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Abstract 

Background: Shigellosis is the most common cause of gastrointestinal infections in developing countries. In China, 

the species most frequently responsible for shigellosis is Shigella flexneri. S. flexneri remains largely unexplored from 

a genomic standpoint and is still described using a vocabulary based on biochemical and serological properties. 

Moreover, increasing numbers of ESBL-producing Shigella strains have been isolated from clinical samples. Despite 

this, only a few cases of ESBL-producing Shigella have been described in China. Therefore, a better understanding of 

ESBL-producing Shigella from a genomic standpoint is required. In this study, a S. flexneri type 1a isolate SP1 harboring 

blaCTX-M-14, which was recovered from the patient with diarrhea, was subjected to whole genome sequencing.

Results: The draft genome assembly of S. flexneri strain SP1 consisted of 4,592,345 bp with a G+C content of 50.46%. 

RAST analysis revealed the genome contained 4798 coding sequences (CDSs) and 100 RNA-encoding genes. We 

detected one incomplete prophage and six candidate CRISPR loci in the genome. In vitro antimicrobial susceptibility 

testing demonstrated that strain SP1 is resistant to ampicillin, amoxicillin/clavulanic acid, cefazolin, ceftriaxone and 

trimethoprim. In silico analysis detected genes mediating resistance to aminoglycosides, β-lactams, phenicol, tetracy-

cline, sulphonamides, and trimethoprim. The blaCTX-M-14 gene was located on an IncFII2 plasmid. A series of virulence 

factors were identified in the genome.

Conclusions: In this study, we report the whole genome sequence of a blaCTX-M-14-encoding S. flexneri strain SP1. 

Dozens of resistance determinants were detected in the genome and may be responsible for the multidrug-resist-

ance of this strain, although further confirmation studies are warranted. Numerous virulence factors identified in the 

strain suggest that isolate SP1 is potential pathogenic. The availability of the genome sequence and comparative 

analysis with other S. flexneri strains provides the basis to further address the evolution of drug resistance mechanisms 

and pathogenicity in S. flexneri.
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Background

Shigella species are a major causative cause of gastro-

intestinal infections throughout the world, especially 

in developing countries [1]. Globally, there are approxi-

mately 164.7 million cases per annum, of which 1.1 mil-

lion people are estimated to die from Shigella infections 

[2]. Based on biochemical and serological properties, the 

genus Shigella comprises four serogroups: Shigella dys-

enteriae, Shigella flexneri, Shigella boydii and Shigella 

sonnei [2]. S. flexneri is endemic in many developing 

countries and causes more deaths than any other Shi-

gella serotypes [3]. In China, shigellosis is the most com-

mon gastrointestinal infections [4] and most frequently 
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isolated species responsible for shigellosis in mainland 

China is S. flexneri [5].

Antibiotic treatment is usually recommended for shigellosis 

as it reduces the duration and severity of symptoms, reduces 

the excretion of organisms and prevents potentially lethal 

complications [6]. However, the emergence of extended-

spectrum β-lactamase (ESBL)-producing S. flexneri is a major 

public health problem in China, as these strains are associated 

with critical infections [7]. Most of the CTX-M, SHV, and 

TEM-type ESBLs genes are located on conjugative plasmids 

[4]. Moreover, co-existence with other antimicrobial resist-

ance genes is frequently observed in ESBL-producers [8], 

which makes the choice of effective treatment extremely lim-

ited. Increasing instances of ESBL-producing Shigella strains 

isolated from Asia have been reported [1, 2]. So far, only a 

few cases of ESBL-producing Shigella have been described in 

China [4]. �erefore, a better understanding of ESBL-produc-

ing Shigella using a genomics approach is required.

�e first genome sequence of S. flexneri was reported 

by Jin et al. in 2002 [9]. So far, more than 145 S. flexneri 

strains have been sequenced and analyzed [10]. To 

extend our understanding of the resistance mecha-

nisms and pathogenesis of ESBL-producing S. flexneri, 

we performed sequencing and genomic analysis of the 

ESBL-harbouring S. flexneri SP1. Comparative genomics 

analysis of S. flexneri SP1 with other S. flexneri genomes 

may improve our understanding of the antibiotic resist-

ance and virulence factors present in Shigella.

Methods

Strain information

Shigella flexneri 1a isolate SP1 was isolated from the stool 

sample of a 76-year-old female diarrhea patient. Standard 

biochemical tests were performed using the Vitek II sys-

tem (BioMerieux, France) and species-specific 16S rRNA 

sequencing was used to confirm the identity of isolate 

SP1. Serotyping was performed with specific antiserum 

(Denka-Seiken). Genomic DNA of SP1 was extracted 

from a single colony of the pure bacterial culture. Pos-

sible contamination with other DNA and misassemblies 

were assessed by performing a BLAST search against the 

non-redundant database as described previously [11]. 

�e whole genome of SP1 is in the expected size range 

for a Shigella genome and the coverage of the reads was 

consistent throughout the genome. �e assembled draft 

genome sequence of SP1 was further verified by com-

parative analysis with the published complete genome 

sequences of S. flexneri strains.

Antimicrobial susceptibility testing

Susceptibility testing for ampicillin, amoxicillin/clavu-

lanic acid, amikacin, aztreonam, piperacillin/tazobactam, 

cefazolin, cefoxitin, ciprofloxacin, ceftriaxone, cefepime, 

ertapenem, imipenem, gentamycin, tobramycin, levofloxa-

cin, tigecycline, nitrofurantoin, and trimethoprim were per-

formed by the microbroth dilution method and interpreted 

according to the CLSI guidelines [12]. Escherichia coli strain 

ATCC 25922 was used as the control strain for susceptibil-

ity studies. Late log phase cells were harvested, and genomic 

DNA was extracted from the pure culture using the DNeasy 

Blood & Tissue kit (Qiagen, Germany) according to the 

manufacturer’s instructions. For the purpose of bacte-

rial identification, we amplified the 16S rRNA gene with a 

16S rRNA universal primer set and the PCR product was 

sequenced. Ethical approval was granted by the Ethics Com-

mittee of the First Affiliated Hospital of Zhejiang University.

Genome sequencing and assembly

�e extracted DNA was visualized by agarose gel electro-

phoresis and quantitated by Qubit 2.0. Whole-genome 

sequencing was performed on the Illumina HiSeq 4000-

PE150 platform. DNA was tailed, ligated to paired-end 

adaptors and PCR amplified with a 500 bp insert size and 

a mate-pair libraries with an insert size of 5 kb were used 

for library construction at the Beijing Novogene Bioin-

formatics Technology Co., Ltd. Illumina PCR adapter 

reads and low quality reads from the paired-end and 

mate-pair library were filtered by the quality control step 

using Novogene pipeline. All high quality paired reads 

were assembled using Velvet 1.2.10 [13] into a number of 

scaffolds. �e filtered reads were then passed handled by 

the next step of the gap-closing.

Genome annotation

Genome annotation included the prediction of coding genes, 

transfer RNAs, ribosomal RNA, prophage, and clustered 

regularly interspaced short palindromic repeat sequences 

(CRISPR). Open reading frames (ORFs) were identified 

and classified using the Rapid Annotation using Subsys-

tem Technology (RAST) server [14]. Protein classification 

into functional groups was performed using the Clusters 

of Orthologous Groups of proteins (COGs) [15]. Transfer 

RNAs and ribosomal RNA genes rRNAs were detected by 

tRNAscan-SE [16] and RNAmmer 1.2 software [17], respec-

tively. PHASTER [18] was used to identify prophage and 

putative phage-like elements and CRISPRFinder [19] was 

used to identify CRISPR sites. �e plasmid replicon was 

predicted by the PlasmidFinder Tool [20]. ISfinder [21] was 

employed to search for IS sequences in the genome, with an 

e-value of 1E−3. plasmidSPAdes was used to produce plas-

mid sequences from the WGS data [22].

Antibiotic resistance genes prediction and virulence 

factors analysis

Antibiotic resistance genes were annotated using the 

comprehensive antibiotic resistance database (CARD) 
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[23] and Resfinder [24] with default parameters. We 

further verified all putative antibiotic resistance genes 

(ARGs) through a BLAST search with cut-off e-value of 

1E−0.5. Virulence factors were predicted by using BLAST 

to search against the VFDB database [25] with an e-value 

threshold of 1E−5 and also with VirulenceFinder 1.5 [26].

Plasmid characterization

PlasmidFinder 1.3 was used for identify the incompatibil-

ity group of the plasmid present in S. flexneri SP1 [20]. 

�e plasmid sequence of blaCTX-M-14-harboring plasmid 

from isolate SP1 (named pSP1) was assembled with plas-

midSPAdes [22]. Assignment of the plasmid to an incom-

patibility (Inc) group was performed by multiplex PCR. 

PCRs were performed as described previously [27].

Phylogenetic analysis and comparative genomic analysis

Comparative genomic analysis was performed by orthol-

ogy identification method as previously described [11, 

28]. Genome sequences of the following representative S. 

flexneri strains were downloaded from the NCBI genome 

database: S. flexneri 2a strain 981 (CP012137), S. flexneri 

S7737 (AMJY00000000), S. flexneri 5a strain M90T 

(CM001474), S. flexneri CDC 796.83 (AERO00000000), 

S. flexneri 4343.70 (AFHC00000000), S. flexneri NCTC1 

(LM651928), S. flexneri 2a strain 301 (AE005674), S. 

flexneri G1663 (CP007037), S. flexneri Shi06HN006 

(CP004057), S. flexneri 2003036 (CP004056), S. flexneri 

str 4S BJ10610 (JMRK00000000), S. flexneri 4c strain 

1205 (CP012140), S. flexneri 2002017 (CP001383) and S. 

flexneri 1a strain 0228 (CP012735). Phylogenetic recon-

struction and analysis was performed wih the phangorn 

package, written in the R  language [29]. VennDiagram 

[30] was used to generate the Venn plots of S. flexneri 

SP1, S. flexneri str 4S BJ10610, S. flexneri 4c strain 1205 

(CP012140), S. flexneri 2002017, and S. flexneri 1a strain 

0228.

Results and discussion

General features

We performed whole genome sequencing using the Illu-

mina HiSeq  4000 system with 2  ×  150  bp paired-end 

reads. After quality control, we assembled the 1095 M bp 

filtered reads into contigs. �e assembled genome of S. 

flexneri SP1 revealed a genome size of 4,592,345 bp with 

a G+C content of 50.46%. �e largest contig consisted of 

137,097 bp and the length of N50 contig was 33,394 bp. 

�ese scaffolds contain 4798 coding sequences (CDSs), 

and 100 RNA-encoding genes. �e properties and the sta-

tistics of the genome are summarized in Additional file 1: 

Table S1. �e resulting genomic size of strain SP1 was 

similar to previous studies within the range of 4.1–4.8 M 

bp [31, 32]. Similarly, CDSs numbers were close to the 

previous publication [31]. Gene functions were predicted 

using RAST and COG analysis. RAST server based anno-

tation of the whole genome describes the distribution of 

subsystems in strain SP1 (Fig. 1a). Proteins responsible for 

carbohydrates (693 ORFs), amino acids and derivatives 

(384 ORFs), and cofactors, vitamins, prosthetic groups, 

pigments (292 ORFs) were abundant among the subsys-

tem categories. �e distribution of COGs is illustrated in 

Fig. 1b. �e most abundant COG categories were R (gen-

eral function prediction only), S (function unknown), E 

(amino acid transport and metabolism), G (carbohydrate 

transport and metabolism) and K (transcription). Further-

more, one incomplete prophage region was identified in 

the genome of SP1. It is a Salmonella ST64B-like phage 

(Acc-No. NC_004313) of 14.1  kb in length and a G+C 

content of 50.81%. Additionally, six questionable CRISPR 

loci were detected by CRISPERfinder.

Antimicrobial susceptibility pro�les and antibiotic 

resistance genes

�e in  vitro antimicrobial susceptibility testing demon-

strated that the strain SP1 was resistant to ampicillin, 

amoxicillin/clavulanic acid, cefazolin, ceftriaxone and tri-

methoprim, but susceptible to piperacillin/tazobactam, 

cefoxitin, cefepime, aztreonam, imipenem, amikacin, 

gentamicin, tobramycin, ciprofloxacin, levofloxacin, tige-

cycline and nitrofurantoin (Additional file  2: Table S2). 

We then screened the antibiotic resistance genes (ARGs) 

in the genome to further explore the genetic basis of mul-

tidrug resistance in this strain (Additional file  3: Table 

S3). In silico analysis revealed the presence of some puta-

tive ARGs for different drug classes. We detected genes 

mediating resistance to aminoglycosides (aadA24, strA 

and strB), β-lactams (blaCTX-M-14 and blaOXA-1), phenicol 

(catA1), tetracycline (tetD), sulphonamides (sul2), and 

trimethoprim (dfrA1). CTX-M-14 was the most frequent 

ESBL variant detected in Shigella isolates in China, fol-

lowed by CTX-M-15 [4, 33]. Hitherto, only a few studies 

have reported the presence of ESBLs in S. flexneri [34]. 

Interestingly, all of the blaCTX-M-14-harbouring S. flexneri 

strains were isolated from China [4, 7, 34, 35]. A previous 

study reported a high prevalence of extended-spectrum 

cephalosporin resistance Shigella mediated mainly by 

blaCTX-M (mainly blaCTX-M-14, 14.1%) in Hangzhou City, 

Zhejiang Province, China [35]. Our study further indi-

cates the existence of blaCTX-M-14-harbouring S. flexneri 

clone may responsible for these Shigella infections in this 

area. In addition, the insertion sequence (IS) elements 

were frequently detected in upstream of blaCTX-M genes 

[36]. ISfinder was thus employed to scan the blaCTX-M-14 

flanking sequences in a range of 6-kb for IS sequences 

and junction associated proteins. ISEcp1 and IS903B 

were found upstream of blaCTX-M-14. ISEcp1 belongs to 
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the IS1380 family, which may enhance the expression of 

blaCTX-M-14/-18, blaCTX-M-17 and blaCTX-M-19 β-lactamase 

genes [37].

Genetic context of blaCTX-M-14 gene

PlasmidFinder and plasmidSPAdes were used to detect 

the potential plasmids in the whole genome sequence. 

In silico analysis revealed that blaCTX-M-14 was located on 

an IncFII2 plasmid. To further explore the genetic envi-

ronment of the blaCTX-M-14 gene in isolate SP1, using the 

blaCTX-M-14 carrying contig as a query against the nr/

nt database revealed sequence homology to the  ~74  kb 

annotated blaCTX-M-14-positive IncFII2 plasmid pAC2901 

(GenBank:  KU987452) from Citrobacter freundii strain 

AC2901 (Fig.  2). Multiple sequence alignments demon-

strated that DNA sequences between pSP1 and pAC2901 

Fig. 1 Analysis of annotated genes in S. flexneri strain SP1 based on the SEED and COG databases. a The green bar represents the percentage of 

proteins that were annotated by RAST server, while the blue bar indicated the proteins not annotated. The pie chart demonstrates the abundance of 

each subsystem category and the count of each subsystem feature is shown. b Distribution of COGs. Each bar indicates the number of annotated 

genes based on the COG database
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share >99% identity. Successful dissemination of blaCTX-

M-14 among Enterobacteriaceae isolates from humans, 

animals and the environment has mainly been associated 

with IncK, IncF and IncI1 plasmids [38], and there has 

been only 1 report of a blaCTX-M-14 located on an IncFII2 

plasmid in the English literature [39]. Here we report for 

the first time an IncFII2 blaCTX-M-14-encoding plasmid in 

the genus Shigella.

Pathogenesis and virulence factors

Shigella flexneri remains a public health concern 

throughout the world and its pathogenesis should be 

further investigated. We performed a BLASTP search 

against the VRDB database and found several known vir-

ulence factors. �ese virulence factors include Shigella 

extracellular protein A  (sepA), glutamate decarboxylase 

(gadA), invasion plasmid antigen (ipaH9.8), long polar 

fimbriae (lpfA), hexosyltransferase homolog  (capU), 

invasion protein Shigella flexneri (ipaD), serine pro-

tease autotransporters of Enterobacteriaceae (pic), VirF 

transcriptional activator (virF), and Shigella IgA-like 

protease homologue  (sigA). �e ability to withstand an 

acid-challenge of pH 2.5 by S. flexneri is a necessary viru-

lence trait, which requires acid-induction of a functional 

GdaA in the stationary-growth phase [40]. IpaH9.8 

is a member of the IpaH family of Shigella, which are 

encoded on the 220  kb virulence plasmid or chromo-

some and has been shown to be secreted into the host 

cell where it is targeted to the nucleus [41]. Moreover, 

LpfA has been linked to virulence in enterohemorrhagic 

E. coli [42]. Earlier reports indicated the SigA is cyto-

pathic for HEp-2 cells and contributes to the intestinal 

fluid accumulation associated with S. flexneri infections 

[43]. Translocation of effector proteins into host cells 

and the surrounding space is a common strategy used 

by S. flexneri to target signaling pathways in the host cell 

[44], and IpaD and VirF are required to facilitate bacte-

rial invasion of host cells [45]. More importantly, Pic is 

secreted by pathogenic Gram-negative bacteria through 

the autotransporter pathway and targets a broad range 

of human leukocyte adhesion proteins, which represent 

unique immune-modulating bacterial virulence fac-

tors [46]. �ese data suggest that isolate SP1 is potential 

pathogenic, which is consistent with the isolation of SP1 

from a diarrhea patient.

Comparative analysis with other S. �exneri strains

Based on genomes downloaded from the NCBI database, 

phylogenetic analysis was performed and the resulting 

tree topology was assessed to identify genetic relatedness 

between 14 S. flexneri isolates and strain SP1 (Fig.  3a). 

�is revealed that SP1 is most closely related to S. flexneri 

str 4S BJ10610, which was also isolated from a severe 

diarrhea patient and was resistant to multiple drugs [47]. 

Other S. flexneri strains are also has highly similar, except 

for S. flexneri CDC 796.83, suggesting that S. flexneri 

strains show high similarity between different species. A 

previous study has highlighted that S. flexneri has a stable 

core genome that is equipped with a repertoire of viru-

lence determinants that have enabled it to colonize, and 

persist, in multiple locations for hundreds of years [48]. A 

functional genomic comparison was performed between 

strain SP1 and its four most closely related neighbors: 

S. flexneri str 4S BJ10610 (JMRK00000000), S. flexneri 

2002017 (CP001383), S. flexneri 4c str 1205 (CP012140), 

and S. flexneri 1a str 0228 (CP012735). �e Venn diagram 

indicates the presence of 4449 core conserved genes pre-

sent in the pan-genome of the analyzed S. flexneri isolates 

(Fig. 3b). Interestingly, a total of 178 strain-specific genes 

were identified in strain SP1.

Fig. 2 Genetic organization of scaffolds (portions of genome sequences reconstructed from the whole-genome sequence) containing blaCTX-M-14 

harbored by plasmid pSP1 and structural comparison with plasmid pAC2901. Arrows indicate positions and direction of transcription of genes. 

Regions with >99% homology are shown in gray. Information in parentheses after isolates represents the GenBank accession number
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Conclusions

As more S. flexneri genomes have been sequenced in 

recent years, comparative genomic studies have pro-

gressed rapidly. So far, whole genome studies of S. 

flexneri have exclusively focused on the historical global 

spread and recent local persistence among these isolates. 

�is work is the first description of the draft genome of 

a blaCTX-M-14-harbouring S. flexneri isolate and demon-

strates the compares the genome of strain SP1 to other 

S. flexneri isolates. However, the data presented here is a 

Fig. 3 a Phylogenetic tree of S. flexneri strain SP1 with 14 other S. flexneri isolates. The tree was constructed based on based on alignments of 

orthologous genes. b Venn diagrams showing the orthologous groups in the five most closely related S. flexneri genomes. Numbers inside the Venn 

diagrams indicated the number of genes found to be shared among the indicated genomes
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preliminary report on the virulence profile and antibiotic 

resistance of S. flexneri strain SP1. Future studies involv-

ing more ESBL-encoding S. flexneri isolates from China 

are urgently needed to study the dynamics of the dissem-

ination of ESBL genes, especially the complete sequence 

of plasmids carrying these ESBL genes.
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