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INVESTIGATION

Genome Sequences of Three Phytopathogenic
Species of the Magnaporthaceae Family of Fungi

Laura H. Okagaki,*,† Cristiano C. Nunes,*,† Joshua Sailsbery,*,† Brent Clay,* Doug Brown,* Titus John,*

Yeonyee Oh,*,† Nelson Young,‡ Michael Fitzgerald,§ Brian J. Haas,§ Qiandong Zeng,§ Sarah Young,§

Xian Adiconis,§ Lin Fan,§ Joshua Z. Levin,§ Thomas K. Mitchell,** Patricia A. Okubara,††

Mark L. Farman,‡‡ Linda M. Kohn,§§ Bruce Birren,§ Li-Jun Ma,‡,1 and Ralph A. Dean*,†,1

*Center for Integrated Fungal Research and †Department of Plant Pathology, North Carolina State University, Raleigh,
North Carolina 27606; ‡Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst,
Massachusetts 01003; §The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142; **Department of Plant
Pathology, Ohio State University, Columbus, Ohio 43210; ††USDA-ARS, Root Disease and Biological Control, Pullman,
Washington 99164; ‡‡Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546; and
§§Department of Biology, University of Toronto, Mississauga, Toronto, Ontario, L5L 1C6, Canada

ABSTRACT Magnaporthaceae is a family of ascomycetes that includes three fungi of great economic

importance: Magnaporthe oryzae, Gaeumannomyces graminis var. tritici, and Magnaporthe poae. These

three fungi cause widespread disease and loss in cereal and grass crops, including rice blast disease

(M. oryzae), take-all disease in wheat and other grasses (G. graminis), and summer patch disease in turf grasses

(M. poae). Here, we present the finished genome sequence for M. oryzae and draft sequences for M. poae

and G. graminis var. tritici. We used multiple technologies to sequence and annotate the genomes of

M. oryzae,M. poae, and G. graminis var. tritici. TheM. oryzae genome is now finished to seven chromosomes

whereas M. poae and G. graminis var. tritici are sequenced to 40.0· and 25.0· coverage respectively. Gene

models were developed by the use of multiple computational techniques and further supported by RNAseq

data. In addition, we performed preliminary analysis of genome architecture and repetitive element DNA.

KEYWORDS

Magnaporthe

Gaeumannomyces

sequence

repetitive DNA

synteny

Large-scale sequencing andbioinformatics-based genomeanalysis proj-

ects have broadened our understanding of fungal genome architecture,

evolutionary relationships between species, and adaptation to environ-

mental conditions. High-quality draft sequences of pathogenic fungal

genomes can be platforms for studying genes that are involved in

host2pathogen interactions, the infection cycle, and asexual propaga-

tion. Fungal genomes are often small but highly plastic, providing ge-

netic diversity that is important in host or environmental adaptations

but also contributing to divergence and speciation. Such plasticity can

result in genome expansion and gene duplication. The gain, loss, and

mutation of genes, particularly those involved in pathogenesis, have

been attributed to repetitive elements in the genome, including retro-

transposons and DNA transposons (Wöstemeyer and Kreibich 2002;

Couch et al. 2005; Xue et al. 2012; Stukenbrock 2013). These data

highlight the importance of quality genome sequences and genome-

wide analysis to fungal researchers.

Plant fungal pathogens are a threat to a variety of crops worldwide.

Among the most devastating, both economically and to global food

security, are the Magnaporthaceae family of fungi, which contains

several important plant pathogens including Magnaporthe oryzae,

Gaeumannomyces graminis var. tritici, and Magnaporthe poae. M.

oryzae is known as the rice blast fungus and primarily infects the leaf

of its host plant, Oryza sativa, but can also infect other cultivated

grasses like wheat and barley (Besi et al. 2001; Couch and Kohn

2002). Although it is difficult to calculate the specific monetary damage

to crops caused by M. oryzae, conservative estimates suggest that

60 million of tons of rice have been destroyed in recent outbreaks

(Zeigler et al. 1994;McBeath andMcBeath 2010).G. graminis var. tritici

is the causative agent of take-all disease in wheat. Unlike M. oryzae,
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which targets the leaf of the plant, G. graminis var. tritici attacks the

roots of wheat plants, resulting in root rot. Hyphae of the soil-borne

funguswrap around the root and invade the root structure causing tissue

necrosis. In acute infections, the pathogen can spread through the vas-

cular system, causing loss of the head and subsequent killing of the plant

(Besi et al. 2001; Freeman and Ward 2004). Similar to G. graminis var.

tritici, M. poae, the causative agent of summer patch disease in turf

grasses, attacks the roots of grasses causing root-rot and subsequent

host-plant death (Besi et al. 2001).

Previous drafts of the M. oryzae genome have been published (as

Magnaporthe grisea) with the whole-genome shotgun sequencing ap-

proach. The resulting draft genome had sevenfold sequencing coverage,

and a subsequent analysis showed a family of G-protein coupled re-

ceptors that are unique to M. oryzae (Dean et al. 2005). Here, the

genomes for M. oryzae, M. poae, and G. graminis var. tritici were

sequenced with Sanger, Illumina sequencing of Fosmid vectors, and

454 next-generation sequencing technologies. TheM. oryzae genome is

finished to seven chromosomes, whereasM. poae and G. graminis var.

tritici were sequenced to 40.0X and 25.0X coverage, respectively. In

addition, we present a preliminary analysis of genome architecture

and repetitive element content.

MATERIALS AND METHODS

Genome sequencing

Sequencing of theMagnaporthaceae was performed through the Fungal

Genome Initiative at the Broad Institute of Harvard and MIT (http://

www.broadinstitute.org/). Sanger sequencing, 454 sequencing, and Illu-

mina sequencing of Fosmid vectors were used for theMagnaporthaceae

genomes. Both the G. graminis var. tritici and M. poae genomes were

assembled by combining sequences generated with Sanger, Illumina,

and 454 sequence technologies and assembled de novo with Newbler

Assembly software (454 Life Sciences) using paired reads to identify

contigs. A summary of sequencing can be found in Table 1.

The Sanger-basedM. oryzae genome (Dean et al. 2005) was finished

by combining a semiautomated and manual finishing pipeline at the

Broad Institute and was deposited at the National Center for Bio-

technology Information (NCBI) with the accession number of

AACU00000000.3. Significant retrotransposon content led to a compro-

mised M. oryzae genome sequence. To finish the genome sequence,

unique sequence anchors were verified manually. Contigs and scaffolds

were extended by manual placement of plasmid and Fosmid vector end

sequences. The remaining gaps were filled by searching unique contig

end sequences against unincorporated reads. In vitro transposition also

was used to determine the entire sequence of plasmid (4 kb average insert

size) and Fosmid clones (40 kb average insert size). An optical physical

map served as an important mechanism for confirmation of added se-

quence. The opticalmap facilitated arrangement of the final scaffolds into

pseudochromosomes. Telomere sequence was improved through the use

of telomere Fosmid sequence (Farman and Kim 2005; Starnes et al.

2012). These data allowed for recruitment in additional unused whole-

genome sequence reads. Final quality control of the sequence involved

review of optical map anomalies, Fosmid clone mate-pair violations, and

a list of missing genes compared with the draft sequence.

Sites of misassembly inM. oryzae were recognized by the presence of

inappropriately placed reads and read pairs, alongwith discrepancies with

the optical map. Misassemblies were removed by breaking the existing

assembly at discrepant sites. A core set of Fosmid clones was identified

from problem areas that had both of the end reads reliably placed in the

genome assembly. The assembly wasmanually extended from these high-

confidence anchors using both preexisting sequence data (primarily Fos-

mid end sequence pairs) and from newly generated sequence generated

by walking using custom primers, as well as by transposing Fosmid and

plasmid clones. As an independent check on the manually extended se-

quence, we correlated the sequence with the optical and physical maps.

The sequence of the Fosmids that had been previously identified as con-

taining telomeric repeats and sequenced was incorporated into the as-

sembly (Farman and Kim 2005; Rehmeyer et al. 2006). The draft

consensus sequence was used to recruit additional Broad shotgun data

by sequence identity and read mate pairs. Finally, the positions of all

Fosmid mate pairs were examined across the final consensus sequence.

Mate-pair violations were investigated and corrected when necessary.

Gene annotation

Gene annotation was performed by the Broad Institute using previously

published annotation (Dean et al. 2005) and incorporated expression

n Table 1 Sequencing project summary

Organism Name Magnaporthe oryzae Magnaporthe poae Gaeumannomyces graminis var. tritici

Strain/isolate name 70-15 ATCC 64411 R3-111a-1
Assembly name MG8 Mag_poae_ATCC_64411_V1 Gae_graminis_V2
Mitochondrial/plasmid

assembly name(s)
MG7_MITO Mag_poae_ATCC_64411_V1_Mito Gae_graminis_V1_Mito

Sequencing platforms Sanger Sanger/454/ABI Sanger/454/ABI
Sequencing coverage Finished to seven chromosomes 40.0· 25.0·
Genbank accession AACU03000000 ADBL01000000 ADBI00000000
Gene numbering MGG_##### MAPG_##### GGTG_#####
NCBI project ID 13840 37933 37931

Sequencing was performed at the Broad Institute as part of the Fungal Genome Initiative. NCBI, National Center for Biotechnology Information.

n Table 2 RNAseq reads per treatment

Biological Treatment M. oryzae M. poae G. graminis

2� 2 2 38,264,704
4� 41,670,516 55,296,984 2

40� 2 2 52,913,434
42� 47,383,418 51,115,288 2

NaCl (500 mM) 51,560,152 49,951,750 46,568,806
Light 43,071,966 2 2

Dark 46,564,826 54,886,478 2

Melanized 2 44,351,958 2

1· PDB 2 2 30,717,700
V8 medium 2 2 31,607,460
Complete Medium 2 108,842,14 2

Magnaporthaceae species were grown in complete medium before being
subjected to different conditions for 15260 min (2�, 4�, 40�, 42�, NaCl), 3-5
d (light, dark, 1· PDB, V8 medium, complete medium, and melanizing) before
RNA extraction. RNA libraries were subjected to paired-end deep sequencing
using GAII Illumina technology. RNAseq read were assembled and aligned to
their respective genomes using Bowtie, TopHat, and Inchworm software. PDB,
potato dextrose broth.
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data generated by sequencing RNA libraries (outlined in RNAseq). In

summary, the GenBank nr database (http://www.ncbi.nlm.nih.gov/)

was used in a Blast similarity search for putative Magnaporthaceae

genes. Blast hits with an e-value of 1e-10 were used as evidence for gene

prediction. Hmmer analysis (http://hmmer.janelia.org/) was used to

further identify homologs in the target genomes with the pFAM protein

domain library. Finally, expressed sequence tags (ESTs) were aligned to

the genome with BLAT (https://genome.ucsc.edu/cgi-bin/hgBlat).

Alignments with 90% identity over 50% of the length of the EST were

considered valid. Gene models were built with EST clusters and the

FindEstOrf tool through the Broad Institute. Computational gene mod-

els were produced as previously described (Dean et al. 2005) by using a

number of gene-prediction tools including GeneMark (Borodovsky and

McIninch 1993), GENEID (Blanco et al. 2007), FGENESH (Softberry,

Mount Kisco, NY), and EST computational and manual modeling.

RNAseq

M. oryzae strain 70-15 andM. poae ATCC 64411 RNA were extracted

from a subset of nine growth conditions for RNAseq analysis as pre-

viously described (Nunes et al. 2011): cold (4�), heat (42�), salt (500

mM NaCl), light, dark, melanizing, potato dextrose broth (1· PDB,

Fisher Scientific, Waltham, MA), V8 juice medium (10% v/v), or com-

plete medium (CM, Weiland 2004). The strains were grown in liquid

CM, V8 broth, or PDB at 25� at 200 rpm for 3 d. Heat and cold

treatments were performed by submerging CM culture flasks in water

baths at 4� or 42� for 15 min before RNA extraction. For NaCl treat-

ment, NaCl was added to a final concentration of 500 mM for 15 min

before RNA extraction. Additionally,mycelia were grown for 3 d inCM

in the absence or presence of light (dark or light condition). For mel-

anizing conditions, mycelia were grown in the presence of light for 4

d before RNA harvest. Mycelia were harvested, washed with sterile

water, blot dried, and RNA was extracted from the fresh tissue. RNA

extraction was performed as described previously (Gowda et al. 2006;

Nunes et al. 2011). RNA samples were treated twice with DNAseI to

ensure they were free of DNA contamination. RNA from three separate

mycelial preparations for each growth/treatment condition were

pooled before library construction for RNA sequencing.

ForM. oryzae samples, polyA+RNAwas isolated by using two rounds

of selection with the Dynabeads mRNA Purification Kit (Life Technolo-

gies, Carlsbad, CA) starting from 50 mg of total RNA. All of the polyA+

RNAwas used for construction of dUTP second-strandmarking libraries

as previously described (Levin et al. 2010), except that RNA was frag-

mented in 1· RNA fragmentation buffer (Affymetrix, Santa Clara, CA)

for 4 min at 80� and after first-strand cDNA synthesis a 1.8· RNAClean

SPRI beads (Beckman Coulter Genomics) cleanup was used instead of

phenol:chloroform:isoamyl alcohol (25:24:1) extraction and ethanol pre-

cipitation. ForM. poae samples, polyA+ RNA was isolated by using three

rounds of selection with the Dynabeads mRNA Purification Kit (Life

n Table 3 Genome statistics

Organism Name M. oryzae M. poae G. graminis var. tritici

Genome size, bp 41,027,733 39,503,331 43,618,147
Contig N50, bp 823,590 16,565 48,943
Scaffold N50, bp 6,606,598 3,426,601 6,703,616
Contig count 219 3,106 1,808
Scaffold count 8 205 513
Protein-coding genes 12,696 12,113 14,255
Coding regions in the genome, % 61.34 63.59 63.38
Gene length median, bp 1,755 1,823 1,711
mRNA length median, bp 1,556 1,584 1,494
CDS length median, bp 1,083 987 1,041
Exon length median, bp 374 412 370
Intron length median, bp 88 87 88
Exon per spliced transcript 3.22 3.3 3.21
5-UTR length median, bp 267 301 246
3-UTR length median, bp 298 343 304
Intergenic region length median, bp 742 654 580
Contig gap length median, bp 100 537 481
Genome G+C content, % 51.61 56.99 56.85
Genic region G+C content, % 54.09 58.77 59.8
Intergenic region G+C content, % 47.66 52.57 50.77
mRNA G+C content, % 55 59.31 60.67
CDS G+C content, % 57.63 61.65 62.76
Exon G+C content, % 55 59.31 60.67
Intron G+C content, % 46.58 53.76 53.03
5-UTR G+C content, % 48.8 56.29 56.97
3-UTR G+C content, % 46.4 51.75 51.91
Genes with 5-UTR, % 8,120 8,017 8,590
Genes with 3-UTR 8,153 7,749 8,802
Spliced genes 10,341 9,388 11,176
Average exons per transcript 2.78 2.76 2.71
Alternatively spliced genes 796 877 885
rRNA genes 40 26 13
tRNA genes 325 167 273

Magnaporthaceae species were sequenced using Sanger sequencing (M. oryzae), or Sanger sequencing, ABI, and 454 Next-Generation sequencing (M. poae and G.
graminis var. tritici). M. oryzae was finished to seven chromosomes, whereas M. poae and G. graminis var. tritici were sequenced to 40-fold and 25-fold coverage,
respectively. mRNA, messenger RNA; CDS, coding sequence; UTR, untranslated region; rRNA, ribosomal RNA; tRNA, transfer RNA.
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Technologies) starting from 75 mg of total RNA. Then, 200 ng of polyA+

RNAwas used for construction of dUTP second-strandmarking libraries

as previously described, except RNA was fragmented as for M. oryzae.

RNAseq libraries were subjected to paired-end deep sequencing using

GAII Illumina technology (Illumina, Inc., San Diego, CA).

G. graminis var. tritici isolate R3-111-1a 1B was cultured in 1· PDB

or 1/3· PDB for 5 d at 23�. Mycelia were washed four times in autoclaved

nanopure water over filter paper under gentle vacuum, frozen in liquid

nitrogen, and stored at 280�. Five-day-old mycelia grown in 1· PDB

were also treated at 40� or 2� in 1· PDB, or at 22� in 1· PDB containing

0.5MNaCl for 1 hr before harvest. Total RNAwas obtained usingTRIzol

reagent (Invitrogen, Carlsbad, CA) and isopropanol/citrate (Okubara

et al. 2010). RNA quality was visualized on 1% formaldehyde agarose

gels. Fifty-microgram aliquots of RNA were treated with DNAse (Turbo

DNA-free kit, Ambion, Inc., Austin, TX) and passed through RNeasy

columns (QIAGEN, Inc., Valencia, CA). DNase-treated RNA did not

produce an actin PCR product when amplified with M. oryzae primers

Actin F and Actin R (Gowda et al. 2010) designed to produce an actin

PCR product only if an intron was present.

Followingpooling ofRNAfromthree separatemycelial preparations

for each growth/treatment, libraries were constructed similarly to M.

orzyae samples, except that 29 to 36 micrograms of total RNA were

used as input and an additional two rounds of polyA+ selection was

needed for three (40�; 2�; and 0.5 M NaCl) samples.

RNAseq transcript reads were aligned to their respective reference

genomes by using TopHat and Bowtie software (Langmead 2010; Kim

and Salzberg 2011) and Inchworm RNAseq assembly software (http://

trinityrnaseq.github.io/). PASA was used for cDNA-based genome an-

notation (Haas et al. 2003). Together, these algorithms were used to

define introns, exons, untranslated regions, and alternative splicing

isoforms of transcripts. A summary of RNAseq read data can be found

in Table 2.

Genome architecture and repetitive element analysis

Syntenic regions were found using CoGe Synmap (dotplots) and GEvo

(https://www.genomevolution.org/coge/). The number of syntenic

blocks was based on the GEvo output file after Synmap analysis, and

the amount of syntenic DNA was calculated by using the start and stop

positions for each syntenic block. Repetitive element analysis was per-

formed by using the RepeatModeler andRepeatMasker programs (http://

www.repeatmasker.org). To summarize, de novo repetitive element li-

braries were createdwith RepeatModeler using the RMBlast NCBI search

engine. Final classified consensus files for M. poae and G. graminis var.

tritici were used as libraries for subsequent repetitive element searches.

Similar repetitive elements were aligned by RepeatModeler and collapsed

into their parent families. Repetitive element families were classified by

RepeatModeler. All sequences were analyzed by BlastX (http://blast.ncbi.

nlm.nih.gov/Blast.cgi) against the nonredundant protein sequence data-

base to identify any known retrotransposon or DNA transposon pro-

teins. Further confirmation of library sequences was performed using the

EMBOSS suite of bioinformatics tools (http://emboss.bioinformatics.nl/).

Long terminal repeats were identified using POLYDOTwhereas terminal

inverted repeats were identified using EINVERTED. RepeatMasker was

used to identify the locations of repetitive elements.

Data availability

Genome sequences, transcript sequences, genome statistics, and anno-

tation are available for download via Genbank (see Table 1 for accession

numbers). RepeatModeler libraries are available in the supplemental

materials forM. oryzae (supporting information, File S1),M. poae (File

S2), and G. graminis var. tritici (File S3).

RESULTS

Whole-genome sequencing

The M. oryzae genome was finished to seven chromosomes with the

exception of ~530-kbp segment (scaffold 8) that could not be robustly

assigned to a particular chromosome, whereas 40-fold and 25-fold

coverage was achieved for M. poae and G. graminis var. tritici draft

genomes, respectively (Table 1). TheM. oryzae genome sequence con-

sisted of 219 contigs assembled into eight scaffolds, with a total genome

size of 41.0 Mbp (Table 3). M. poae has the smallest genome at 39.5

n Table 4 Repetitive elements in the Magnaporthaceae

M. oryzae M. poae G. graminis var. tritici

Total
Length, bp

Repetitive
Content, %

Genome,
%

Total
Length, bp

Repetitive
Content, %

Genome,
%

Total
Length, bp

Repetitive
Content, %

Genome,
%

Class I (retrotransposon)
LTR/Gypsy 1790041 43.08 4.36 142221 32.83 0.36 1317401 44.99 3.02
LTR/Copia 375743 9.04 0.92 529308 18.08 1.21
Unknown 212069 5.10 0.52
Subtotal 2377853 57.23 5.80 142221 32.83 0.36 1846709 63.07 4.23

Non-LTR retrotransposons
LINE/Tad1 690463 16.62 1.68 342293 11.69 0.78
Unknown 135550 3.26 0.33 176681 40.78 0.45 13605 0.46 0.03
Subtotal 826013 19.88 2.01 176681 40.78 0.45 355898 12.16 0.82

Class II (DNA tranpsosons)
DNA/TcMar-Fot1 514336 12.38 1.25 19406 4.48 0.05 157841 5.39 0.36
DNA/PIF-Harbinger 18302 0.63 0.04
DNA/hAT-Ac 17124 0.58 0.04
Unknown 306017 7.36 0.75 7139 1.65 0.02
Subtotal 820353 19.74 2.00 26545 6.13 0.07 193267 6.60 0.44

Other
Unknown 131047 3.15 0.32 87794 20.26 0.22 532034 18.17 1.22

Total 4155266 10.13 433241 1.10 2927908 6.71

Repetitive elements were collapsed into parent families and classified by RECON. BLASTx was used to confirm classification. Unclassified families were further
analyzed for TIRs and LTRs using EINVERTED and POLYDOT, respectively. LTRs, Long terminal repeats; TIRs, terminal inverted repeats.
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Mbp, which consisted of 3106 contigs assembled into 205 scaffolds. The

G. graminis var. tritici genome was the largest at 43.6 Mbp and was

made up of 1808 contigs assembled into 513 scaffolds. Total genomic G

+C content was similar betweenM. poae and G. graminis var. tritici at

just under 57%. In contrast, the G+C content ofM. oryzae was lower at

approximately 52%. The G+C content of bothM. poae andG. graminis

var. tritici are high for fungal species, which range from ~30% to ~57%

(Jung et al. 2008); however, the biological repercussions are unclear (Li

and Du 2014).

Multiple computational methods were used to create gene models.

RNAseq alignments were used to predict transcript introns, exons,

untranslated regions, and alternative splicing isoforms (Table 2 and

Table 3). The M. oryzae and M. poae genomes have a similar number

of protein-coding genes, whereas that of G. graminis var. tritici had

approximately 2000 more protein-coding genes (Table 3). However,

the proportion of each genome that is represented by protein-coding

gene sequences is similar among the three, ranging from 61.3 to 63.6%

of each genome. mRNA median length, the number of exons spliced

per transcript, and the number of introns per transcript were similar

among all three species. The number of spliced genes varied, with M.

poae showing the lowest number at 9388 and G. graminis var. tritici

with the highest at 11,176. G. graminis var. tritici andM. poae showed

similar numbers of alternatively spliced genes at 885 and 877, respec-

tively, whereasM. oryzae had fewer spliced genes with 796 found after

RNAseq data analysis. Although these data show that there are clear

differences in gene number and splicing between the three species,

additional analysis is necessary to understand how these differences

affect cell processes and pathogenesis.

Repetitive element analysis

Inverted repeats and transposon DNA sequences have been found in a

variety of fungal plant and animal pathogens, including the wheat

pathogen Mycosphaerella graminicola (Dhillon et al. 2014) and the

human pathogen Cryptococcus neoformans (Idnurm et al. 2005). It

has been hypothesized that repetitive elements may contribute to spe-

ciation and divergence even among closely related species of fungi

(reviewed in Wöstemeyer and Kreibich 2002; Raffaele and Kamoun

2012; Stukenbrock 2013). Repetitive elements can be divided into

two classes: class I retrotransposons and class II DNA transposons.

Class I uses an RNA intermediate to copy and paste itself into new

sites in the genome, whereas class II uses a cut and paste mechanism to

excise themselves from the genome and insert in new locations. Pre-

viously, the repetitive element content of the M. oryzae genome was

described (Dean et al. 2005; Xue et al. 2012); however, repetitive

element analysis had not been performed on M. poae or G. graminis

var. tritici.

We used RepeatModeler, which uses RepeatScout (Price et al. 2005)

and RECON (Bao and Eddy 2003) de novo repeat library algorithms,

and RepeatMasker to identify and classify the repetitive elements in the

M. poae and G. graminis var. tritici genomes. Families of repetitive

elements found by RepeatModeler were confirmed by BlastX against

the NCBI nonredundant protein database and alignment against pre-

viously identifiedM. oryzae repetitive elements (Dean et al. 2005). The

M. oryzae genome contained the greatest proportion of repetitive DNA

sequence at 10.13% (Table 4), which is consistent with previous reports

(Dean et al. 2005; Xue et al. 2012). Repetitive element content in M.

oryzae primarily consisted of retrotransposon sequences, which

accounted for more than 57%. Similar to M. oryzae, G. graminis var.

tritici repetitive element content was more than 63% retrotransposon

sequences. The total proportion of the genome was less than that ofM.

oryzae, at 6.71% repetitive DNA. In contrast, the repetitive content of

Figure 1 Genome synteny. CoGe genome synteny analysis software
was used to compare the genomes of M. oryzae and M. poae (top), M.
oryzae and G. graminis var. tritici (middle), and G. graminis var. tritici
and M. poae (bottom). Regions of synteny are plotted as green dots.
Highly syntenic regions appear as linear segments when plotted.
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M. poae was a small proportion of the genome, at 1.1%. DNA trans-

poson sequences represented the largest proportion of the repetitive

content of M. poae at just over 40%; retrotransposon elements and

unknown/unclassified elements were significant at 32.83% and

20.26%, respectively. These data suggest that although G. graminis

var. tritici has a larger genome than do M. oryzae or M. poae, it is

not due to repetitive element DNA but likely due to increased numbers

of paralogs and novel genes compared to the other two species.

Genome synteny

The conservation of genetic loci (synteny) can be used to examine the

evolutionary relationships between species.Wepreviously reported that

there was little synteny conserved between M. oryzae and the closely

related Neurospora crassa, suggesting that the genome of M. oryzae

may be highly plastic (Dean et al. 2005). Here we compared the ge-

nomes of the three Magnaporthaceae using CoGe Synmap software to

identify regions of synteny (Figure 1). Analysis of CoGe Synmap out-

puts revealed that the genomes of M. poae and G. graminis var. tritici

share 34,063 syntenic blocks, which accounted for approximately 19.1

Mbp of sequence. In contrast, M. oryzae shared fewer regions of syn-

teny withM. poae (19,322 blocks, 7.2 Mbp) and G. graminis var. tritici

(21,076 blocks, 8.4 Mbp). These data support previous evidence that,

despite the difference in genome size betweenM. poae and G. graminis

var. tritici, they diverged more recently than M. oryzae (Zhang et al.

2011).

DISCUSSION
The Magnaporthaceae family of fungi is of both economic and social

importance. Rice blast disease affects one of the largest food crops in the

world and results in the loss of millions of tons of food. More recently,

M. oryzae has become a model to study fungal plant pathogens. Thus,

the importance of high-quality genome sequencing and gene annota-

tion is a critical tool for the research community. Here we provide the

finished sequence ofM. oryzae as well as 40.0· and 25.0· coverage draft

sequences of the related species M. poae and G. graminis var. tritici,

respectively.

Assembly and annotation of the genomes was performed in asso-

ciation with the Broad Institute’s Fungal Genome Initiative. Multiple

methods were used to produce computational gene models including

the use of ESTs, homologous gene searches, and Blast searches. Putative

gene models were aligned to RNAseq transcript data that were pro-

duced under a variety of conditions to further support the genemodels.

Together, these techniques provide researchers with high-confidence

annotation and gene models for use in future analysis and experimen-

tation on the Magnaporthaceae.

Initial genome architecture was examined by using both repetitive

element analysis and genome synteny. Similar to previous studies, our

data show that approximately 10% of theM. oryzae genome consists of

repetitive elements (Dean et al. 2005; Xue et al. 2012). The majority of

the repetitive content in bothM. oryzae and G. graminis var. tritici was

made up of retrotransposon sequence. Retrotransposons use the mech-

anism of “copy and paste” to propagate, allowing for many copies to be

inserted throughout the genome. Thus, it is unsurprising that retro-

transposons make up the majority of repetitive content in these two

species. These data are similar to those found in other fungi, including

the rice endophyte Harpophora oryzae (Xu et al. 2014), the human

pathogens Sporothrix schenckii and Sporothrix brasiliensis (Teixeira

et al. 2014), the corn leaf blight disease–causing Cochliobolus hetero-

strophus (Santana et al. 2014), where the composition of repetitive

elements is primarily made up of retrotransposons. However, despite

the larger genome, only 7% of the G. graminis var. tritici genome was

made up of repetitive element sequence. Additional analysis of gene

copy number and tandem repeats may shed light on the nature of the

larger genome.

The genome ofM. poae had the lowest amount repetitive content, at

just over 1%. These results may be due to the loss of repetitive element

sequences during assembly of the genome. Thus, repetitive element

content analyses may need to be revisited with higher coverage se-

quencing, longer read sequencing, or a finished genome sequence of

M. poae.

Synteny is the conservation of gene loci across species. Compar-

ison of genomes and identification of syntenic regions can shed light

on important gene linkages as well as evolutionary relationships

between species. Here, we compared the genomes of M. oryzae, M.

poae, and G. graminis var. tritici and looked for shared syntenic

regions. We found that M. oryzae was most divergent, showing

fewer regions of synteny compared with M. poae and G. graminis

var. tritici. Thus, synteny suggests that M. poae and G. graminis are

more closely related to each other than either are toM. oryzae. These

data further support data previously published by Zhang et al.

(2011). In contrast to M. oryzae, which primarily infects the host

plant’s leaves, both M. poae and G. graminis var. tritici infect the

roots and crown of their host plants. Interestingly, the genomes of

M. poae and G. graminis var. tritici, despite their shared regions of

synteny, have the greatest difference in size at approximately 4Mbp.

Analysis of orthologous and paralogous genes between the two spe-

cies may provide insight into their shared routes of pathogenesis

compared with M. oryzae.
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