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Abstract

Bacteria of the genus Pectobacterium are economically important plant pathogens that cause soft rot disease on a
wide variety of plant species. Here, we report the genome sequence of Pectobacterium carotovorum strain SCC1, a
Finnish soft rot model strain isolated from a diseased potato tuber in the early 1980’s. The genome of strain SCC1
consists of one circular chromosome of 4,974,798 bp and one circular plasmid of 5524 bp. In total 4451 genes were
predicted, of which 4349 are protein coding and 102 are RNA genes.
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Introduction
Pectobacterium species are economically important plant
pathogens that cause soft rot and blackleg disease on a
range of plant species across the world [1, 2]. The main
virulence mechanism employed by Pectobacterium is the
secretion of vast amounts of plant cell wall-degrading
enzymes [1, 3]. Due to their ability to effectively macer-
ate plant tissue for acquisition of nutrients, Pectobacter-
ium species are considered classical examples of
necrotrophic plant pathogens. Among the Pectobacter-
ium species, P. carotovorum has the widest host range
while potato is the most important crop affected in tem-
perate regions [1, 4]. P. carotovorum strain SCC1 was
isolated from a diseased potato tuber in Finland in the
early 1980’s [5]. It is highly virulent on model plant hosts
such as tobacco (Nicotiana tabacum) and thale cress
(Arabidopsis thaliana) as well as on the original host,
potato (Solanum tuberosum). For three decades, the
strain has been used as a model strain in the study of viru-
lence mechanisms of Pectobacterium as well as in the
study of plant defense mechanisms against necrotrophic

plant pathogens ([e.g. [6–13]). Here we describe the anno-
tated genome sequence of P. carotovorum strain SCC1.

Organism information
Classification and features
P. carotovorum strain SCC1 is a Gram-negative, motile,
non-sporulating, and facultatively anaerobic bacterium
that belongs to the order of Enterobacterales within the
class of Gammaproteobacteria. Cells of strain SCC1 are
rod shaped with length of approximately 2 μm in the ex-
ponential growth phase (Fig. 1). Strain SCC1 is patho-
genic causing soft rot disease in plants. It was originally
isolated from a diseased potato tuber in Finland in 1982
[5]. It also provokes maceration symptoms on model
plants Arabidopsis, tobacco, and tomato (Solanum lyco-
persicum), and is used as a soft rot model in research.
Strain SCC1 has previously been described belonging

to P. carotovorum subsp. carotovorum based on
biochemical properties such as its ability to grow at
+37 °C and in 5% NaCl, its sensitivity to erythromycin,
its ability to assimilate lactose, melibiose and raffinose
but not sorbitol, and its inability to produce reducing
sugars from sucrose and acid from α-methyl glucoside
[14]. A phylogenetic tree generated based on seven
housekeeping genes (dnaN, fusA, gyrB, recA, rplB, rpoS
and gyrA) clusters strain SCC1 together with other P.
carotovorum strains (Fig. 2). However, sequence based
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phylogenetic analysis was inconclusive regarding the
subspecies status. Overall, the phylogeny of Pectobacter-
ium species and subspecies is currently in turmoil and
assigning strains to subspecies is challenging [15].
P. carotovorum strain SCC1 has been deposited at the

International Center for Microbial Resources - French
collection of plant-associated bacteria (accession: CFBP
8537). MIGS of strain SCC1 is summarized in Table 1.

Genome sequencing information
Genome project history
P. carotovorum strain SCC1 has been used as a model
soft rot pathogen in the field of plant-pathogen inter-
actions ever since its isolation in the 1980’s. The

sequencing of the genome of strain SCC1 was initi-
ated in 2008 in order to further facilitate its use as a
model pathogen.
The project was carried out jointly by the Institute of

Biotechnology, Department of Biosciences and
Department of Agricultural Sciences at the University of
Helsinki, Finland. The genome was sequenced, assembled
and annotated. The final sequence contains two scaffolds
representing one chromosome and one plasmid. The se-
quence of the chromosome contains one gap of estimated
length of 3788 bp. The genome sequence is deposited in
GenBank under the accession numbers CP021894
(chromosome) and CP021895 (plasmid). Summary infor-
mation of the project is presented in Table 2.

Growth conditions and genomic DNA preparation
After isolation from potato in 1982, P. carotovorum
strain SCC1 has been stored in 22% glycerol at −80 °C.
For preparation of genomic DNA, the strain was first
grown overnight on solid LB medium (10 g tryptone, 5 g
yeast extract, 10 g NaCl, and 15 g agar per one liter of
medium) at 28 °C. A single colony was then picked and
grown overnight in 10 ml of liquid LB medium at 28 °C
with shaking. Cells were harvested by centrifugation for
20 min at 3200 g at 4 °C and resuspended into TE buffer
(10 mM Tris-HCl pH 7.5, 1 mM EDTA). SDS (5% w/v)
and Proteinase K (1 mg/ml) were used to break the cells
for one hour at 50 °C. Genomic DNA was extracted
using phenol-chloroform purification followed by
ethanol precipitation. The quantity and quality of the
DNA was assessed by spectrophotometry and agarose
gel electrophoresis.

Fig. 1 Photomicrograph of Gram stained exponentially growing
Pectobacterium carotovorum SCC1 cells. A light microscope with
100× magnification was used

Fig. 2 Maximum likelihood tree of Pectobacterium carotovorum SCC1 and other closely related Pectobacterium strains. The phylogenetic tree was
constructed from the seven housekeeping genes (dnaN, fusA, gyrB, recA, rplB, rpoS and gyrA). The concatenated sequences were aligned using
MAFFT multiple sequence alignment program (version 7) with default parameters [42]. The phylogenetic tree was built in RAxML (Randomized
Axelerated Maximum Likelihood) program with Maximum likelihood (ML) inference [43]. 88 different nucleotide substitution models were tested
with jModelTest 2.0 and the best model was selected using Akaike information criterion (AIC) [44]. Bootstrap values from 1000 replicates are shown in
each branch. Dickeya solani IPO2222 was used as the outgroup. Type strains are marked with T after the strain name. GenBank accession numbers are
presented in the parentheses. The scale bar indicates 0.04 substitutions per nucleotide position
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Table 1 Classification and general features of Pectobacterium carotovorum strain SCC1 [46]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [47]

Phylum Proteobacteria TAS [48]

Class Gammaproteobacteria TAS [49, 50]

Order Enterobacterales TAS [51]

Family Pectobacteriaceae TAS [51]

Genus Pectobacterium TAS [52, 53]

Species Pectobacterium carotovorum TAS [52, 54]

Strain: SCC1 (CFBP 8537) TAS [5]

Gram stain Negative IDA

Cell shape Rod IDA

Motility Motile IDA

Sporulation Non-sporulating NAS [51]

Temperature range Mesophile, able to grow at 37 °C TAS [14]

Optimum temperature ~28 °C IDA

pH range; Optimum Unknown

Carbon source Sucrose, lactose, melibiose, raffinose IDA,TAS [14]

MIGS-6 Habitat Potato TAS [5]

MIGS-6.3 Salinity Able to grow in 5% NaCl TAS [14]

MIGS-22 Oxygen requirement Facultatively anaerobic NAS [51]

MIGS-15 Biotic relationship Free-living NAS

MIGS-14 Pathogenicity Pathogenic NAS [53]

MIGS-4 Geographic location Finland TAS [5]

MIGS-5 Sample collection 1982 NAS

MIGS-4.1 Latitude 60° 13′ 36.15” N NAS

MIGS-4.2 Longitude 25° 00′ 54.77″ E NAS

MIGS-4.4 Altitude Unknown
aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement
(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are
from the Gene Ontology project [55]

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality One gap remaining, otherwise finished

MIGS-28 Libraries used Standard 454 and Solid libraries

MIGS 29 Sequencing platforms 454, SOLiD, Sanger

MIGS 31.2 Fold coverage Chromosome 40×, plasmid 67×

MIGS 30 Assemblers gsAssembler v 1.1.03.24

MIGS 32 Gene calling method Prodigal

Locus Tag SCC1

Genbank ID CP021894, CP021895

GenBank Date of Release July 27, 2017

GOLD ID

BIOPROJECT PRJNA379819

MIGS 13 Source Material Identifier CFBP 8537

Project relevance Plant pathogen
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Genome sequencing and assembly
Genome sequencing was performed at DNA and
Genomics Laboratory, Institute of Biotechnology,
University of Helsinki, Finland. Genomic DNA was se-
quenced using 454 (454 Life Sciences/Roche), SOLiD3
(Life Technologies) and ABI 3130xl Genetic Analyzer
(Life Technologies) instruments. DNA was fragmented
into approximate size of 800 bp using Nebulizer (Roche)
followed by standard fragment 454 library with the GS
FLX series reagents. For the SOLiD library genomic
DNA was fragmented with a Covaris S2 Sonicator
(Covaris Inc.) to approximate size of 250 bp. The library
was prepared using the SOLiD library kit (Life technolo-
gies).Newbler (version 1.1) was used to assemble
366,453 pyrosequencing reads (77,6 Mbp) in approxi-
mate length of 240 bp with default settings into 100
large (>1000 bp) contigs. GAP4 program (Staden pack-
age) was used for contig editing, primer design for PCRs
and primer walking, and finishing the genome. Gaps
were closed using PCR and traditional primer walking
Sanger sequencing method. Finally, SOLiD reads were
mapped to the genome and fifteen single genomic posi-
tions were fixed. Final sequencing coverages were 40× in
genome and 67× in plasmid sequences.

Genome annotation
Coding sequences were predicted using the Prodigal
gene prediction tool [16]. GenePRIMP [17] was run to
correct systematic errors made by Prodigal and to reana-
lyze the remaining intergenic regions for missed CDSs.
Functional annotation for the predicted genes was per-
formed using the PANNZER annotation tool [18]. The
annotation was manually curated with information from
publications and the following databases: COG [19],
KEGG [20], CDD [21], UniProt and NCBI non-
redundant protein sequences. To identify RNA genes,
RNAmmer v1.2 [22] (rRNAs) and tRNAscan-SE [23]
(tRNAs) were used. Clusters of Orthologous Groups as-
signments and Pfam domain predictions were done
using the WebMGA server [24]. Transmembrane helices
were predicted with TMHMM [25] and Phobius [26].
For signal peptide prediction, SignalP 4.1 [27] was used.
CRISPRFinder [28] was used to detect Clustered Regu-
larly Interspaced Short Palindromic Repeats (CRISPRs).

Genome properties
The genome of P. carotovorum SCC1 consists of one cir-
cular 4,974,798 bp chromosome and one circular
5524 bp plasmid (Table 3, Fig. 3). The total genome size
is 4,980,322 bp with an overall G + C content of 51.85%
(Table 4). A total of 4451 genes were predicted, out of
which 4440 are chromosomal and 11 reside on the plas-
mid. 4349 (97.71%) genes are protein coding and 102
(2.29%) are RNA genes (77 tRNA, 22 rRNA, and 3 other

RNA genes). Of the 4349 protein coding genes, 3812
(87.65%) could be assigned to COG functional categories
(Table 5).

Insights from the genome sequence
P. carotovorum strain SCC1 harbors a small cryptic plas-
mid of 5524 bp, pSCC1. The plasmid contains sequences
for RNAI and RNAII, two non-coding RNAs involved in
replication initiation and control in enterobacterial RNA
priming plasmids such as ColE1 [29]. A similar replica-
tion region has previously been described in the small
cryptic plasmid pEC3 of P. carotovorum subsp. caroto-
vorum strain IFO3380 [30]. In addition to the two RNA
genes, pSCC1 was predicted to contain nine protein-
coding genes. Four of these (mobABCD) encode
mobilization proteins. The mob locus is required for
mobilization of non-self-transmissible plasmids and is
found on many enterobacterial plasmids including pEC3
[31]. No function could be assigned to the remaining
five genes on pSCC1. One of them, SCC1_4463, is very
similar to genes found in many Enterobacteriaceae
genomes, especially those of genera Enterobacter,
Escherichia and Salmonella, whereas similar genes to
the other four on pSCC1 are not widely present in other
sequenced genomes.
Pectobacterium infection is characterized by macer-

ation symptoms caused by the secretion of a large ar-
senal of plant cell wall-degrading enzymes. Accordingly,
the genome of P. carotovorum strain SCC1 was found to
contain genes for eleven pectate lyases (pelABCILWXZ,
hrpW, SCC1_1311, and SCC1_2381), one pectin lyase
(pnl), four polygalacturonases (pehAKNX), one oligoga-
lacturonate lyase (ogl), three cellulases (celSV, bcsZ), one
rhamnogalacturonate lyase (rhiE), two pectin methyles-
terases (pemAB), and two pectin acetylesterases (paeXY).
In addition, the genome harbors two genes encoding
proteases previously characterized as plant cell wall-
degrading enzymes (prt1, prtW) as well as a number of
putative proteases, some of which may function in plant
cell wall degradation. Different Pectobacterium species
and strains have been found to harbor very similar col-
lections of plant cell wall-degrading enzymes [32], and
the number and types of enzymes in the genome of
strain SCC1 fit this picture well.
Protein secretion plays an essential role in soft rot

pathogenesis [33]. The most important secretion system
in Pectobacterium is the type II secretion system, also

Table 3 Summary of P. carotovorum SCC1 genome: one
chromosome and one plasmid

Label Size (Mb) Topology INSDC identifier RefSeq ID

Chromosome 4.974798 Circular CP021894

Plasmid pSCC1 0.005524 Circular CP021895
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known as the Out system (outCDEFGHIJKLMN), which
transports proteins from the periplasmic space into the
extracellular environment [34]. It is responsible for the
secretion of most plant cell wall-degrading enzymes such
as pectinases and cellulases as well as some other

virulence factors such as the necrosis-inducing protein
Nip [33, 35]. Furthermore, Pectobacterium genomes typ-
ically harbor multiple type I secretion systems, which se-
crete proteases and adhesins [33]. At least four type I
secretion systems are encoded in the genome of P.
carotovorum SCC1 (prtDEF, SCC1_1144–1146,
SCC1_1589–1591, and SCC1_3286–3288). Strain SCC1
also harbors a type III secretion system cluster
(SCC1_2406–2432), which has previously been charac-
terized in this strain and shown to affect the speed of
symptom development during infection [6, 36]. Overall,
the role of the type III secretion system in Pectobacter-
ium is not well understood and P. wasabiae and P. par-
mentieri seem to lack it completely [32, 37]. The type IV
secretion system has been shown to have a minor contri-
bution to virulence of P. atrosepticum [38]. However, it
is sporadically distributed among Pectobacterium strains
[33], and no type IV secretion genes could be found
from the genome of P. carotovorum SCC1. Finally, the
type VI secretion system has also been shown to have a
small effect on virulence at least in some Pectobacterium
species [32, 39]. In P. carotovorum SCC1, one type VI
secretion system cluster is present in the genome
(SCC1_0988–1002).
Soft rot pathogens have been suggested to be able to use

insect vectors in transmission, and indeed, certain P.

Fig. 3 Circular maps of the chromosome and plasmid of Pectobacterium carotovorum SCC1. Rings from the outside to the center: Genes on forward
strand (colored by COG categories), Genes on reverse strand (colored by COG categories), GC content, GC skew. Maps were generated using the
CGView Server [45]

Table 4 Genome statistics

Attribute Value % of Total

Genome size (bp) 4,980,322 100.00

DNA coding (bp) 4,314,063 86.62

DNA G + C (bp) 2,580,564 51.85

DNA scaffolds 2

Total genes 4451 100.00

Protein coding genes 4349 97.71

RNA genes 102 2.29

Pseudo genes NA NA

Genes in internal clusters NA NA

Genes with function prediction 3955 88.86

Genes assigned to COGs 3812 85.64

Genes with Pfam domains 3782 84.97

Genes with signal peptides 428 9.62

Genes with transmembrane helices 939 21.10

CRISPR repeats 5
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carotovorum strains can infect Drosophila flies and persist
in their guts [40]. This ability has been linked to the Evf
(Erwinia virulence factor) protein [41]. The evf gene is
present in the genome of P. carotovorum SCC1 suggesting
that the strain may have the ability to interact with insects.

Conclusions
In this study, we presented the annotated genome se-
quence of the pectinolytic plant pathogen Pectobacter-
ium carotovorum SCC1 consisting of a chromosome of
4,974,798 bp and a small cryptic plasmid of 5524 bp.
Strain SCC1 was originally isolated from a diseased po-
tato tuber and it has been used as a model strain to
study interactions between soft rot pathogens and their
host plants for decades. In accordance with the patho-
genic lifestyle, the genome of strain SCC1 was found to
harbor a large arsenal of plant cell wall-degrading en-
zymes similar to other sequenced Pectobacterium ge-
nomes. In addition, an insect interaction gene, evf, is
present in the genome of strain SCC1 suggesting the
possibility of insects as vectors or alternative hosts for
this strain. The genome sequence will drive further the
use of P. carotovorum SCC1 as a model plant pathogen.
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Table 5 Number of genes associated with general COG functional categories

Code Value %age Description

J 183 4.21 Translation, ribosomal structure and biogenesis

A 2 0.05 RNA processing and modification

K 332 7.63 Transcription

L 161 3.70 Replication, recombination and repair

B 0 0.00 Chromatin structure and dynamics

D 40 0.92 Cell cycle control, Cell division, chromosome partitioning

V 61 1.40 Defense mechanisms

T 242 5.56 Signal transduction mechanisms

M 241 5.54 Cell wall/membrane biogenesis

N 114 2.62 Cell motility

U 122 2.81 Intracellular trafficking and secretion

O 152 3.50 Posttranslational modification, protein turnover, chaperones

C 248 5.70 Energy production and conversion

G 376 8.65 Carbohydrate transport and metabolism

E 435 10.00 Amino acid transport and metabolism

F 94 2.16 Nucleotide transport and metabolism

H 177 4.07 Coenzyme transport and metabolism

I 103 2.37 Lipid transport and metabolism

P 318 7.31 Inorganic ion transport and metabolism

Q 67 1.54 Secondary metabolites biosynthesis, transport and catabolism

R 445 10.23 General function prediction only

S 358 8.23 Function unknown

– 537 12.35 Not in COGs

The total is based on the total number of protein coding genes in the genome
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