 

correlation between Y* and DGV by the square root of 

the heritability h of the trait [6, 21, 22]. This is an approxi-

mation of the correlation between DGV and true breed-

ing value (TBV), which corresponds to true accuracy [6, 

22]. On the other hand, when EBV is used as the pseudo-

phenotype, the correlation between EBV and DGV may 

be seen as an upper limit of the correlation between 

TBV and DGV [23], which already corresponds to a non-

biased estimate of accuracy [9, 15, 23].

The linear regression coefficient of the pseudo-pheno-

type on DGV was considered to express the magnitude 

of inflation/deflation of DGV relative to the response 

variable. Values close to one are considered the most 

desirable. The MSE was also used as a measure of the 

prediction ability of the models, which combines quality 

assessment in terms of variance and bias of predictions.

Genomic relationships between training and validation 

datasets

Since the degree of relationships between training and 

validation datasets influences prediction ability [24, 25], 

the relationship between these two groups was esti-

mated using the genomic relationship matrix G, com-

puted as described by [17]. We examined the following 

features of this matrix G: maximum genomic relation-

ship between each animal of the validation set and all 

animals of the training set (maxr); and average of the 

five (mean5) and ten (mean10) highest relationship val-

ues between each animal in the validation with all the 

animals in the training set. These relationship statis-

tics were consequently averaged across all animals and 

across all folds.
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Results and discussion
The existence of LD between SNPs and QTL is an essen-

tial assumption in the use of SNPs to predict the genetic 

merit of animals [5]. Since the localization of a QTL is 

generally unknown, the level of LD between adjacent 

markers is determined as an indicator of the plausibility 

of this assumption [8]. Previous studies in Nellore cattle 

using the bovine high-density SNP panel (777K) reported 

average values of LD, measured by the r2 statistic, equal 

to 0.17 [26] and 0.29 [10], which were considered suffi-

ciently high to perform genomic predictions. Using the 

same panel, we found an average LD of 0.31.

In general, the predicted accuracies for each trait were 

practically the same for the three models used in this 

study (Table 3), in agreement with the literature [18, 27]. 

According to [18], studies using real data do not always 

reveal relevant differences between models, which can be 

attributed to the large number of regression coefficients 

that need to be inferred from a small number of samples 

(n  <<<  p). In such a situation, insufficient information 

from the data restricts the Bayesian learning process. As 

a consequence, although the Bayesian models may pro-

duce quite different inferences regarding individual SNP 

effects, they often result in similar predictive abilities in 

cross-validation checks [12]. Another factor that could 

explain the similarity of results across models is the com-

plex nature of the traits studied. According to [28], differ-

ent models tend to show similar predictive ability when 

the traits are affected by many small-effect loci.

Linear regression coefficients [b(y*, DGV)] and MSE 

were also similar across models (Table  4). The smallest 

regression coefficient was observed for BFT preadjusted 

for fixed effects, which is consistent with its low heritabil-

ity estimate (0.08). In this case, the fit of the regression 

model may have been affected by its higher noise to sig-

nal ratio.

While the three models provided similar results, the 

use of different types of pseudo-phenotypes produced 

different prediction accuracies (Table  3), which agrees 

with the literature [9, 15]. The variables Y* and EBV 

are essentially distinct quantities and thus, their ratios 

between genetic signal and noise differ [28]. As a conse-

quence, the correlation between the DGV derived from 

each one of these variables and the TBV tend to differ as 

well. This difference, which might represent an advantage 

for either one of these response variables, depends on the 

dataset used and the specific application [15].

The empirical accuracies of predictions based on EBV 

were 23 % (REA) and 10 % (HCW) lower than the pre-

dictions based on adjusted phenotype. These results indi-

cate that using adjusted phenotype instead of EBV as the 

pseudo-phenotype in genomic prediction is an advantage 

for more highly heritable traits. For BFT, which was the 

Table 3 Empirical prediction accuracies measured by Pear-

son’s correlation between  pseudo-phenotype and  direct 

genomic breeding values [r(yi,DGV)] and  standard devia-

tion (SD) for  rib eye area (REA), backfat thickness (BF) 

and  hot carcass weight (HCW) obtained with  different 

models and the average of 5-fold cross-validation

a For the Y* as response variable, r(yi,DGV) was divided by the square root of 

heritability of the trait

Y* phenotype adjusted for fixed effects, EBV estimated breeding value, yi 

pseudo-phenotype, BRR bayesian ridge regression, BC Bayes C, BL Bayesian 

Lasso

Trait Type r(yi,DGV)a ± SD

BRR BC BL

REA (cm2) Y* 0.46 ± 0.056 0.46 ± 0.057 0.47 ± 0.056

EBV 0.36 ± 0.057 0.35 ± 0.057 0.36 ± 0.059

BFT (mm) Y* 0.21 ± 0.029 0.23 ± 0.031 0.22 ± 0.029

EBV 0.25 ± 0.026 0.25 ± 0.027 0.25 ± 0.025

HCW (kg) Y* 0.37 ± 0.053 0.36 ± 0.058 0.37 ± 0.056

EBV 0.33 ± 0.041 0.33 ± 0.044 0.33 ± 0.043

Table 4 Regression coefficient of  the pseudo-phenotype on  direct genomic breeding values [b(yi,DGV)] and  mean 

squared error of prediction (MSE) for rib eye area (REA), backfat thickness (BFT) and hot carcass weight (HCW) obtained 

with different models to estimate SNP effects

Y* phenotype adjusted for fixed effects, EBV estimated breeding value, yi pseudo-phenotype, BRR bayesian ridge regression, BC Bayes C, BL Bayesian Lasso, REA rib eye 

area, BFT backfat thickness, HCW hot carcass weight, MSE =
1

N

∑
(yi − DGV)2

Trait Type b(yi,DGV) MSE

BRR BC BL BRR BC BL

REA (cm2) Y* 0.99 0.93 1.02 45.56 45.62 45.56

EBV 1.07 1.02 1.09 1.95 1.96 1.96

BFT (mm) Y* 0.40 0.37 0.39 3.30 3.33 3.32

EBV 0.90 0.90 0.98 0.03 0.03 0.03

HCW (kg) Y* 0.93 0.80 0.96 261.5 262.0 261.8

EBV 1.11 1.07 1.14 7.35 7.37 7.36
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least heritable (0.08 vs. 0.20 and 0.17 for REA and HCW, 

respectively), prediction accuracy was greater when EBV 

was used as the response variable.

In our study, the relatively small dataset and the low 

heritability of the traits analyzed limited the accuracies 

of EBV, which ranged from low to moderate. This may 

have contributed to weakening the prediction abilities 

observed here. According to [7], scenarios that involve 

highly heritable traits and large numbers of phenotypic 

records and genotyped animals can certainly lead to 

higher accuracies of DGV.

The accuracies of DGV obtained for Nellore cattle in 

this study were greater than those reported for Angus 

(0.16), Shorthorn (0.19), Brahman (0.28) and Santa Ger-

trudis (0.29) cattle, and were similar to those reported 

for Hereford (0.32), Belmont Red (0.33) and Murray 

Grey (0.39) cattle for carcass weight [7]. Similar accura-

cies of DGV were also reported in [29] i.e. 0.35 (Angus) 

and 0.33 (Charolais) for carcass weight, 0.36 (Angus) 

and 0.24 (Charolais) for REA, and 0.33 (Angus) and 0.46 

(Charolais) for carcass average BFT. In both studies [7, 

29], accuracies of DGV were calculated as the correlation 

between adjusted phenotypic values and DGV, divided by 

the square root of the heritability. For Nellore cattle, accu-

racies of genomic prediction have been reported only for 

growth, reproductive and visual score traits [10] with val-

ues ranging from 0.17 (navel at weaning) to 0.74 (finishing 

precocity) using deregressed EBV as response variable.

It is known that the cross-validation strategy may 

change estimates of accuracy. There are already a few 

articles in the literature that show that stronger genetic 

ties between animals in the training and test sets improve 

accuracies [24, 25]. Different cross-validation strategies 

can be used, for example, to assess a best and worst case 

scenarios. However, a general recommendation is that 

the final cross-validation design reflects how genomic 

predictions will be used in practice for that specific spe-

cies, breed and application [21]. For example, animals 

could be sampled at random to build the training and test 

sets, if the SNP chip is to be used for commercial herds, 

with different genetic relationships between selection 

candidates and the reference population.

In general, accuracies of DGV reported for various 

traits in beef cattle support the feasibility of applying 

genomic selection [7, 10, 15, 21, 29] and different meth-

odologies are available to perform genomic prediction 

[30]. However, in practice, this technology is still rarely 

applied in the beef cattle industry especially for pheno-

types that are difficult or expensive to measure, such as 

carcass traits, which is probably due to the lack of suffi-

ciently large reference populations [4, 7]. Van Eenennaam 

et  al. [4] raised several issues related to the beef cattle 

industry that hamper the implementation of genomic 

selection. Among these, they listed the segmented 

nature of this sector in terms of uniformity of breeding 

goals, the importance of crossbreeding in meat produc-

tion systems, and the limited use of assisted reproduc-

tion techniques. These authors also highlighted that, for 

beef cattle, research groups work in a somewhat isolated 

manner, which restricts the availability of reference pop-

ulations for each group in terms of scope and results. 

Furthermore, beef cattle populations consist mainly of 

various breeds and/or mixture of breeds, which makes it 

more difficult and also less useful to establish combined 

reference populations. The number of individuals of a 

single breed in a reference population is often small and 

thus, it becomes difficult to accurately identify the addi-

tive differences among breeds in genomic prediction of 

crossbred animals [31].

The fact that the Nellore is the dominant breed in the 

Brazilian beef cattle farming might be an advantage for 

the adoption of genomic selection, since it may be rela-

tively easier to create reference populations of sufficient 

size. However, this would require pooling the various 

datasets that have been created concomitantly in Brazil 

by independent groups [1].

Although accuracies of genomic predictions tend to 

increase with the size of the reference population [7, 15], 

other factors can also affect accuracies. Some of these 

factors are the heritability of the trait (or the accuracy 

of the pseudo-phenotype), the density of the SNP panel 

and level of LD, the degree of relationship between train-

ing and validation animals, genetic architecture of the 

trait, and the model used [32]. Since SNPs capture both 

LD and additive genetic relationships [4, 24], a decrease 

in the level of relationship reduces accuracy of predic-

tion [28]. We used a dataset that was structured in half-

sib families. As expected, the average of the maximum 

relationship (maxr) was equal to about 0.25 whereas the 

mean5 and mean10 statistics were equal to 0.19 and 0.17, 

respectively. These values indicate that the degree of rela-

tionship between training and validation populations was 

relatively low, taking as a benchmark the study of [24]. In 

[24], three scenarios with varying magnitudes of the rela-

tionship between reference and validation populations: 

(1) close relationships (when the animals of the validation 

population had 20 half-sibs in the training population), 

(2) distant relationships (no close relationships between 

individuals in the training and testing populations except 

for a few second degree relationships, i.e. cousins), and 

(3) no relationship. In our study, the mean5 and mean10 

statistics had values that were similar to those of scenario 

(2). This finding suggests that the accuracy of predic-

tion obtained in this population, besides capturing the 

relationship between individuals of the two groups, is 

also due to the LD between markers and QTL [24]. The 
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results of this research can likely be extrapolated to real 

breeding programs for Nellore since a variety of com-

mercial herds that had industry-relevant genetic back-

grounds were represented.

Conclusions
We showed that applying genomic selection to improve 

carcass traits in breeding programs of Nellore cattle is 

feasible since moderate genomic prediction accuracies 

can be achieved. Prediction of genomic breeding values 

from adjusted phenotypes Y* was more accurate than 

from EBV, especially for highly heritable traits. The three 

genomic prediction models considered (BRR, BC and BL) 

presented similar predictive performances and thus, they 

could be equally recommended for the implementation 

of genomic selection for carcass traits in Nellore cattle.
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