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Abstract1

The recent availability of Next Generation Sequencing (NGS) has made possible the use of dense genetic2

markers to identify regions of the genome that may be under the influence of selection. Several statistical3

methods have been developed recently for this purpose. Here, we present the results of an individual-based4

simulation study investigating the power and error rate of popular or recent genome-scan methods: linear5

regression, Bayescan, BayEnv and LFMM. Contrary to previous studies, we focus on complex, hierarchical6

population structure and on polygenic selection. Additionally, we use a False Discovery Rate (FDR) based7

framework, which provides an unified testing framework across frequentist and Bayesian methods. Finally,8

we investigate the influence of population allele frequencies versus individual genotype data specification9

for LFMM and the linear regression. The relative ranking between the methods is impacted by the consid-10

eration of polygenic selection, compared to a monogenic scenario. For strongly hierarchical scenarios with11

confounding effects between demography and environmental variables, the power of the methods can be very12

low. Except for one scenario, Bayescan exhibited moderate power and error rate. BayEnv performance was13

good under non-hierarchical scenarios while LFMM provided the best compromise between power and error14

rate across scenarios. We found that it is possible to greatly reduce error rates by considering the results of15

all three methods when identifying outlier loci.16
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Introduction17

The detection of signatures of selection has been a long-standing interest of population geneticists and evo-18

lutionary biologists. However, until recently, the paucity of molecular markers available limited the power of19

statistical methods to detect selection because other biological process such as structure and migration have20

confounding effects on polymorphism and linkage disequilibrium. This situation has changed radically with the21

advent of Next Generation Sequencing (NGS, see Shendure and Ji, 2008), which can generate dense arrays of22

markers, typically Single Nucleotide Polymorphisms (SNPs), spread across the genome. These new data can be23

used to distinguish between neutral processes that have a genome-wide effect (e.g. demographic history) and24

processes that have a local effect, particularly selection (Luikart et al., 2003). Several so-called genome-scan25

methods have been developed for this purpose (reviewed in De Mita et al., 2013).26

One of the most popular types of methods is based on an idea first proposed by Lewontin and Krakauer27

(1973). The underlying rationale is that loci influenced by directional selection will show larger genetic differen-28

tiation than neutral loci while the opposite is true for loci subject to balancing selection. Thus, loci that exhibit29

unusually high or low FST are good candidates for being influenced by selection. Several variants of this test30

exist (e.g. Beaumont and Nichols, 1996; Vitalis et al., 2001; Beaumont and Balding, 2004; Foll and Gaggiotti,31

2008) and have been frequently applied to non-model species. Another recent group of genome-scan methods is32

based on the idea that many selected loci should be correlated with the environmental factors underlying the33

selective pressure (Joost et al., 2007; Coop et al., 2010; Frichot et al., 2012). Genotype-environment association34

methods identify loci that show strong correlations with one or more environmental variables, and those loci35

are interpreted as potentially under selection.36

All genome scan methods are based on the premise that it is possible to clearly distinguish between the37

genetic signals left by neutral and non-neutral processes. However, this assumption is frequently violated in real38

life scenarios (Hermisson, 2009). Several demographic processes such as allele surfing (Edmonds et al., 2004)39

and bottlenecks can leave signatures that mimic those left by positive selection. Moreover, complex spatial40

structuring can increase the variance of genetic parameters across the genome leading to high false positive41

rates (Excoffier et al., 2009). Sensitivity analyses published thus far (Pérez-Figueroa et al., 2010; De Mita42

et al., 2013) focus on these confounding effects of demographic covariance among populations arising through43

migration. The overall pattern that emerges from these studies is rather positive. Although all evaluated44

methods suffer from either low power (differentiation-based methods) or high false-positive rates (genotype-45

environment association methods), a strategy based on the use of both types of methods seems to lead to reliable46

identification of outlier loci. Nevertheless, one limit of existing studies is that they consider the effect of selection47

on a single locus. This is a quite unjustified assumption because selection for a specific quantitative phenotypic48

trait will influence several regions across the genome (Rockman, 2012). There is only two studies (Narum and49

Hess, 2011; Vilas et al., 2012) that considers several selected loci. However, the first is limited both by the50
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number of loci (only 5) and the number of replicates of the simulated data, while the second focuses on the51

question of whether or not detected outlier markers are physically close to selected loci.52

In this study we focus attention on more realistic scenarios than those considered in previous analyses. In53

particular, we investigate biases that may arise when selection acts upon traits determined by several genes.54

Indeed, as Rockman (2012) recently pointed out, there is a paucity of empirical and theoretical support for the55

abundance of large-effect Quantitative Trait Nucleotides (QTNs) in the wild. Instead it is likely that “alleles56

that matter for evolution” are numerous small-effect loci. It is unclear if current genome-scan methods will57

simply have low power or if they will also have a high false discovery rate when applied to these situations.58

Another important consideration about real populations and species is that they are unlikely to be at migration-59

drift equilibrium. Thus, we evaluate scenarios where they have experienced recent divergence from an ancestral60

population, a process that may also affect power and false discovery rates of existing methods.61

Instead of evaluating the performance of a very large number of methods we focus on a few that have proven62

popular or that are very recent and tested only under some restricted scenarios. More precisely, we focus on two63

genotype-environment association Bayesian methods that explicitly take into account the covariance of allele64

frequencies across populations (Coop et al., 2010; Frichot et al., 2012) and we compare these methods to one of65

the most frequently used genome-scan methods based on population differentiation (Foll and Gaggiotti, 2008).66

We did not include more population differentiation methods as they have been shown to be less efficient than67

this particular one (Pérez-Figueroa et al., 2010; Vilas et al., 2012; De Mita et al., 2013). We further consider a68

naive frequentist regression approach without any correction for population structure. The comparison is done69

using a rigorous statistical framework based on false discovery rates (FDR, see Benjamini and Hochberg, 1995)70

and q-values (Storey and Tibshirani, 2003; Storey et al., 2004), which allow for a unified comparison of the71

performance of the methods.72

Material & Methods73

Simulation model74

We carried out simulations using the SimuPop package for Python (Peng and Kimmel, 2005). We focused75

on highly structured population scenarios where selection acts on a multigenic trait. For the sake of clarity76

we describe each component of the simulation model separately and also present the main attributes of each77

scenario in Table 1. We simulated 100 replicates for each scenarios (but only used 50 for Bayescan, see below).78

Demographic process Our main scenario is a dichotomous process of population fission in which an ancestral79

population of 500 individuals gives birth to two descendant populations after 50 generations of drift. The fission80

is instantaneous with local populations reaching carrying capacity of 500 individuals in a single generation.81

This dichotomous fission process is repeated until 16 populations are obtained (see dendrogram, Fig. 1.A).82
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Migration occurs all along the process and preferentially between historically close populations: two populations83

issued from the same fission event will exchange twice as many migrants as two populations issued from two84

distinct fission events. In other words, the proportion of migrants between two populations is determined by85

phylogeographic distance. We aimed at capturing the main features of a spatial expansion in a heterogeneous86

habitat. For example, a post-glaciation colonisation scenario, where new valleys and sub-valleys are progressively87

reached. The further apart two populations are along the population tree, the lower the migration rate between88

them. This model corresponds to a highly structured Isolation with Migration model (noted HsIMM). We89

assume a recent demographic origin for all populations (500 generations in total since the initial fission event).90

In addition, we consider two simpler scenarios: an isolation with migration (IMM) model where the sixteen91

populations are issued from a single fission event and a stepping stone scenario (SS) where all sixteen populations92

are issued from a single fission event. For these two models the length of the runs was 400 generations. These93

settings allow us to stop the simulation at a near-equilibrium situation. In all scenarios, each population consists94

of 500 individuals. The proportion of individuals in a local population that do not migrate, (1−m) is the same95

under all three scenarios but the proportion of individuals that migrate between pairs of populations differ.96

Under the HsIMM it is m/2(i+1) where i is the number of fission events between each local population and the97

most recent common ancestral population (SI eq. 1). Under the IMM it is m/15 for all pair of populations98

(SI eq. 2). Under the SS model it is equal to m/2 for neighbouring populations and zero for all other pairs of99

populations (SI eq. 3). For all simulations we chose m = 0.0045, which yielded pairwise FST roughly equal to100

0.1.101

More information about the simulation process can be found in the supplementary information (SI, section 1).102

The python code used can also be found online in the data accessibility section.103

Genetic process We simulated 5000 SNP regularly spread along 10 chromosomes. The recombination rate104

between adjacent pairs of SNPs is set to 0.002 in order to have, on average, one recombination event per105

population per generation. This amounts to spacing 500 SNPs uniformly along each chromosome. The mutation106

rate is set to 10−7 per generation at each SNP. We consider two genetic architectures: either a single locus case,107

or 50, randomly distributed, loci influencing a phenotypic trait directly linked to fitness. In each case, we assume108

co-dominance.109

We use a multiplicative fitness function to describe the ‘cumulative’ effect of all loci on fitness :110

W = (1 + sP )n11(1 − sP )n00 (1)

where sP is the local coefficient of selection (depending on the local value of the environment, see next paragraph)111

and n11 and n00 are the number of (1, 1) and (0, 0) homozygous loci, respectively. Note that fitness is normalized112

such that the relative fitness of any heterozygous locus is 1. For small s, this multiplicative fitness function is113
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equivalent to an additive one.114

Environmental variable underlying the selective pressure In the case of a highly structured model115

(HsIMM) we consider two spatial patterns of selection intensities, which are determined by an environmental116

variable ES : (i) at each population fission, the values of ES for each descendant population are drawn from a117

uniform distribution centred on the value of the ancestral population (HsIMM-U) and, (ii) at each population118

fission, the values of ES for the new populations are set such that they produce an environmental gradient119

along a linear habitat (HsIMM-C). For the isolation with migration (IMM) and stepping-stone (SS) scenarios,120

the values of ES are also set to form an environmental gradient, like in case (ii) (Table 1).121

The local coefficient of selection sP is calculated as a logistic transformation of the environmental variable :122

sP = s
1 − e−βES

1 + e−βES
(2)

where s is the ‘baseline’ selection coefficient and β is the ‘slope’ of the logistic transformation. For the scenario123

with a single selected locus we set s to 0.1 and β to 1. In the case of the polygenic scenario we use s = 0.004124

and β = 5. The difference in parameter values between the two scenarios is necessary because, for size effect s125

in the monogenic case and s/N in the polygenic case, local adaptation progresses much more slowly under the126

polygenic architecture. Therefore, it was necessary to increase both the effect size and slope of the gradient for127

the polygenic case so as to generate local adaptation patterns under both scenarios in a similar evolutionary128

time. The values were scaled so that the mean allelic frequency pattern in the polygenic case was similar to the129

one in the monogenic case.130

We also investigate the potential for spurious selection signals due to the consideration of environmental factors131

unrelated to any selective pressure. For this we consider scenarios that include a selectively neutral environ-132

mental variable E0 whose values are randomly drawn from a normal distribution. Selection starts at the second133

fission events in the HsIM scenarios, and at the (only) first one in the two other scenarios.134

Table 1: Description of the scenarios considered in this study

Scenario Spatial Model Demographic History Selection Pattern
HsIMM-U Hierarchical Multiple Binary Fissions Correlated with demographic history
HsIMM-C Hierarchical Multiple Binary Fissions Environmental Gradient

IMM Standard IMM Instantaneous Fission Environmental Gradient
SS Stepping-Stone Instantaneous Fission Environmental Gradient

Statistical analysis135

Error rate For all methods, we use q-values as a significance test statistic (Storey and Tibshirani, 2003;136

Storey et al., 2004). The q-value is tightly linked to the False Discovery Rate (FDR) (Storey and Tibshirani,137

2003). For a statistical test, the FDR is equal to the number of false positives over the total number of positives138
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(true and false). Thus, it is the proportion of “false discoveries” among all the “discoveries” of the test. If the139

assumptions of the test hold, then a given threshold αq for assessing the significance of q-values should lead to140

a FDR of αq. For example, if one decides a cut-off threshold of 5%, then the test will yield 95% of true positives141

and 5% of false positives. Note that, in this sense, a cut-off of 5% for q-values is much more stringent than142

the same cut-off for p-values. It is important to distinguish between false positive rate, false discovery rate and143

power: their relationship is explained further in SI. Note that, for the same dataset, an increase in power would144

lead to a decrease of FDR, whereas an increase in false positive rate (FPR) would lead to an increase of the145

FDR.146

Power For monogenic selection scenarios, the definition of power is straightforward: it is the proportion of147

truly selected loci that are significant (see also Eqn. 6 in SI). For polygenic selection, this definition leads to a148

value of power for each locus. We computed power for each locus for each simulation, and then averaged over149

all loci, in order to get a mean power comparable to the case of monogenic scenarios. Note that, in the case of150

polygenic scenarios, we have less sampling error than in monogenic scenarios, because we have 50 times more151

selected loci.152

Data specification Some methods can be applied either to population allele frequency data or to individual153

genotype data. In principle, using genotypic data is more appropriate when it is difficult to clearly define154

population boundaries. It can also avoid potential biases introduced by differences in sample sizes across155

populations. We investigated the influence of data specification for the linear regression and the Latent Factor156

Mixed Model methods (see below).157

Genome scan methods to detect selection158

There are several genome-scan methods aiming at detecting selection by identifying outlier loci. Here we159

focus on two genotype-environment association methods that explicitly take into account the allele frequency160

covariance across populations and we compare these methods to a genome-scan method based on population161

differentiation. We further consider a naive frequentist approach that test for correlations between allele fre-162

quencies and environmental factors.163

BayEnv A first method that takes into account the allele frequency covariance across populations generated164

by demographic history and spatial effects was developed by Coop et al. (2010) and is implemented in the165

software BayEnv. This method consists in a two-step procedure. First, a model using all loci (or a part of the166

data set that is known to be neutral) estimates the population structure using a variance-covariance matrix of167

allele frequencies between populations. Second, a model incorporating the empirical covariance matrix tests for168

the correlation between the allele frequencies at each locus (or only at loci of interest) and each environmental169
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variable. The software returns Bayes factors weighting the strength of evidence in favour of a correlation between170

allele frequencies and the environmental variable. We transform the Bayes Factors into posterior odds using a171

prior probability of the null model π0 = 0.99, and use these odds to compute q-values (Storey and Tibshirani,172

2003; Storey et al., 2004) which are used to assess the significance of each locus. The procedure is explained in173

the supplementary information (SI), where we also provide the MCMC parameters used.174

Latent Factor Mixed Model Latent Factor Mixed Models (LFMMs, see Frichot et al., 2012) are very general175

and flexible models and provide an alternative approach to detect relationships between allele frequencies and176

environmental values, while taking into account population structure. The model can be seen as an approximate177

Principal Component Analysis combined with a regression. It is computationally faster than BayEnv and178

Bayescan (Frichot et al., 2012). The K value (number of factors) needed by the software are estimated to be179

15 for every scenarios, using Tracey-Widom tests. The p-values returned by the method are transformed into180

q-values following a standard procedure (Storey and Tibshirani, 2003). We used the version 1.2 of the software.181

Bayescan Bayescan (Foll and Gaggiotti, 2008) is an FST -based model (Beaumont and Balding, 2004). This182

method is not searching for a potential correlation between allele frequencies and the environment. Instead,183

it is searching for loci exhibiting extreme FST values. Large FST s are then interpreted as signatures of local184

adaptation. It is testing for outliers independently of any environmental knowledge. The statistical significance185

is assessed by the use of q-values (Storey and Tibshirani, 2003; Storey et al., 2004) using a prior odds of 100.186

The MCMC parameters used are detailed in SI. Because of computation time issues, we only used 50 replicates187

for this method.188

Corr: Allele frequencies-environment regression This is the most naive method and only aims at de-189

tecting a correlation between population allele frequencies and an environmental variable. Typically, significance190

is evaluated using the p-value returned by Student’s test on the slope of the regression. However, to correct191

for multiple tests and to easily compare with results of other methods we transform the p-values into q-values192

using the method presented in Storey and Tibshirani (2003).193

Results194

Genetic structure produced by the population models195

As expected, our simulation models produce highly structured population genetic data. Fig. 1 shows the196

structure of the correlation in allele frequencies across populations, as estimated by the software BayEnv (Coop197

et al., 2010). For the binary fission model (Fig. 1.A), the strength of the correlation decreases with the198

phylogeographic distance. The isolation with migration model (Fig. 1.B) produces no apparent spatial pattern199
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while the stepping stone model (Fig. 1.C) leads to a typical isolation-by-distance pattern.200

Figure 1: Heatmap of allele frequencies correlation between all simulated 16 populations. Panel A: HsIMM

model; Panel B: IMM model; Panel C: SS model. The red to white gradient corresponds to the [−1, 1] interval.

The dendrogram illustrates proximity between populations (inferred for HsIMM, drawn for IMM and SS).

Monogenic selection201

Error Rates The expectation is that the False Discovery Rate (FDR) increases linearly with the threshold202

used to decide the significance of q-values. However, the results differ radically from this expectation. Indeed,203

the FDR of all methods was higher than expected under all scenarios (Fig. 2), except for LFMM in the IMM204

scenario, which is even quite conservative. Note also that BayEnv has an acceptable FDR for the SS scenario205

and stringent thresholds (Fig. 2, SS). This inflation in FDR is partly due to the fact that, when only one206

locus is truly selected, even a small false positive rate, when combined with high power, leads to very high207

FDRs. Regarding hierarchical scenarios, when the spatial selection pattern is a function of phylogeographic208

distance (Fig. 2, HsIMM-U), FDRs are highest for Bayescan and lowest for LFMM, while the FDR values for209

BayEnv and the linear regression methods are intermediate. When selection is a function of an environmental210

gradient (Fig. 2, HsIMM-C), the FDR is highest for the linear regression method, intermediate for Bayescan211

and lowest for BayEnv and LFMM. Thus, the spatial pattern in selection intensities greatly influences the212

relative performance of the different methods. Note that the individual genotype data specification for the213

linear regression and LFMM (light lines) always lead to higher FDRs. This is especially the case for the linear214

regression with FDRs of almost 1. Note also that the linear regression method yields intermediate FDRs for215

small α thresholds for both scenarios. Finally, recall that FDRs are not on the same scale as False Positive Rates216

(FPR). Since here we are considering a monogenic scenario, a FDR of 75% corresponds to the truly selected217

locus plus 3 false positives, thus to a FPR of 0.06%.218
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Figure 2: False discovery rate against significance threshold (αq) for monogenic selection. Black line : Expected

relationship between FDR and αq. Lines are LOESS smooth for linear regression (plain red line), Latent Factor

Mixed Model (LFMM, green dot-dashed line), Bayescan (blue dashed line) and BayEnv (orange two-dashed

line). Light lines are for individual genotype data specification for the linear regression (light red) and LFMM

(light green).

Statistical power Under the scenario HsIMM-U the power of all methods is moderate with a maximum219

between 75 and 80% for very permissive thresholds (Fig. 3., HsIMM-U, except the case of linear regression220

for individual genotype data specification, light red line). In this case, all recent methods had roughly similar221

power, although LFMM yields a lower one. The regression method has the lowest power for allele frequency data222

specification but the highest one when using individual genotypes. Under the other scenarios (Fig.3, HsIMM-C,223

IMM and SS), the power of all methods is very high, being perfect for some of them regardless of the threshold224

value used. Note that, in all cases, the regression model is always among the least powerful methods. Also,225
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whereas the “individual genotypes” specification always increase the power for the regression (light red lines in226

Fig. 3), this is not always the case for LFMM (light green lines).227
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Figure 3: Statistical power against significance threshold for monogenic selection. Lines are linear regression

(plain red line), Latent Factor Mixed Model (LFMM, green dot-dashed line), Bayescan (blue dashed line)

and BayEnv (orange two-dashed line). Light lines are for individual genotype data specification for the linear

regression (light red) and LFMM (light green).

Polygenic Selection228

Error Rates As it was the case for the monogenic selection scenario, the false positive rate of all methods229

under all scenarios was higher than expected. Fig. 4 shows that the expected linear increase in FDR with230

increasing threshold values only holds for BayEnv under the stepping-stone model (Fig. 4, SS). Interestingly,231

LFMM shows a very conservative pattern for the IMM scenario, when using the population frequency data232
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specification (Fig. 4, IMM, dark green line). All other combinations of scenarios and methods are more233

error-prone than our theoretical expectation. Note in particular that all methods have very high FDR under234

the hierarchically structured IMM scenarios. While LFMM is the most conservative method in the case of235

environment correlated with demography (Fig. 4, HsIMM-U), BayEnv and Bayescan are the approaches that236

are the least error prone for a clinal environment (Fig. 4, HsIMM-C). The behaviour of LFMM and BayEnv237

changes radically across scenarios and they seem specially well adapted to a specific scenario (IMM and SS238

respectively) while the error rate of Bayescan is more intermediate across the different scenarios, although it239

is one of the worst under the standard IMM model. Regarding data specification, LFMM seems to be quite240

robust to its influence, although the individual specification still tends to yield more erroneous results than its241

allele frequency counterpart. The linear regression model, however, is much less robust: its individual genotype242

specification version is always the most error-prone, while its population allele frequencies specification can yield243

relatively conservative results (e.g. see Fig. 4, IMM).244
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Figure 4: False discovery rate against significance threshold (αq) for polygenic scenarios. Black line : Expected

relationship between FDR and threshold value αq. Lines are LOESS smooth for linear regression (plain red

line), Latent Factor Mixed Model (LFMM, green dot-dashed line), Bayescan (blue dashed line) and BayEnv

(orange two-dashed line). Light lines are for individual genotype data specification for the linear regression

(light red) and LFMM (light green).

Statistical power Because of the small effect size of each locus under the polygenic model, the power of all245

methods should be lower than under the single-gene model. Indeed, we do observe an overall decrease in power246

for all scenarios (Fig. 5 compared to Fig. 3). The linear regression is the method that had the highest power247

under scenarios HsIMM-U, HsIMM-C. This power performance is followed by LFMM (Fig. 5 HsIMM-U and248

HsIMM-C). These two methods are comparable for the SS scenario (Fig. 5). Regarding these three models249

(HsIMM-U, HsIMM-C and SS), Bayescan shows intermediate power and BayEnv is the least powerful method.250

Interestingly, the behaviour of the methods is very different for the IMM scenario (Fig. 5): here, BayEnv is one251
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of the most powerful methods, only outperformed by the error-prone linear regression in its individual genotype252

specification. LFMM and Bayescan are the two worst methods.253

While having a high power is an interesting feature, it needs to coincide with reasonable False Positive and254

False Discovery rates to be relevant. Power against False Positive (ROC curves) and False Discovery rates are255

provided in SI. The ROC curves (Fig. IV in SI) illustrate the compromise between the number of true and false256

positives and show that all methods are comparable in this regard. The “power against FDR” graphs (Fig. VII257

in SI) provide information about how many true positives are detected by the methods. For a given FDR, more258

power means more true (and false) positives.259
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Figure 5: Statistical power against significance threshold for polygenic selection. Lines are for linear regression

(plain red line), Latent Factor Mixed Model (LFMM, green dot-dashed line), Bayescan (blue dashed line)

and BayEnv (orange two-dashed line). Light lines are for individual genotype data specification for the linear

regression (light red) and LFMM (light green).
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Consistency between methods Overall the methods tend to disagree from each other, in terms of which260

loci should be considered as selected (true or false positives). The percentage of overlap between loci considered261

as positives by two different methods is around 1% to 5%, except for the regression and LFMM (14% to 48%262

depending on the scenarios). Notable exceptions are the HsIMM scenarios, where Bayescan and LFMM reach263

an agreement on 13% of loci under selection for HsIMM-U and 18% for HsIMM-C. Still, the methods are more264

often in agreement regarding true positives than regarding false positives. This means that using 3 methods265

to assess the outlier behaviour of loci leads to a substantial decrease of the FDR. This decrease varies between266

0.4 and 0.65, depending on the scenarios. For the IMM model, this strategy yields a FDR of 0% (all positives267

are true positives). Unfortunately, using several methods leads to a decrease of power of roughly the same268

magnitude as the decrease in FDR (between 0.25 and 0.55).269

Spurious environmental variable Methods that use environmental variables to identify outliers assume270

that the chosen variables exert a selective pressure or are highly correlated to the one directly involved. One271

possible outcome in this situation is that the statistical tests identify a truly selected locus, but assign it to the272

wrong environmental variable. Although detecting a locus under selection is desirable, one does not want to link273

it to a spurious environmental variable. We call this error rate “spurious power” and define it as the proportion274

of truly selected loci considered as positive using a spurious, unrelated environmental variable. Fig. 6 shows275

that for HsIMM scenarios, the linear regression and BayEnv methods do not differ much in their “spurious276

power” (here, we only focus on the polygenic selection case). However, LFMM has a very low spurious power.277

For the IMM scenario, BayEnv is the most prone to erroneous choice of selective variable. By contrast, the278

linear regression is the most prone to error for the SS scenario.279

Note that, in principle, the spurious power should be equal to the overall false positive rate (FPR), because we280

expect no association between the spurious environmental variable and the selected loci. This is roughly the281

case for all methods, except for LFMM in the scenarios IMM and SS. It tends to detect (false) association for282

selected loci more often than for non selected loci (see Fig. VIII in SI, note that the scale on these graphs are283

totally different from Fig. 6, since the methods differ in their False Positive Rate).284
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Figure 6: Spurious “power” (i.e. power to detect selected loci using an independent spurious variable) against

significance threshold for the null environmental variable. Line are for linear regression (plain red line), Latent

Factor Mixed Model (LFMM, green dot-dashed line), and BayEnv (orange two-dashed line). Light lines are for

individual genotype data specification for the linear regression (light red) and LFMM (light green).

Discussion285

Performances of the methods against difficult scenarios This study aimed at assessing the performance286

of recent and/or popular genome scan methods, in terms of power and error rate, when applied to difficult sce-287

narios. The relative ranking of the methods, for the polygenic case, is summarised in Table 2. Note that the288

relationship in ranking between the FDR and the FPR is strong. Therefore, the methods have an inflated FDR289

mainly because of too many false positives, not because of too few true positives.290

The most important challenge to the performance of all methods is the polygenic selection process. Obviously,291
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one would expect an overall decrease in power for all methods when using a polygenic selection model compared292

to a monogenic one, something that was actually observed. This decrease in power went hand in hand with293

an overall decrease of FDR (mostly due to the increased number of selected loci, see Eq. 7 in SI). However,294

the impact on performance differed among methods leading to a radical change in their ranking in terms of295

power/FDR. While all methods performed roughly equally in the monogenic scenarios –especially regarding296

power, for polygenic scenarios we observed large differences. First, the regression method became one of the297

most powerful but also most error prone methods. Second, the relative ranking between Bayescan, BayEnv and298

LFMM was changed, both in terms of power and error rate.299

The second most important challenge was a strongly hierarchical spatial structure. This is evident when com-300

paring the results for scenarios HsIMM-C and SS, both of which consider selection along an environmental301

gradient: the HsIMM-C scenario led to lower power for all methods. Note that the FDR for BayEnv was also302

inflated in the HsIMM-C scenario whereas it was almost perfect in the SS scenario. Apart from this overall303

changes in behaviour, the ranking of the method was conserved between the two spatial scenarios (although304

LFMM and the linear regression tend to be alike under the SS scenario).305

The last challenge under study was the correlation between the environmental variable underlying the selec-306

tive pressure and demographic history. The effects of this process can be visualised by comparing scenarios307

HsIMM-U and HsIMM-C, which only differ in this particular aspect. Overall, we see that a correlation between308

environment and demography led to low power for all methods, and higher FDR for Bayescan and BayEnv,309

which became even more prone to error than LFMM. The ranking, in terms of power, of the methods was310

conserved between the two kind of scenarios.311

Another source of error to be considered in the case of association methods (e.g. the regression, LFMM and312

BayEnv) is that of associating the selected loci with a non selective (spurious) environmental variable. In this313

case, BayEnv and the linear regression methods yielded a stronger “spurious power” than LFMM. Also LFMM314

tended to associate the spurious variable with the selected loci more often than with the neutral loci.315

We finally investigated the influence of the data specification (population allele frequencies or individual geno-316

types) for the linear regression and LFMM methods. The population allele frequencies data specification allowed317

for better performance in terms of error rate and most of the time in terms of power, at least under our simulated318

scenarios. This can be due to the fact that using genotypic data involved a larger sample size, which led to a319

higher rate of null model rejection due to slight violations of its underlying neutral hypotheses (higher power,320

but higher error rate). Note that, for polygenic selection, LFMM was less sensitive to the data specification.321

More puzzling, the genotypes specification sometimes led to a lower power.322

323

Characteristics of the methods and comparison to previous studies Overall, we see that methods324

using an environmental variable have generally more power than genome-only based methods. Notably, Bayescan325
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Regression BayEnv LFMM Bayescan

HsIMM-U
FDR bb bb bbbb b

FPR b bbb bbbb bb

Power bbbb b bbb bb

HsIMM-C
FDR b bbbb bb bb

FPR b bbbb bb bbb

Power bbbb b bbb bb

IMM
FDR bbb bb bbbb b

FPR bbb b bbbb bb

Power bbb bbbb b bb

SS
FDR b bbbb b bbb

FPR b bbbb b bbb

Power bbb b bbbb bb

Table 2: Summary of the properties of each genome scan methods, under the different scenarios focusing on
the polygenic case. FDR: False Discovery Rate; FPR: False Positive Rate. Methods are ranked from the best
(bbbb) to the worst (b). All properties are compared against the α thresholds below 0.05. When the ranking of
the method was ambivalent, they were both assigned the same rank.

was always less powerful than at least one of the other methods. This is expected, since the method is not326

taking advantage of as much information as the others. One has to note, however, that sometimes it may not be327

possible to identify the environmental variable that should be considered, in which case a ”blind” genome scan328

method must be used. Although Bayescan has been shown to perform quite well under Island and Stepping329

Stone scenarios (Foll and Gaggiotti, 2008; Narum and Hess, 2011; Vilas et al., 2012; De Mita et al., 2013), it330

did not perform very well under our Isolation with Migration (IMM) model and polygenic selection. This is a331

potentially common scenario so the results of our study differ from those of previous ones in that they suggest332

caution when using FST-based genome scans. Note, however, that the low power under the IMM scenario was333

only severe for the polygenic case.334

Regarding LFMM and BayEnv, the two methods have much in common: both approaches employ mixed models335

in which environmental variables are introduced as fixed effects whereas population structure is introduced using336

unobserved variables or hidden factors. Yet, there are two main differences between the two methods. First,337

whereas BayEnv is a two-step procedure, estimating first the covariance structure of the population allele338

frequencies, and only then testing for association with an environmental variable, LFMM uses hidden factors to339

capture the part of genetic variation that cannot be explained by the set of measured environmental variables,340

all at once. This variation could include unknown demographic history, IBD patterns or environmental gradients341

not accounted for in the study. Second, the PCA-related nature of LFMM would a priori allow the method to342

take into account more complex scenarios. In particular, BayEnv has already been shown to perform poorly343

when confronted to hierarchical structure, and perform quite well in an island model (De Mita et al., 2013). In344

our study, on the other hand, we also included LFMM and observed that this method over-corrected under the345

low-structure IMM scenario, leading to a very low FDR, but also a lower power.346

Since the regression is not correcting for any population structure, we would expect it to yield more false347

positives, most likely accompanied by higher power. The regression is indeed the most error-prone method for348
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all scenarios, except for the IMM one (which is the least structured scenario). Note that, when increasing the349

number of selected loci (i.e. from the monogenic to the polygenic case), the compromise between false positives350

and power gets better for the regression model (see Fig. III and IV). This could be caused by the fact that the351

regression is a more sensitive method, which is less ’reluctant’ to identify loci as selected. Thus, when many352

loci are selected, each with a small effect, we can expect this method to yield better power.353

The results of this study differ from the previous ones (e.g. Pérez-Figueroa et al., 2010; Narum and Hess, 2011;354

Vilas et al., 2012; De Mita et al., 2013) in several aspects. First, we used the same metric (the q-value) for355

all methods, which allows for a fair comparison. Second, while other studies investigated polygenic selection356

(Narum and Hess, 2011; Vilas et al., 2012), they only considered up to 10 loci, and only investigated FST-based357

methods. Third, we used more complex models with strong hierarchical structure.358

General issues and properties of genome-scan methods The results about polygenic selection tell us359

that assessing methods for monogenic scenarios only is not sufficient, especially because we expect the polygenic360

case to be the norm rather than the exception in natura (Pritchard and Di Rienzo, 2010). Of course, we have361

assumed a model of small locus effects, which could be one of the most difficult for genome scan methods. All362

methods may perform better under an L-shaped distribution of locus effects (see an example in Kulwal et al.,363

2003), where a few loci have strong effects among numerous small effect loci. Yet, although there is evidence364

for the L-shaped architecture in the context of local adaptation (Yeaman and Whitlock, 2011), there is also365

evidence that some phenotypic traits are under the control of many small-effect loci (reviewed in Stranger et al.,366

2011; Rockman, 2012).367

Another important issue concerns methods that can consider both population- and individual-level data. In368

principle one expect that individual based data (genotypes) should lead to better performance, however, this is369

not necessarily the case. The type of data used has a large effect on the rate of false positives and consequently370

the FDR. We here illustrated this fact using LFMM and the linear regression models. Although we did not test371

it for BayEnv because the current implementation does not allow it, the results should be similar. This result372

is due to the simple fact that using the individual genotypes instead of allele frequencies (by frequencies here,373

we mean allele count data) increases the number of observations. This has the desirable property of increasing374

the power, but also leads to the undesirable increase in number of false positives, because the null models are375

essentially false. Indeed no model is a perfect description of the data; there will always be a discrepancy with376

the underlying processes that lead to the data (because of non linearity of effects, small differences between377

the potentially assumed and real demographic history, non-uniform mutation rates, etc.) and increasing the378

number of observations lead to the rejection of the null model for most loci instead of only the outlier ones (c.f.379

Raftery, 1995). Using population frequencies instead of genotypes is then a more conservative method. Yet it380

is not always possible to use frequencies, because of non homogeneous sample sizes, pooled sampling or the use381

of dominant data (e.g. AFLP). In those cases, one has to be aware that the statistical methods are not that382
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robust to departures from the underlying model, and the more observation points there are, the higher is the383

overall false positive rate (Raftery, 1995). Note that this is true for the total number of sampled individuals and384

the way they are implemented in the models, but not for the number of loci, which does not a priori increase385

the false positive rate.386

Finally high FDR, especially in the case of monogenic selection, corresponds to an acceptable (though still387

inflated) false positive rate (FPR). For example, a FDR of 75% for the monogenic case corresponds to a FPR388

of 6.10−4 (see Eq. 4 in SI). For the polygenic case though, and assuming a power of 20%, it will correspond389

to a FPR of 6.10−3. The fact that the methods tend to disagree might seem like a drawback, but it is in fact390

advantageous, because they tend to agree more on true positives than on false positives. Thus, by using all 4391

methods together, we obtained FDRs between 0% and 40%, which are by far more acceptable.392

Perspectives & Conclusion The results of our study pointed out two main directions in which statistical393

genomic studies should direct attention. First, we need more general and robust likelihood models that would394

be flexible enough to accommodate for strong departures from classical models. LFMM is an attempt in this395

direction, because its likelihood does not depend on a particular population model (Frichot et al., 2012).396

Second, we need methods better adapted to polygenic selection scenarios. The q-value framework allows to397

control for false discovery rate (Storey and Tibshirani, 2003; Storey et al., 2004), which allow for test statistics398

that balance power and false positive rate. Another direction would be to develop a test that is suitable for399

polygenic selection. The difficulty in this case is that it would require to infer the genetic architecture of the400

trait(s) under selection, a very difficult task especially in absence of any phenotypic data.401

Since polygenic selection and complex spatial population structures are likely to be quite common in the wild,402

it is important to tackle these two issues in order to develop reliable genome scan methods that can be applied403

to new NGS data from non-model species.404
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