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Abstract

Background: The Mediterranean olive tree (Olea europaea subsp. europaea) was one of the first trees to be
domesticated and is currently of major agricultural importance in the Mediterranean region as the source of
olive oil. The molecular bases underlying the phenotypic differences among domesticated cultivars, or between
domesticated olive trees and their wild relatives, remain poorly understood. Both wild and cultivated olive
trees have 46 chromosomes (2n).

Findings: A total of 543 Gb of raw DNA sequence from whole genome shotgun sequencing, and a fosmid
library containing 155,000 clones from a 1,000+ year-old olive tree (cv. Farga) were generated by Illumina
sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome
with a scaffold N50 of 443 kb, and a total length of 1.31 Gb, which represents 95 % of the estimated genome
length (1.38 Gb). In addition, the associated fungus Aureobasidium pullulans was partially sequenced. Genome
annotation, assisted by RNA sequencing from leaf, root, and fruit tissues at various stages, resulted in 56,349
unique protein coding genes, suggesting recent genomic expansion. Genome completeness, as estimated
using the CEGMA pipeline, reached 98.79 %.

Conclusions: The assembled draft genome of O. europaea will provide a valuable resource for the study of the
evolution and domestication processes of this important tree, and allow determination of the genetic bases of
key phenotypic traits. Moreover, it will enhance breeding programs and the formation of new varieties.
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Data description

Sequencing

Genomic DNA was extracted from leaf tissue of a single

Mediterranean olive tree (Olea europaea L. subsp. europaea

var. europaea cv. 'Farga'; NCBI Taxonomy ID: 158383).

This tree, named ‘Santander’, was translocated from the

Maestrazgo region (Eastern Spain) to Boadilla del Monte

(Madrid, Spain) in 2005. O. europaea is a common tree in

Spain and there are no legal restrictions on its use for

research, including cv. Farga.

The tree age was estimated to be 1,200 years old based

on dendrometric analyses (Antonio Prieto-Rodríguez

personal communication). A combination of fosmid and

whole genome shotgun (WGS) libraries were sequenced

using Illumina sequencing equipment.

The standard Illumina protocol was followed, with

minor modifications to create short-insert paired-end

(PE) libraries (Illumina Inc., Cat. # PE-930–1001), which

were run on different types of Illumina sequencers

(MiSeq 2×250, 2×300, 2×500, 1×600 and HiSeq2500

2×150) according to standard procedures. The MiSeq XL

modes (2×500 and 1×600) were carried out according to
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the MiSeq modifications reported in [1] and with the

technical support of Illumina.

Primary data analysis was carried out using the stand-

ard Illumina pipeline (HCS 2.0.12.0, RTA 1.17.21.3).

Mate-pair (MP) libraries (3, 5, 7 and 10 kb fragment

sizes) were constructed at the CRG sequencing unit ac-

cording to the Nextera Mate Pair Preparation protocol

(Illumina Inc.), and sequenced on the HiSeq2500 plat-

form in 2x150bp read length runs. The number of lanes

and raw sequenced outputs for each library are summa-

rized in Table 1.

Preliminary kmer analysis of PE data (Fig. 1) indicated

a high level of heterozygosity in this sample. To reduce

the risk of separately assembling two different haplo-

types from the same locus and including them in the

final assembly, a fosmid pooling strategy was chosen

similar to the one used for the oyster genome project

[2]. A fosmid library of 155,000 clones was constructed

in the pNGS vector (Lucigen Corp.). Ninety-six pools of

~1,600 clones each were made, and the purified DNA

was used to construct short-insert PE libraries using the

TruSeq™ DNA Sample Preparation Kit v2 (Illumina Inc.)

and the KAPA Library Preparation kit (Kapa Biosystems)

according to manufacturers’ instructions. The pools

were sequenced using TruSeq SBS Kit v3-HS (Illumina

Inc.), in PE mode, 2×150 bp, in a fraction of a sequen-

cing lane of the HiSeq2000 flowcell v3 (Illumina Inc.) ac-

cording to standard Illumina operation procedures. The

raw sequence yield per pool was 11.3 Gb on average

(SD: 2 Gb), corresponding to ~150 × depth. In addition

a fosmid-end library was created from the same set of

clones using the Lucigen pNGS protocol and run in one

lane of a HiSeq2000.

RNA was prepared from seven different tissues or de-

velopmental stages (root, young leaf, mature leaf, flower,

flower bud, immature fruit, and green olives), using the

Zymo ZR Plant RNA extraction kit (Zymo Research,

Irvine, CA). Then, RNA-Seq libraries were prepared

using the TruSeq™ RNA Sample Prep Kit v2 (Illumina

Inc.) with minor modifications, and libraries were se-

quenced using the TruSeq SBS Kit v3-HS in PE mode

with a read length of 2×75 bp. Over 50 million PE reads

per sample were generated in a fraction of a sequencing

lane on a HiSeq2000 (Illumina Inc.), following the man-

ufacturer’s protocol. Image analysis, base calling and run

quality scoring were processed using the manufacturer’s

software Real Time Analysis (RTA 1.13.48), followed by

generation of FASTQ sequence files using CASAVA

software (Illumina Inc.).

Genome assembly

A kmer analysis was performed to estimate the genome

size, level of heterozygosity and repeat content of the

sequenced genome. Using the software Jellyfish v1.1.10

[3], 17-mers were extracted from the WGS PE reads

(PE400), and unique kmers were counted and plotted ac-

cording to kmer depth (Fig. 1). The homozygous or

main peak is found at a depth of ~52x. The estimated

genome size (found by dividing the total number of

kmers by the kmer depth of the main peak) is 1.38 Gb,

which is at the low end of the range of empirical esti-

mates. The C-value ranges from 1.45–2.33 pg (1.42 Gb–

2.28 Gb), with the median at 1.59 pg (1.56 Gb) (data

from [4], see [5–9]), suggesting the existence of variation

in the repetitive fraction of the genome for the species.

The left peak at 26x kmer depth indicates many poly-

morphic sites in the genome. In fact, using the Genomic

Character Estimator program, gce v 1.0.0 [10], the het-

erozygous ratio based in kmer individuals is 0.054, and

the corrected estimate of genome size is 1.32 Gb.

Hereon the gce estimate is referred to as the ‘assembl-

able’ portion of the genome.

A pilot WGS assembly using only PE data was per-

formed in order to generate enough contiguous se-

quences to gather library insert size statistics. PE reads

were first filtered for contaminating sequences (phiX,

Escherischia coli and other vector sequences, as well as

O. europaea plastids) using GEM [11] with –m 0.02

(2 % mismatches). Then, the reads were assembled into

scaffolds using AbySS v1.3.6 [12] with parameters: −s

600 − S 600–3000 − n 6 −N 10 − k 127 − l 75 − aligner

map − q 10. This resulted in an assembly with a total

length of 1.94 Gb, and contig and scaffold N50s of

3.7 kb and 3.8 kb, respectively. Library insert sizes were

estimated by mapping against this draft assembly. For

the WGS PE libraries sequenced on Illumina HiSeq2000

using 2x151 bp reads, the insert size distribution

Table 1 Sequencing libraries and respective yields used for
whole genome shotgun sequencing and fosmid pools

Library Mode Name Yield (Gb)

PE400 2*262 837G_B 8.3

PE400 2*312 837G_B 68.0

PE400 2*255 837G_B 8.2

PE560 2*312 846G_D 33.9

PE560 2*151 846G_D 99.2

PE560 2*500 846G_E_PCR 14.1

PE560 2*151 846G_E_PCR 46.8

PE725 2*151 837G_E_PCR 96.3

PE725 1*625 837G_E_PCR_2 15.2

MP3k 2*151 T587 33.9

MP5k 2*151 T586 40.3

MP7k 2*151 T585 37.6

MP10k 2*151 T584 42.7

FP PE350 2*151 1FP to 96FP 11.3*

*mean yield
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followed a bimodal distribution with a main peak at

725 bp and a smaller peak at 300 bp. Before continuing

with the assembly, read pairs belonging to the smaller

peak were filtered out, if connecting reads were found

overlapping both mates of the pair.

The inflated length (47 % of the assemblable part of

the genome) and the poor contiguity obtained for the

draft assembly are symptomatic of the expected difficulty

in distinguishing divergent alleles of the same locus from

true repeats. To address this challenge, the 96 sequenced

fosmid pools (3.9x physical coverage of the genome,

each pool covering ~4 % of the genome) were assembled

using the assembly pipeline shown in Fig. 2 to obtain 96

largely haploid assemblies (simulations of 1,600-clone

pools with a genome size of 1.38 Gb show a mean of

2.5 % of sequenced bases to derive from separate over-

lapping clones, half of which would come from different

alleles). Optimal kmer size was 97 for most of the pools.

For each pool a base assembly was produced using

ABySSv1.3.7 and parameters: −s 300 − S 300–5000 − n 9

−N 15 − k 97 − l 75 − aligner map − q 10. Afterwards,

the base assemblies went through several rounds of gap-

filling [13], decontamination, consistency checks, and

rescaffolding with ABySSv1.3.7. The decontamination

Table 2 Summary statistics of the Oe6 assembly

Oe6Assembly Length (bp) Contiguity (bp) Completeness (CEGMA)

N10 N50 N90 Complete Partial

Contigs 1,264,682,749
(59,457)

138,917
(695)

52,353
(7,085)

11,476
(25,802)

− −

Scaffolds 1,318,652,350
(11,038)

1,088,680
(94)

443,100
(901)

110,965
(3099)

98.8 % 98.8 %

Numbers of contigs/scaffolds are shown in parentheses
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Fig. 1 Kmer spectrum. Using Jellyfish v1.1.10, 17-mers were counted in a subset of whole genome shotgun paired-end reads corresponding to
the PE560 2x150 sequencing run. The density plot of the number of unique kmer species (y axis) for each kmer frequency (x axis) is plotted. The
homozygous peak is observed at a multiplicity (kmer coverage) of 52 x, while the heterozygous peak is observed at 26 x. The tail extending to
the right represents repetitive sequences. The total number of kmers present in this subset was 71,902,584,399. From these data, the Genome
Character Estimator (gce) estimates the genome size to be 1.32 Gb
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step consists of detecting contaminant sequences (phiX,

vectors, UniVec, E. coli, plastids) in the intermediate as-

semblies using blastn and masking any matches with Ns,

thus producing gaps in the assembly. As a result of the

FP pipeline, 96 individual assemblies were obtained with

an average scaffold N50 of 33,786 ± 3,105 bp. The distri-

bution of scaffold sizes follows a bimodal distribution

(Fig. 3), suggesting that a large fraction of fosmid clones

are fully assembled. Mapping of fosmid ends to the

merged assembly (‘FP assembly’, see below) gives an esti-

mate of the clone insert size distribution (mean of

36.7 kb ± SD 4.97 kb) that corresponds well with the

right peak of the scaffold sizes.

The 96 fosmid pool assemblies were then merged

based on overlaps using in-house OLC-like assembly-

merging software called ASM (L. Frias and P. Ribeca,

manuscript in preparation; scripts are publicly available

at [14]. Two rounds of merging were performed, with

intermediate scaffolding and gapfilling steps. In the first

round, a minimum overlap of 2,400 bp and high se-

quence similarity (maximum edit distance of 1.5 %) was

used, while in the second round, longer overlaps

(4,000 bp) and higher sequence divergence (maximum

edit distance of 10 %) were used in order to merge allelic

regions. Each round of merging collapses repeats unless

higher order information supports a unique path for

resolving a repetitive region; this includes both the

sequence of the input data (contigs) and scaffolding

information (i.e., the order of contigs in scaffolds in the

original fosmid pool assemblies). Merging produced an

intermediate assembly (named ‘FP assembly’ in Fig. 4)

with a scaffold N50 of ~45 kb and a total length of 1.38

Gb. Although this assembly was 4.54 % larger than the

assemblable genome size (1.32 Gb), gene completeness

according to CEGMA was only 95.97 % complete and

97.58 % partial, suggesting that 2.42–4.03 % of the gene

space may have been missed.

To increase the overall completeness of the assembly,

all WGS reads that did not map to the FP assembly were

selected and used to obtain a complementary assembly

using ABySSv1.5.2 with parameters: −s 300 − S 300–

5000 − n 10 −N 10 − k 95 − l 75 − aligner map − q 10.

This assembly accounts for 60.7 Mbp of sequence, and

has an N50 of 1,506 bp for contigs and 2,351 bp for scaf-

folds. This assembly was then broken into contigs, 50 bp

was eroded from the ends of each contig, then contigs

smaller than 200 bp were filtered out. Both assemblies

were subsequently gathered by joining the WGS contigs

with the merged fosmid pool assembly, and scaffolding

them with SSPACE 2.0 [15]. To account for read pairs

coming from two different alleles in the same genomic

region, reads were mapped to the SSPACE input assem-

bly with gem-mapper (settings: m = 0.05 and e = 0.1) and

filters were applied to detect unique mappings with no

subdominant match. The resulting comprehensive as-

sembly had a scaffold N50 of 303.7 kb and a total length
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Fig. 2 Comparison of fosmid insert and fosmid-pool scaffold size distributions. Fosmid clone insert size estimates (black contiguous line) were obtained
by mapping fosmid end sequences to our merged fosmid pool (FP) assembly. The fosmid end sequencing of only 155,000 unique clones resulted in a
very high sequencing depth, so we set a lower threshold of 100 x for the number of times a given length was seen and counted each length only once.
While this procedure results in underestimating the amplitude of the density peak, both the shape of the distribution and the mean insert size (36.7 kb)
should be unaffected, while the standard deviation is likely an overestimate. The distribution of scaffold lengths from the 96 fosmid pool assemblies is
given by the blue dashed line (scaffolds smaller than 2.5 kb were discarded to avoid noise)

Cruz et al. GigaScience  (2016) 5:29 



Contamination_DB

PhiX
Vector
UniVec
E.coli

Chloroplast

FPS
PE315

Cutadapt

GEM

Sequencing

ABySS
scaffolding

fp_0

fp_0.gf

fp_1

fp_1.gf

fp_2

fp_2.gf

ABySS
scaffolding

ABySS

Assembly

Consistency

Decontamination

GapFiller

Decontamination

GapFiller

Consistency

Decontamination

GapFiller

WGS
PE720
MP3k
MP5k
MP7k

MP10k

GEM

WGS_mapped

Sequencing

Fig. 3 (See legend on next page.)

Cruz et al. GigaScience  (2016) 5:29 



of 1.51 Gb, ~190 Mb above the expected genome length

(1.32 Gb). The excess of assembled sequence is likely to

be caused by the presence of artificial duplications dur-

ing the assembly process (i.e., uncollapsed haplotypes

that have been resolved in two different contigs). Several

strategies were used to refine the assembly and obtain a

haploid reference. First, consistency check was applied

to remove local misassemblies by mapping short and

intermediate libraries (PE720, MP3k and MP5k) to the

input assembly: a positive score is assigned to the assem-

bly regions supported by read pairs separated by distances

falling within the limits (mean ± 3σ) of the empirical

distribution, while a negative score is assigned to re-

gions where read pairs map i) outside of these bounds,

ii) in inconsistent orientation, or iii) to different scaf-

folds. Regions where the sum of these two vectors is

negative are removed from the assembly. After applying

this consistency check, the resulting assembly had

46,893 consistent contig blocks (compared to 25,042

contigs before the consistency check), giving a total of

1.46 Gb with an N50 of 101 kb. Second, this assembly

was collapsed using a minimum overlap of 4 kb and the

gem-mapper parameters − e 0.03 and −m 0.02, so only

close matches were merged (similar uncollapsed haplo-

types, identical assembly artifacts, and near identical re-

peats). Additionally, in order to avoid spurious joins,

tip merging was applied to the alignment graph down

to overlaps of 250 bp. Finally, no repeat resolution was

applied, but coherent links from input scaffolds were

reinserted. Consequently, the assembly length shrunk

to ~1.30 Gb, almost matching the assemblable fraction

of the genome (1.32 Gb). An additional consistency

check was run on the collapsed assembly using the

short and intermediate libraries (PE720, MP3k and

MP5k), which resulted in breaking the assembly from

64,814 into 72,593 scaffolds, giving a total length of

1.30 Gb with a scaffold N50 of 50 kb. This assembly

length is what was expected based on the gce estimate.

As a final assembly step, PE reads with high divergence

(gem-mapper parameters m = 0.05 and e = 0.08) were

mapped to the assembly and rescaffolded with SSPACE

2.0 using parameters k = 3 and a = 0.6. Then, scaffolds

shorter than 500 bp were discarded, and the GapFiller

program [13] was used to close about 40 % of the

assembly gaps. This assembly was labeled ‘Oe3’.

The Oe3 assembly was polished using a mapping-

based strategy designed to correct single nucleotide sub-

stitution and short insertion–deletion errors. First, one

library of paired-end reads (PE725) was aligned using

BWA mem (v0.7.7) [16] and variant calling was per-

formed. Selecting only homozygous alternative variants,

an alternative FASTA sequence was obtained using

GATK (v3.5) FastaAlternateReferenceMaker [17]. After

discarding scaffolds shorter than 500 bp, the resulting

assembly (Oe5) had a scaffold N50 of 444 kb and a con-

tig N50 of 51 kb. After detecting putative contamination

in some scaffolds of the Oe5 assembly, a final decontam-

ination step was performed against yeast, bacteria,

arthropod and mitochondrial sequences, combining

homology search results obtained by BLAST and, in the

case of mitochondrial sequences, regions of high depth

(~6000x). In total, 509 scaffolds were deleted from Oe5

and some parts of another 27 scaffolds were removed.

The assembly resulting from this step, Oe6, has a scaf-

fold N50 of 443 kb and a contig N50 of 52 kb (Table 2).

Oe6 contains 48,419 gaps comprising 53,969,601 sites.

The gene completeness of this assembly was estimated

using CEGMA [18] and BUSCO (Benchmarking Univer-

sal Single-Copy Orthologs) [19]. CEGMA analysis re-

sulted in a gene completeness of 98.79 %, while BUSCO,

using a plant-specific database of 956 genes, determined

a completeness of 95.6 % of plant genes. A summary of

the complete assembly strategy is shown in Fig. 4.

Partial assembly of an olive tree associated fungus:

Aureobasisium pullulans

One of the putative sources of non-plant sequence

present in the olive samples was considered of interest;

it was represented among the fosmid pools and seemed

to belong to the fungal genus Aureobasidium, which has

been previously associated with olive trees [20]. To

assemble a partial sequence of this genome, four fully

sequenced Aureobasidium genomes were downloaded

from JGI [21]. Then, BWA v0.7.3a [16] was used to map

all the reads from the fosmid libraries to the four ge-

nomes. Once mapped, the reads were filtered allowing

only soft clipping for a maximum of one-third of the

read, and deleting read pairs when only one of the pairs

passed the filters. This resulted in a collection of

18,549,090 reads, which were assembled with SPAdes

(See figure on previous page.)
Fig. 3 Fosmid pool assembly pipeline. For each fosmid pool, a single paired-end (PE) library sequenced at 2 x 150 bp was first filtered and trimmed of
pNGS vector sequences, as well as those of Escherichia coli and other common contaminants, including Olea europaea chloroplast sequences. Reads
were assembled with ABySS, gapfilled with GapFiller, and contaminants removed using a BLAST homology search. A consistency check was performed,
breaking the assemblies at any point inconsistent with the proper insert size and orientation of fosmid pool PE reads. The resulting contigs
were scaffolded using whole genome shotgun (WGS) data, followed by another round of gapfilling, decontamination and consistency checking,
this time including the new WGS data. To repair the consistency broken assembly, a final round of scaffolding, gapfilling and decontamination
was performed
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v.3.1.1 [22]. Scaffolding was done using the assembled

fosmids using SSPACE-LongRead [23], and gaps were

filled with gapcloser [24]. These two steps were repeated

twice. The final alignment was then compared to the

Aureobasidium genomes using BLAST. Contigs longer

than 200 nt, for which less than 20 % of their sequence

mapped against any of the Aureobasidium genomes,

were separated and compared against the NCBI non-

redundant nucleotide database [25]. Only those contigs

with first hits to fungal species were kept. The final

assembly comprised 18 Mb, roughly two-thirds of the

typical size of Aureobasidium genomes (25–29 Mb). To

identify the species and strain, the most common fungal

markers used for fungal barcoding were identified (ITS,

SSU, LSU, RPB1, RPB2 and EF1). Most of the markers

were missing in the assembly or were too short; based

on a 769 nt fragment of the RPB1 gene, the most similar

sequence was that of Aureobasidium pullulans isolate

AFTOL-ID 912 (DQ471148.1); a strain that was isolated

from the grape plant Vitis vinifera. The identity of this

fragment was 99.95 % indicating that this was likely a

different strain of the same species. Augustus [26] was

used to perform gene annotation. The training parameters

were obtained using scaffold 1 of the published A. pullu-

lans genome, and then used to predict proteins in our

strain of A. pullulans. This resulted in 6,411 proteins.

Olive tree genome annotation

To annotate the olive tree genome, consensus gene models

were obtained by combining transcript alignments, protein

alignments, and gene predictions. A flowchart outlining

these steps is shown in Fig. 5. Transcripts for assembly

with Program to Assemble Spliced Alignments (PASA;

r2014-04-17) [27] were obtained as follows: first, RNA-Seq

reads generated from different tissues by our group (see

above), plus publicly available datasets in the Sequence

Read Archive (SRA) (Table 3), were aligned to the final as-

sembly Oe6 with GEM v1.6.1 [11]. Transcript models were

subsequently generated using the standard Cufflinks v2.1.1

pipeline [28] – starting with the BAM files, resulting in

2,056,606 transcripts, which were then added to the PASA

database. In addition, 12,959 olive expressed sequence tags

(ESTs) and mRNAs present in Genbank (October 27,

2014) [29–31] were also added to PASA using GMAP

v2013-10-28 [32] as the alignment engine. All of the above

transcript alignments were then assembled by PASA,

resulting in 942,302 PASA assembled transcripts, which

were scanned with PASA’s Transdecoder program [27] to

detect likely protein coding regions. This tool predicted a

total of 169,562 candidate genes. From these, a training set

for ab initio gene predictors was created from PASA

models coding for complete proteins, longer than 500

amino acids and with a BLAST hit to either the Lamiidae

or Asteridae proteomes. A training set of 589 non-
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redundant genes was obtained. In addition, the complete

Lamiidae and Asteridae proteomes present in Uniprot

(February 10, 2015) were aligned to the olive genome

using SPALNv2.1.2 [33], resulting in 625,980 coding se-

quence (CDS) alignments.

For ab initio gene prediction, transposable element

repeats in the Oe6 assembly were first masked with

RepeatMasker v4-0-5 [34] using a custom repeat library

constructed by running RepeatModeler v1-0-7 and add-

ing some olive-specific repeats [35]. A search was also

carried out for masked proteins encoded by transpos-

able elements (TEs) provided in the RepeatMasker

Library of TE proteins. Low complexity repeats were

left unmasked for this purpose. In total, 63 % of the

assembly was masked.

On this masked assembly four different ab initio gene

predictors were run, since combiners like EvidenceMo-

deler work better when finding consensus among the

output of a diverse set of gene prediction algorithms,

and orthogonal evidence such as transcript and protein

mapping. O. europaea protein-coding gene predictions

were obtained with GeneID v1.4.4 [36] trained specific-

ally for O. europaea with GeneidTrainer using the train-

ing set of 589 genes; with Augustus v3.0.2 [26] trained

with the etraining script that comes with Augustus using

the same training set; and with GlimmerHMM v3.0.1

[37] trained with the trainGlimmerHMM script that

comes with the program using the same training set.

Finally, GeneMark-ES v2.3 [38] gene predictions were

obtained by running it in its self-trained mode. The

number of predicted gene models ranged from 48,237

with GeneMark-ES to 97,542 with GlimmerHMM.

Geneid, Augustus and Genemark-ET v4.21 were also

used to generate predictions incorporating intron evi-

dence, which was extracted from the RNA-Seq data,

by obtaining the junctions after mapping it with GEM

(see below). Junctions overlapping with ab initio GeneID

predictions, Augustus predictions, or with protein map-

pings were taken as intron evidence. Running GeneID

with hints resulted in a total set of 74,231 gene models;

Augustus with hints resulted in 70,906; and Genemark-ET

with 64,329 gene models.

Evidence Modeler r2012-06-25 (EVM) [39] was used

to obtain consensus CDS models using the three main

sources of evidence described above: gene predictions,

aligned transcripts and aligned proteins. EVM was run

with three different sets of evidence weights, and the

resulting consensus models with the best specificity and

sensitivity as determined by intersection (BEDTools

v2.16.2 intersect [40]) with the transcript mappings,

were chosen for the final annotation (Table 4 shows the

best-performing weights). Consensus CDS models were

then updated with untranslated regions (UTRs) and al-

ternative exons through two rounds of PASA annotation

updates. A final quality control was performed to fix

reading frames and intron phases, and remove some

transcripts predicted to be subject to nonsense-mediated

decay. The resulting transcripts were clustered into

genes using shared splice sites or substantial sequence

overlap as criteria for designation as the same gene.

This resulted in a preliminary set of 56,349 protein-

coding genes, whose 89,982 transcripts encode 79,910

unique protein products (~1.59 transcripts per gene).

Systematic identifiers with the prefix ‘OE6A’ were

assigned to the genes, transcripts and derived protein

products. Functional annotation was performed with

InterProScan-5.17-56.0 [41], 30,900 protein-coding genes

were annotated with gene ontology (GO) terms, and 41,257

were assigned a function.

The predicted O. europaea protein-coding set was then

compared with those in four other selected plant genomes

(Arabidopsis thaliana, Erythranthe guttata, Solanum lyco-

persicum, and Ricinus communis) downloaded from the

Table 3 RNA-Seq samples used for annotation

Accession Tissue Varietal

ERS1146989 Immature olives Farga

ERS1146988 Roots Farga

ERS1135096 Old leaves Farga

ERS1135095 Young leaves Farga

ERS1135094 Flowers Farga

ERS1135093 Flower buds Farga

ERS1135092 Green olives Farga

SRP000653 Fruits Coratina

SRP005630 Buds Picual, Arbequina

SRP044780 Leaves, Roots Picual

SRP016074 Fruits, leaves, stems and seeds Picula x Arbequina

SRP017846 Fruits Istrska belica

SRP024265 Leaves, Roots Kalamon

Table 4 Weights given to each source of evidence when running
Evidence Modeler r2012-06-25

Type of evidence Program Weight

ABINITIO_PREDICTION GeneMark 1

ABINITIO_PREDICTION Augustus 1

ABINITIO_PREDICTION geneid_v1.4 1

ABINITIO_PREDICTION GlimmerHMM 1

ABINITIO_PREDICTION geneid_introns 2

ABINITIO_PREDICTION Augustus_introns 2

ABINITIO_PREDICTION GeneMark-ET 2

OTHER_PREDICTION transdecoder 2

TRANSCRIPT PASA 10

PROTEIN SPALN 10

Cruz et al. GigaScience  (2016) 5:29 



NCBI database. A BLASTP search of those proteomes

was also performed against the olive proteome, and vice

versa, using the BLASTALL 2.2.25+ software suite [42]

with an e-value less than 0.01 and with at least 50 % of

identity (Table 5). General statistics for transcript, coding

sequence and exon lengths in O. europaea are similar to

those in the other species, but the number of genes is sig-

nificantly larger. The number of exons per transcript is

slightly lower than in the four compared species. It is pos-

sible that more false-positive single-exon genes have been

annotated; however, the number of single-exon CDS is

not higher, although there is a slight shift in the distribu-

tion toward fewer coding exons per transcript (Fig. 6).

The increased number of coding genes in O. europaea

suggests the existence of a large-scale genome duplica-

tion with respect to the other species. Although this

possibility deserves more detailed analysis, preliminary

analyses of gene comparisons identified 34,195 O. euro-

paea genes with O. europaea paralogs that are more

similar to each other than to the corresponding best hit

in E. guttata (80.5 % of the total proteins with hits in E.

guttata), the closest species in this analyses. Also, from

the 14,437 paralogous pairs found in O. europaea that

represent each other’s reciprocal best hit, 10,711 pairs

had the same best hit in E. guttata (which represents

74.2 % of the pairs). These results suggest that a high

Table 5 Comparison of O. europaea with other plant species

Species Number of
proteins

Average transcript
length (bp)

Average coding
sequence length
(bp)

Average exons
per transcript

Average exon
length (bp)

Proteins with
homologs in
O. europaea

O. europaea proteins
with homologs in the
other species

Olea europaea 56,349 3,953 1,050 4.54 315 56,349 (100 %) 56,349 (100 %)

Arabidopsis thaliana 35,378 2,341 1,234 5.89 261 23,106 (65.3 %) 32,796 (58.2 %)

Erythranthe guttata 31,861 3,378 1,351 5.77 300 24,373 (76.5 %) 42,458 (75.3 %)

Solanum lycopersicum 36,148 5,626 1,389 6.48 288 27,778 (76.8 %) 38,448 (68.2 %)

Ricinus communis 27,998 4,323 1,390 6.53 287 21,990 (78.5 %) 37,264 (66.1 %)

Average of the transcript length, coding sequence, exons per transcript and exon length of O. europaea, Arabidopsis thaliana, Erythranthe guttata, Solanum

lycopersicum and Ricinus communis proteomes, the number of proteins with at least one homolog in O. europaea and the number of proteins of O. europaea with

at least one homolog in the other species. The longest protein isoform per gene was used for homology search
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proportion of the O. europaea gene repertoire has been

duplicated since the separation of these two lamiales

species. To discard the possibility that these duplicates

resulted from uncollapsed heterozygous alleles, hetero-

zygous single nucleotide variants (SNVs) identified by

variant calling using samtools mpileup in pairs of puta-

tively recent duplicates were counted and compared

with those in singletons (genes without recent paralogs).

The mean is significantly higher in genes within recent du-

plicate pairs (Welch’s Two Sample t-test p-value < 2.2e-16).

Finally, the 70 % quantile of two-copy SNV counts is 42

and 8 for the one-copy genes. In the case where uncol-

lapsed (duplicated) alleles are frequent, one would expect

to obtain the opposite pattern, as reads coming from the

same locus would independently map to one of the two

uncollapsed haplotypes in the assembly, thus dramatically

reducing the number of heterozygous SNVs called. Al-

though further and more detailed analyses are required,

these results suggest extensive gene duplication in the

lineage leading to the olive tree. The possibility of a

whole genome duplication is consistent with the in-

creased chromosomal number in O. europaea (2n = 46),

as compared to closely related lamiales such as Ery-

thranthe guttata (2n = 28) [43] and Sesamum indicum

(2n = 26) [44].

Non-coding RNAs (ncRNAs) were annotated by run-

ning the following steps. First, the program cmsearch

(v1.1) that comes with Infernal [45] was run with the

Rfam database of RNA families (v12.0) [46]. Also,

tRNAscan-SE (v1.23) [47] was run in order to detect the

transfer RNA genes present in the genome assembly. To

detect long non-coding RNAs (lncRNAs), PASA assem-

blies that had not been included in the annotation of

protein-coding genes (i.e., expressed genes that were not

translated to protein) were first selected. Those longer

than 200 bp and with a length not covered by a small

ncRNA at least 80 % were incorporated into the ncRNA

annotation as lncRNAs. The resulting transcripts were

clustered into genes using shared splice sites or signifi-

cant sequence overlap as criteria for designation as the

same gene. Systematic identifiers with the prefix

‘OE6ncA’ were assigned to the genes and their derived

transcripts. In total, 25,199 non-coding genes have been

annotated, among which 20,082 are lncRNAs.

In summary, we report the first genome sequencing, as-

sembly, and annotation of the Mediterranean olive tree.

This genome assembly will provide a valuable resource for

studying developmental and physiological processes, inves-

tigating the past history of domestication, and improving

the molecular breeding of this economically important tree.
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