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Genome sequencing analysis identifies new loci associated with 

Lewy body dementia and provides insights into its genetic 

architecture

A full list of authors and affiliations appears at the end of the article.

Abstract

The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed 

whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to 

study the genetic architecture of this understudied form of dementia and to generate a resource for 

the scientific community. Genome-wide association analysis identified five independent risk loci, 

whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk 

scores demonstrate that LBD shares risk profiles and pathways with Alzheimer’s disease and 

Parkinson’s disease, providing a deeper molecular understanding of the complex genetic 

architecture of this age-related neurodegenerative condition.

Lewy body dementia (LBD) is a clinically heterogeneous neurodegenerative disease 

characterized by progressive cognitive decline, parkinsonism, and visual hallucinations1. 

There are no effective disease-modifying treatments available to slow disease progression, 

and current therapy is limited to symptomatic and supportive care. At postmortem, the 

disorder is distinguished by the widespread cortical and limbic deposition of pathologically 

altered forms of α-synuclein proteins in the form of Lewy bodies and Lewy neurites that are 
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also a hallmark feature of Parkinson’s disease. The vast majority of LBD patients 

additionally exhibit Alzheimer’s disease co-pathology2. These neuropathological 

observations have led to the, as yet unproven, hypothesis that LBD lies on a disease 

continuum between Parkinson’s disease and Alzheimer’s disease3. Though relatively 

common in the community, with an estimated 1.4 million prevalent cases in the United 

States4, the genetic contributions to this underserved condition are poorly understood.

The rapid advances in genome sequencing technologies offer unprecedented opportunities to 

identify and characterize disease-associated genetic variation. Here, we performed whole-

genome sequencing in a cohort of 2,981 patients diagnosed with LBD and 4,391 

neurologically healthy individuals. We analyzed these data using a genome-wide association 

study (GWAS) approach. This investigation identified five risk loci that were replicated in an 

independent case-control cohort5,6. We also performed gene aggregation tests, and we 

modeled the relative contributions of Alzheimer’s disease and Parkinson’s disease risk 

variants to this fatal neurodegenerative disease (see Fig. 1 for an analysis overview). 

Additionally, we created a resource for the scientific community to mine for new insights 

into the genetic etiology of LBD and to expedite the development of targeted therapeutics.

Results

Genome-wide association analysis identifies new loci associated with LBD.

After quality control, whole-genome sequence data from 2,591 individuals diagnosed with 

LBD and 4,027 neurologically healthy individuals were available for study. Participants 

were recruited across 44 institutions/consortia and were diagnosed according to established 

consensus criteria. Using a GWAS approach, we identified five loci that surpassed the 

genome-wide significance threshold (Table 1 and Fig. 2a). Three of these signals were 

located at known LBD risk loci within the genes GBA, APOE, and SNCA7–10. The 

remaining GWAS signals in BIN1 and TMEM175 represented novel LBD risk loci. Notably, 

these loci have been implicated in other age-related neurodegenerative diseases, including 

Alzheimer’s disease (BIN1) and Parkinson’s disease (TMEM175)11,12. We examined the 

associations of BIN1 and TMEM175 risk alleles with CERAD and Braak semi-quantitative 

pathological measures of Alzheimer’s disease co-pathology. We found that the BIN1 risk 

allele (rs6733839-T) was significantly associated with increased neurofibrillary tangle 

pathology (Fisher’s exact test P-value based on Braak neurofibrillary tangle staging = 

0.0002; Extended Data Fig. 1). In contrast, there was no significant association of the 

TMEM175 risk allele with Alzheimer’s disease co-pathology. Conditional analyses detected 

a second signal at the APOE locus (see Extended Data Fig. 2 for regional association plots 

and Extended Data Fig. 3 for conditional association analyses). Subanalysis GWAS of 

pathologically defined LBD cases only versus control subjects identified the same risk loci 

(Fig. 2b). Finally, we replicated each of the observed risk loci in an independent sample of 

970 European-ancestry LBD cases and 8,928 controls (Table 1)5,6.

Gene-level aggregation testing identifies GBA as a pleomorphic risk gene.

The significant loci from our GWAS explained only a small fraction (1%) of the 

conservatively estimated narrow-sense heritability of LBD of 10.81% (95% confidence 
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interval [CI]: 8.28%–13.32%, P = 9.17 × 10−4). To explore whether rare variants contribute 

to the remaining risk of LBD, we performed gene-level sequence kernel association – 

optimized (SKAT-O) tests of missense mutations with a minor allele frequency (MAF) 

threshold ≤ 1% and a minor allele count (MAC) of ≥ 3 across the genome13. This rare 

variant analysis identified GBA as associated with LBD (Fig. 2c). GBA, encoding the 

lysosomal enzyme glucocerebrosidase, is a known pleomorphic risk gene for LBD and 

Parkinson’s disease7,14,15, and our rare and common variant analyses confirm a prominent 

role of this gene in the pathogenesis of Lewy body diseases.

Functional inferences from colocalization and gene expression analyses.

Most GWAS loci are thought to operate through the regulation of gene expression16,17. 

Thus, we performed a colocalization analysis to determine whether a shared causal variant 

drives association signals for LBD risk and gene expression. Expression quantitative trait 

loci (eQTL) were obtained from eQTLGen and PsychENCODE18,19, the largest available 

human blood and brain eQTL datasets. We found evidence of colocalization between the 

TMEM175 locus and an eQTL regulating TMEM175 expression in blood (posterior 

probability for H4 (PPH4) = 0.99; Fig. 3a and Supplementary Table 1). There was also 

colocalization between the association signal at the SNCA locus and an eQTL regulating 

SNCA-AS1 expression in the brain (PPH4 = 0.96; Fig. 3b and Supplementary Table 1). 

Interestingly, the index variant at the SNCA locus was located within the SNCA-AS1 gene, 

which overlaps with the 5’-end of SNCA and encodes a long noncoding antisense RNA 

species known to regulate SNCA expression. Sensitivity analyses confirmed that these 

colocalizations were robust to changes in the prior probability of a variant associating with 

both traits (Extended Data Fig. 4).

We interrogated the effect of each SNP in the region surrounding SNCA-AS1 on LBD risk 

using our GWAS data and SNCA-AS1 expression using the PsychENCODE data (Extended 

Data Fig. 5a). All genome-wide significant risk SNPs in the locus had a negative beta 

coefficient, while the shared SNCA-AS1 eQTL had a positive beta coefficient. This negative 

correlation suggested that increased SNCA-AS1 expression is associated with reduced LBD 

risk (Spearman’s rho = −0.42; P = 0.0012; Extended Data Fig. 5b).

Analysis of human bulk-tissue RNA-sequencing data from the Genotype-Tissue Expression 

(GTEx) consortium and single-nucleus RNA-sequencing data of the medial temporal gyrus 

from the Allen Institute of Brain Science20,21 demonstrated that TMEM175 is ubiquitously 

expressed, whereas SNCA-AS1 is predominantly expressed in brain tissue (Extended Data 

Fig. 6a and Supplementary Table 2). At the cellular level, TMEM175 is highly expressed in 

oligodendrocyte progenitor cells, while SNCA-AS1 demonstrates neuronal specificity 

(Extended Data Fig. 6b and Supplementary Table 2). SNCA and SNCA-AS1 share a similar, 

though not identical, tissue expression profile (Extended Data Fig. 7).

LBD risk overlaps with risk profiles of Alzheimer’s disease and Parkinson’s disease.

We leveraged our whole-genome sequence data to explore the etiological relationship 

between Alzheimer’s disease, Parkinson’s disease, and LBD. To do this, we applied genetic 

risk scores derived from large-scale GWAS analyses of Alzheimer’s disease and Parkinson’s 
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disease to individual-level genetic data from our LBD case-control cohort22,23. We tested the 

associations of the Alzheimer’s disease and Parkinson’s disease genetic risk scores with 

LBD disease status, and with age at death, age at onset, and the duration of illness observed 

among the LBD cases.

Individuals diagnosed with LBD had a higher genetic risk for developing both Alzheimer’s 

disease (odds ratio [OR] = 1.66 per standard deviation of Alzheimer’s disease genetic risk, 

95% CI = 1.58–1.74, P < 2 × 10−16, Fig. 5a) and Parkinson’s disease (OR = 1.20, 95% CI 

=1.14–1.26, P = 4.34 × 10−12, Fig. 5b). These risk scores remained significant after 

adjusting for genes that substantially contribute to Alzheimer’s disease (model after 

adjustment for APOE: OR = 1.53, 95% CI = 1.37–1.72, P = 3.29 × 10−14) and Parkinson’s 

disease heritable risk (model after adjustment for GBA, SNCA, and LRRK2: OR = 1.26, 

95% CI = 1.19–1.34, P = 5.91 × 10−14). The Alzheimer’s disease genetic risk score was also 

found to be significantly associated with an earlier age of death in LBD (β = −1.77 years per 

standard deviation increase in the genetic risk score from the population mean, standard 

error [SE] = 0.19, P < 2 × 10−16) and shorter disease duration (β = −0.90 years, SE = 0.27, P 

= 0.0007). In contrast, the Parkinson’s disease genetic risk score was associated with an 

earlier age at onset among patients diagnosed with LBD (β = −0.98, SE = 0.28, P = 

0.00045), indicating that higher Parkinson’s disease risk is associated with earlier age at 

onset in LBD. We found no evidence of interaction between the genetic risk scores of 

Alzheimer’s disease and Parkinson’s disease in the LBD cohort (OR = 0.99, 95 % CI = 

0.95–1.03, P = 0.59), implying that Alzheimer’s disease and Parkinson’s disease risk 

variants are independently associated with LBD risk.

Enrichment analysis identifies pathways involved in LBD.

Pathway enrichment analysis of LBD, using a polygenic risk score based on the GWAS risk 

variants, found several significantly enriched gene ontology processes associated with LBD 

(Fig. 5). These related to the regulation of amyloid-beta formation (adjusted P = 0.04), 

regulation of endocytosis (adjusted P = 0.02), tau protein binding (adjusted P = 1.85 × 10−5), 

and others. Among these, the regulation of amyloid precursor protein, amyloid-beta 

formation, and tau protein binding have been previously implicated in the pathogenesis of 

Alzheimer’s disease, while regulation of endocytosis is particularly important in the 

pathogenesis of Parkinson’s disease24,25. These observations support the notion of 

overlapping disease-associated pathways in these common age-related neurodegenerative 

diseases.

Association of polygenic risk with clinical dementia severity.

We performed an association analysis of LBD polygenic risk with dementia severity, as 

measured by the Clinical Dementia Rating scale26. We found that LBD patients in the 

highest polygenic risk score quintile had more severe impairment at baseline evaluation 

compared to LBD patients in the lowest quintile (χ2 = 5.60, df = 1, P = 0.009; Extended 

Data Fig. 8).
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Discussion

Our analyses highlight the contributions of common and rare variants to the complex genetic 

architecture of LBD, a common and fatal neurodegenerative disease. Specifically, our 

GWAS identified five independent genome-wide significant loci (GBA, BIN1, TMEM175, 

SNCA-AS1, APOE) that influence risk for developing LBD, whereas the genome-wide 

gene-based aggregation tests implicated mutations in GBA as being critical in the 

pathogenesis of the disease. We further detected strong cis-eQTL colocalization signals at 

the TMEM175 and SNCA-AS1 loci, indicating that the risk of disease at these genomic 

regions may be driven by expression changes of these particular genes. Finally, we provided 

definitive evidence that the risk of LBD is driven, at least in part, by genetic variants 

associated with the risk of developing both Alzheimer’s disease and Parkinson’s disease.

We replicated all five GWAS signals in an independent LBD case-control dataset derived 

from imputed genotyping array data. Among these, GBA (encoding the lysosomal enzyme 

glucocerebrosidase), APOE (encoding apolipoprotein E), and SNCA (encoding α-synuclein) 

are known LBD risk genes7–9. In addition to these previously described loci, we identified a 

novel locus on chromosome 2q14.3, located 28 kb downstream of the BIN1 gene, which is a 

known risk locus for Alzheimer’s disease11. BIN1 encodes the bridging integrator 1 protein 

that is involved in endosomal trafficking. The depletion of BIN1 reduces the lysosomal 

degradation of β-site APP-cleaving enzyme 1 (BACE1), resulting in increased amyloid-β 
production27. Furthermore, the loss of BIN1 promotes the propagation of tau pathology by 

increasing aggregate internalization via endocytosis and endosomal trafficking28. The 

direction of effect observed in LBD is the same as in Alzheimer’s disease (Supplementary 

Table 3). The observed pleiotropic effects between LBD and Alzheimer’s disease prompt us 

to speculate that mitigating BIN1-mediated endosomal dysfunction could have therapeutic 

implications in both neurodegenerative diseases.

A second novel LBD signal was detected within the lysosomal TMEM175 gene on 

chromosome 4p16.3, a known Parkinson’s disease risk locus12. Deficiency of TMEM175, 

encoding a transmembrane potassium channel, impairs lysosomal function, lysosome-

mediated autophagosome clearance, and mitochondrial respiratory capacity. Loss-of-

function further increases the deposition of phosphorylated α-synuclein29, which makes 

TMEM175 a plausible LBD risk gene. The direction of effect is the same in LBD as it is in 

Parkinson’s disease (Supplementary Table 3), and identification of TMEM175 underscores 

the role of lysosomal dysfunction in the pathogenesis of Lewy body diseases.

Our data confirm the hypothesis that the LBD genetic architecture is complex and overlaps 

with the risk profiles of Alzheimer’s disease and Parkinson’s disease. First, several genome-

wide significant risk loci in our GWAS analysis have been previously described either in the 

Alzheimer’s disease literature (APOE, BIN1) or have been associated with risk of 

developing Parkinson’s disease (GBA, TMEM175, SNCA)11,12,30–32. Second, genome-wide 

gene-based aggregation tests of rare mutations similarly identified GBA, which has been 

previously implicated in Parkinson’s disease7. Third, genetic risk scores derived from 

Alzheimer’s disease and Parkinson’s disease GWAS meta-analyses predicted risk for LBD 

independently, even after removal of the strongest signals (APOE, GBA, SNCA, and 
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LRRK2). Interestingly, our data did not show a synergistic effect between the risk of 

Parkinson’s disease and Alzheimer’s disease in the pathogenesis of LBD, though analysis of 

larger cohorts will be required to confirm this observation.

Comparing the patterns of the risk loci in LBD with the patterns of risk in published 

Parkinson’s disease and Alzheimer’s disease GWAS meta-analyses provided additional 

insights into this complex relationship. The directions of effect at the index variants of the 

GBA and TMEM175 loci were the same in LBD as the directions observed in Parkinson’s 

disease23. Likewise, the directions of effect for the BIN1 and APOE signals were the same 

as the directions detected in Alzheimer’s disease (Supplementary Table 3)33. However, we 

observed a notably different profile at the SNCA locus in LBD compared to Parkinson’s 

disease. Our GWAS and colocalization analyses implicated SNCA-AS1, a non-coding RNA 

that regulates SNCA expression, as the main signal at the SNCA locus. In contrast, the main 

signal in Parkinson’s disease is detected at the 3’-end of SNCA34. This finding suggests that 

the regulation of SNCA expression may be different in LBD compared to Parkinson’s 

disease and that only specific SNCA transcripts that are regulated by SNCA-AS1 drive risk 

for developing dementia. Further, SNCA-AS1 may prove to be a more amenable therapeutic 

target than SNCA itself due to its neuronal specificity.

As part of this study, we created a foundational resource that will facilitate the study of 

molecular mechanisms across a broad spectrum of neurodegenerative diseases. We 

anticipate that these data will be widely accessed for several reasons. First, the resource is 

the largest whole-genome sequence repository in LBD to date. Second, the nearly 2,000 

neurologically healthy, aged individuals included within this resource can be used as control 

subjects for the study of other neurological and age-related diseases. Third, we prioritized 

the inclusion of pathologically confirmed LBD patients, representing more than two-thirds 

of the case cohort, to ensure high diagnostic accuracy among our case cohort participants. 

Finally, all genomes are of high quality and were generated using a uniform genome 

sequencing, alignment, and variant-calling pipeline. Whole genome sequencing data on this 

large case-control cohort has allowed us to undertake a comprehensive genomic evaluation 

of both common and rare variants, including immediate fine-mapping of association signals 

to pinpoint the functional variants at the TMEM175 and SNCA-AS1 loci. The availability of 

genome-sequence data will facilitate similar comprehensive evaluations of less commonly 

studied variant types, such as repeat expansions and structural variants.

Our study has limitations. We focused on individuals of European ancestry, as this is the 

population in which large cohorts of LBD patients were readily available. Recruiting 

patients and healthy controls from diverse populations will be crucial for future research to 

understand the genetic architecture of LBD. Another constraint is the use of short-read 

sequencing, rather than long-read sequencing applications, that limits the resolution of 

complex, repetitive, and GC-rich genomic regions35. Most study participants did not have 

in-depth phenotype information using standardized rating scales available. Further, despite 

our large sample size, we had limited power to detect common genetic variants of small 

effect size, and additional large-scale genomic studies will be required to unravel the missing 

heritability of LBD.
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In conclusion, our study identified novel loci as relevant in the pathogenesis of LBD. Our 

findings confirmed that LBD genetically intersects with Alzheimer’s disease and 

Parkinson’s disease and highlighted the polygenic contributions of these other 

neurodegenerative diseases to its pathogenesis. Determining shared molecular genetic 

relationships among complex neurodegenerative diseases paves the way for precision 

medicine and has implications for prioritizing targets for therapeutic development. We have 

made the whole-genome sequence data available to the research community. These genomes 

constitute the largest sequencing effort in LBD to date and are designed to accelerate the 

pace of discovery in dementia.

Methods

Cohort description and study design.

A total of 5,154 participants of European ancestry (2,981 LBD cases, 2,173 neurologically 

healthy controls) were recruited across 17 European and 27 North American sites/consortia 

to create a genomic resource for LBD research (Supplementary Table 4). In addition to these 

resource genomes, we obtained convenience control genomes from (i) the Wellderly cohort 

(n = 1,202), a cohort of healthy, aged European-ancestry individuals recruited in the United 

States36, and (ii) European-ancestry control genomes generated by the National Institute on 

Aging and the Accelerating Medicine Partnership - Parkinson’s Disease Initiative 

(www.amp-pd.org; n = 1,016). This brought the total number of control individuals available 

for this study to 4,391.

All control cohorts were selected based on a lack of evidence of cognitive decline in their 

clinical history and absence of neurological deficits on neurological examination. 

Pathologically confirmed control individuals (n = 605) had no evidence of significant 

neurodegenerative disease on histopathological examination. LBD patients were diagnosed 

with pathologically definite or clinically probable disease according to consensus 

criteria2,37. The case cohort included 1,789 (69.0%) autopsy-confirmed LBD cases and 802 

(31.0%) clinically probable LBD patients. 63.4% of LBD cases were male, as is typical for 

the LBD patient population38. The demographic characteristics of the cohorts are 

summarized in Supplementary Table 5. The appropriate institutional review boards of 

participating institutions approved the study (03-AG-N329, NCT02014246), and informed 

consent was obtained from all subjects or their surrogate decision-makers, according to the 

Declaration of Helsinki.

Whole-genome sequencing.

Fluorometric quantitation of the genomic DNA samples was performed using the PicoGreen 

dsDNA assay (Thermo Fisher). PCR-free, paired-end libraries were constructed by 

automated liquid handlers using the Illumina TruSeq chemistry according to the 

manufacturer’s protocol. DNA samples underwent sequencing on an Illumina HiSeq X Ten 

sequencer (v.2.5 chemistry, Illumina) using 150 bp, paired-end cycles.
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Sequence alignment, variant calling.

Genome sequence data were processed using the pipeline standard developed by the Centers 

for Common Disease Genomics (CCDG; https://www.genome.gov/27563570/). This 

standard allows for whole-genome sequence data processed by different groups to generate 

‘functionally equivalent’ results39. The GRCh38DH reference genome was used for 

alignment, as specified in the CCDG standard. For whole-genome sequence alignments and 

processing, the Broad Institute’s implementation of the functional equivalence standardized 

pipeline was used. This pipeline, which incorporates the GATK (2016) Best Practices40, was 

implemented in the workflow description language for deployment and execution on the 

Google Cloud Platform. Single-nucleotide variants and indels were called from the 

processed whole-genome sequence data following the GATK Best Practices using another 

Broad Institute workflow for joint discovery and Variant Quality Score Recalibration. Both 

Broad workflows for WGS sample processing and joint discovery are publicly available 

(https://github.com/gatk-workflows/broad-prod-wgs-germline-snps-indels). All whole-

genome sequence data were processed using the same pipeline.

Quality control.

For sample-level quality control checks, genomes were excluded from the analysis for the 

following reasons: (1) a high contamination rate (>5% based on VerifyBamID freemix 

metric)41, (2) an excessive heterozygosity rate (exceeding +/− 0.15 F-statistic), (3) a low call 

rate (≤ 95%), (4) discordance between reported sex and genotypic sex, (5) duplicate samples 

(determined by pi-hat statistics > 0.8), (6) non-European ancestry based on principal 

components analysis when compared to the HapMap 3 Genome Reference Panel (Extended 

Data Fig. 9a)42, and (7) samples that were related (defined as having a pi-hat > 0.125).

For variant-level quality control, we excluded: (1) variants that showed non-random 

missingness between cases and controls (P ≤ 1 × 10−4), (2) variants with haplotype-based 

non-random missingness (P ≤ 1 × 10−4), (3) variants with an overall missingness rate of ≥ 

5%, (4) non-autosomal variants (X, Y, and mitochondrial chromosomes), (5) variants that 

significantly departed from Hardy-Weinberg equilibrium in the control cohort (P ≤ 1 × 

10−6), (6) variants mapping to variable, diversity, and joining (VDJ) recombination sites, as 

well as variants in centromeric regions +/− 10 kb (due to poor sequence alignment and 

incomplete resolution of the reference genome assembly at these sites)43, (7) variants for 

which the allele frequency in the aged control subjects (Wellderly cohort) significantly 

deviated from the other control cohorts (non-Wellderly) based on FDR-corrected chi-square 

tests (P < 0.05), (8) variants for which the MAFs in our control cohorts significantly differed 

from reported frequencies in the NHLBI Trans-Omics TOPMed database (freeze 5b; 

www.nhlbiwgs.org) or gnomAD (version 3.0) (FDR-corrected chi-square test P < 0.05)44, 

(9) variants that failed TOPMed variant calling filters, and (10) spanning deletions.

After these quality control filters were applied, there were 6,651 samples available for 

analysis. Extended Data Figure 10 shows quality control metrics.
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Statistical analysis for single-variant association.

We performed a GWAS in LBD (n = 2,591 cases and 4,027 controls) using logistic 

regression in PLINK (v.2.0) with a minor allele frequency threshold of >1% based on the 

allele frequency estimates in the LBD case cohort45. We used the step function in the R 

MASS package to determine the minimum number of principal components (generated from 

common single nucleotide variants) required to correct for population substructure46. The 

first two principal components in our study cohorts compared to the HapMap3 Genomic 

Resource Panel are shown in Extended Data Figure 9a. Based on this analysis, we 

incorporated sex, age, and five principal components (PC1, PC3, PC4, PC5, PC7) as 

covariates in our model. Quantile-quantile plots revealed minimal residual population 

substructure, as estimated by the sample size-adjusted genome-wide inflation factor λ1000 of 

1.004 (Extended Data Fig. 9b). The Bonferroni threshold for genome-wide significance was 

5.0 × 10-8. A conditional analysis was performed for each GWAS locus by adding each 

respective index variant to the covariates (Extended Data Fig. 3).

For the LBD GWAS replication analysis, we obtained genotyping array data from two 

independent, non-overlapping, European-ancestry LBD case-control cohorts, totaling 970 

LBD cases and 8,928 controls, as described elsewhere5,6. The data were cleaned by applying 

the same sample- and variant-level quality control steps that were used in the discovery 

genomes. We imputed the data against the NHLBI TOPMed imputation reference panel 

under default settings with Eagle v.2.4 phasing47–49. Variants with an R2 value < 0.3 were 

excluded. A meta-analysis of the two cohorts was performed with METAL under a fixed-

effects model and variants that were significant in the discovery stage were extracted50.

Genotype-pathology association analysis.

We evaluated the association of the newly identified LBD risk alleles in BIN1 (rs6733839-T) 

and TMEM175 (rs6599388-T) with the pathological changes of Alzheimer’s disease. 

Neuritic plaque staging information, assessed by the CERAD method51, was available for 

700 pathologically confirmed LBD cases, while neurofibrillary tangle pathology staging, as 

assessed by Braak method52, was available for 1,459 definite LBD cases. Association testing 

between the risk alleles and the semi-quantitative neuritic plaque and neurofibrillary tangle 

burden was performed using Fisher’s exact tests.

Colocalization analyses.

Coloc (v.4.0.1) was used to evaluate the probability of LBD loci and expression quantitative 

trait loci (eQTL) sharing a single causal variant53. This tool incorporates a Bayesian 

statistical framework that computes posterior probabilities for five hypotheses: namely, there 

is no association with either trait (hypothesis 0, H0); an associated LBD variant exists but no 

associated eQTL variant (H1); there is an associated eQTL variant but no associated LBD 

variant (H2); there is an association with an eQTL and LBD risk variant, but they are two 

independent variants (H3); and there is a shared associated LBD variant and eQTL variant 

within the analyzed region (H4). Cis-eQTL were derived from eQTLGen (n = 31,684 

individuals; accessed 19 February 2020) and PsychENCODE (n = 1,387 individuals; 

accessed 20 February 2020)18,19. For each locus, we examined all genes within 1 Mb of a 

significant region of interest, as defined by our LBD GWAS (P < 5.0 × 10−8). Coloc was run 
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using the default p1 = 10−4 and p2 = 10−4 priors, while the p12 prior was set to p12 = 5 × 

10−6 54. Loci with a posterior probability for H4 (PPH4) ≥ 0.90 were considered colocalized. 

All colocalizations were subjected to sensitivity analyses to explore the robustness of our 

conclusions to changes in the p12 prior (i.e., the probability that a given variant affects both 

traits).

Cell-type and tissue specificity measures.

To determine specificity of a gene’s expression to a tissue or cell-type, specificity values 

were generated from two independent gene expression datasets: (1) bulk-tissue RNA-

sequencing of 53 human tissues from the Genotype-Tissue Expression consortium (GTEx; 

v.8)21; and (2) human single-nucleus RNA-sequencing of the middle temporal gyrus from 

the Allen Institute for Brain Science (n = 7 cell types)20. Specificity values for GTEx were 

generated using modified code from a previous publication55. Expression of tissues was 

averaged by organ (except in the case of brain; n = 35 tissues in total). Specificity values for 

the Allen Institute for Brain Science-derived dataset were generated using gene-level exonic 

reads and the ‘generate.celltype.data’ function of the EWCE package56. The specificity 

values for both datasets and the code used to generate these values are available at https://

github.com/RHReynolds/MarkerGenes.

Heritability analysis.

The narrow-sense heritability (h2), a measure of the additive genetic variance, was calculated 

using GREML-LDMS to determine how much of the genetic liability for LBD is explained 

by common genetic variants57. This analysis included unrelated individuals (pi-hat < 0.125, 

n = 2,591 LBD cases, and n = 4,027 controls) and autosomal variants with a MAF >1%. The 

analysis was adjusted for sex, age, and five principal components (PC1, PC3, PC4, PC5, 

PC7), and a disease prevalence of 0.1% to account for ascertainment bias.

Gene-based rare variant association analysis.

We conducted a genome-wide, gene-based sequence kernel association test - optimized 

(SKAT-O) analysis of missense mutations to determine the difference in the aggregate 

burden of rare coding variants between LBD cases and controls64. This analysis was 

performed in RVTESTS (v.2.1.0) using default parameters after annotating variants in 

ANNOVAR (v.2018–04/16)58,59. The study cohort for this analysis consisted of 2,591 LBD 

cases and 4,027 control subjects. We used a MAF threshold of ≤ 1% and a minor allele 

count (MAC) of ≥ 3 as filters. The covariates used in this analysis included sex, age, and five 

principal components (PC1, PC3, PC4, PC5, PC7). The Bonferroni threshold for genome-

wide significance was 2.86 × 10−6 (0.05 / 17,483 autosomal genes tested).

Predictions of LBD risk using Alzheimer’s disease and Parkinson’s disease risk scores.

Genetic risk scores were generated using PLINK (v.1.9) based on summary statistics from 

recent Alzheimer’s disease and Parkinson’s disease GWAS meta-analyses. Considering the 

LBD cohort as our target dataset, risk allele dosages were counted across Alzheimer’s 

disease or Parkinson’s disease loci per sample (i.e., giving a dose of two if homozygous for 

the risk allele, one if heterozygous, and zero if homozygous for the alternate allele). The 
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SNPs were weighted by their log odds ratios, giving greater weight to alleles with higher 

risk estimates, and a composite genetic risk score was generated across all risk loci. Genetic 

risk scores were z-transformed prior to analysis, centered on controls, with a mean of zero 

and a standard deviation of one in the control subjects. Regression models were then applied 

to test for association with the risk of developing LBD (based on logistic regression) or the 

age at death, age at onset, and disease duration (linear regression), adjusting for sex, age 

(risk and disease duration only), and five principal components (PC1, PC3, PC4, PC5, PC7) 

to account for population stratification.

Polygenic risk score generation for pathway enrichment and phenotype associations.

A genome-wide LBD polygenic risk score was generated using PRSice-2. The polygenic 

risk score was computed by summing the risk alleles associated with LBD that had been 

weighted by the effect size estimates generated by performing a GWAS in the pathologically 

confirmed LBD cases and controls. This workflow identified the optimum P-value threshold 

(1 × 10−4 in our dataset) for variant selection, allowing for the inclusion of variants that 

failed to reach genome-wide significance but that contributed to disease risk, nonetheless. 

After excluding variants without an rs-identifier, the remaining 122 variants were ranked 

based on their GWAS P-values, with the APOE, GBA, SNCA, BIN1 and TMEM175 genes 

added to the top five positions. The list was then analyzed for pathway enrichment using the 

g:Profiler toolkit (v.0.1.8). We defined the genes involved in the pathways and gene sets 

using the following databases: (i) Gene Ontology, (ii) Kyoto Encyclopedia of Genes and 

Genomes, (iii) Reactome, and (iv) WikiPathways60,61. Significant pathways and gene lists 

with a single gene or containing more than 1,000 genes were discarded. Significance was 

defined as P < 0.05. The g:Profiler algorithm applies a Bonferroni correction to the P-value 

for each pathway to correct for multiple testing.

Next, we tested whether the same LBD polygenic risk scores were associated with cognitive 

impairment, as measured by the Clinical Dementia Rating scale. This analysis was 

performed in the 214 LBD cases provided by the National Alzheimer’s Coordinating Center, 

as this was the only cohort for which the Clinical Dementia Rating scale had been collected 

at baseline evaluation. Genetic risk scores were z-transformed before separating all cases 

into quintiles based on their individual polygenic risk scores. A two-proportions z-test was 

performed to compare the proportion of severe LBD cases within the highest genetic risk 

score quintile group versus the lowest quintile.

Data availability.

The individual-level sequence data for the resource genomes have been deposited at dbGaP 

(accession number: phs001963.v1.p1 NIA DementiaSeq). The GWAS summary statistics 

have been deposited in the GWAS catalog: https://www.ebi.ac.uk/gwas/home. eQTLGen 

data are available at https://www.eqtlgen.org/cis-eqtls.html. PsychENCODE QTL data are 

available at http://resource.psychencode.org/. Bulk-tissue RNA sequence data (GTEx 

version 8) are available at the Genotype-Tissue Expression consortium portal (https://

www.gtexportal.org/home/). Human single-nucleus RNA sequence data are available at the 

Allen Institute for Brain Science portal (portal.brain-map.org/atlases-and-data/rnaseq/
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human-mtg/smart-seq). Specificity values for the Allen Institute for Brain Science and 

GTEx data are available at: https://github.com.RHReynolds/MarkerGenes.

Code availability.

Analyses were performed using open-source tools and code for analysis is available at the 

associated website of each software package. Genome sequence alignment and variant 

calling followed the implementation of the GATK Best Practices pipeline (v.2016-June) 

(https://github.com/gatk-workflows/broad-prod-wgs-germline-snps-indels). Contamination 

rates were assessed using VerifyBamID (v.1.1.3) (https://genome.sph.umich.edu/wiki/

VerifyBamID). Quality control checks, association analyses, and conditional analyses were 

performed in PLINK2 (v.2.0-dev-20191128) (https://www.cog-genomics.org/plink/2.0/). 

Data formatting and visualizations were performed in R (version 3.5.2; https://www.r-

project.org) using the following packages: MASS (v.7.3–51.4), tidyverse (v.1.2.1), stringr 

(v.1.4.0), ggrepel (v.0.8.1), data.table (v.1.12), viridis (v.0.5.1), ggplot2 (v.3.3.2), gridExtra 

(v.2.3), grid (v.3.5.2). Imputation was performed using Minimac4 on data phased by Eagle 

(v.2.4) (https://github.com/poruloh/Eagle). Meta-analysis was performed using METAL 

(v.2018–08-28) (https://genome.sph.umich.edu/wiki/METAL). Heritability analysis was 

performed using GRML-LDMS in GCTA (v.1.26.0) (https://cnsgenomics.com/software/

gcta). Rare variant analysis was performed using RVTESTS (v.2.1.0) (http://

zhanxw.github.io/rvtests/) after annotating variant files in ANNOVAR (v.2018–04/16) 

(https://doc-openbio.readthedocs.io/projects/annovar/en/latest/). Genetic risk score analyses 

were performed in PLINK 1.9 (v.1.9.0-beta4.4) (https://www.cog-genomics.org/plink). LBD 

summary statistics were converted from hg38 to hg19 using the R implementation of the 

LiftOver tool, which is available from the rtracklayer package (v.1.42.2) 

(genome.sph.umich.edu/wiki/LiftOver). Colocalization analyses were performed in R-3.2 

using the packages coloc (v.4.0.1) (https://github.com/chr1swallace/coloc). Specificity 

values for the AIBS-derived dataset were generated using gene-level exonic reads and the 

‘generate.celltype.data’ function of the EWCE package (v.0.99.2) (https://github.com/

NathanSkene/EWCE). Polygenic risk scores were constructed using PRSice-2 (v.2.1.1) 

(https://www.prsice.info). Pathway enrichment analysis was performed using the R package 

gprofiler2 (v.0.2.0) (https://cran.r-project.org/web/packages/gprofiler2/vignettes/

gprofiler2.html).
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Extended Data

Extended Data Fig. 1. BIN1 and TMEM175 genotype-phenotype analysis

Relationship between BIN1 and TMEM175 genotypes and the presence of Alzheimer’s 

disease co-pathology in definite LBD cases. The color gradation refers to semi-quantitative 

pathological measures of neuritic plaques (assessed by CERAD method) and neurofibrillary 

tangles (assessed by Braak stage). Darker colors refer to higher burden of pathology. 

Homozygous BIN1 risk allele carriers (TT) were found to have significantly increased 

neurofibrillary tangle pathology compared to homozygous major allele carriers (CC; 
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Fisher’s exact test P-value on Braak staging = 0.0002). Although the proportion of LBD 

cases that had high neuritic plaque burden was higher in homozygous risk allele carries 

compared to homozygous major allele carries, the difference between these groups was not 

statistically significant (P = 0.23). There was no association of TMEM175 risk allele dosage 

and Alzheimer’s disease co-pathology, though a trend toward lower Alzheimer’s disease co-

pathology was observed among homozygous TMEM175 risk allele carriers.

Extended Data Fig. 2. Regional association plots
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a-g, Regional association plots, local linkage disequilibrium, and recombination rates at the 

significantly associated LBD GWAS risk signals. Regional associations are plotted as a 

function of their genomic position, denoting the index variant by a red diamond. Single 

nucleotide variants or indels surrounding the index variant are color-coded to reflect the 

strength of linkage disequilibrium with the index variant based on pairwise r2-values in the 

study cohort (red, 1.0 ≥ r2 ≥ 0.8; orange, 0.8 > r2 ≥ 0.6; green 0.6 > r2 ≥ 0.4; light blue, 0.4 > 

r2 ≥ 0.2; dark blue, 0.2 > r2 ≥ 0; gray, no r2 value available). Transcript annotations 

according to the University of California Santa Cruz genome browser are depicted under 

each association plot.

Extended Data Fig. 3. Conditional analysis

a-f, Conditional analyses for all genome-wide significant GWAS signals are depicted. For 

each panel, the x-axis denotes the chromosomal position in build 38, and the y-axis indicates 

the association P-values on a −log10 scale. The unconditioned GWAS signal is shown in the 

upper pane of each panel, while the lower pane illustrates the association results after 

correction for the index variant(s) at each respective signal. This analysis demonstrated two 
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signals at the APOE locus (e, f). The locus name is based on the closest gene to the index 

variant.

Extended Data Fig. 4. Sensitivity analyses

a,b, Sensitivity analyses of colocalization between eQTLs regulating TMEM175 expression 

and LBD GWAS signals (a) and SNCA-AS1 expression and LBD GWAS signals (b). 

eQTLs for TMEM175 were derived from eQTL-Gen, while eQTLs for SNCA-AS1 were 

derived from PsychENCODE. Plots of prior (left) and posterior (right) probabilities for H0-

H4 hypotheses across varying p12 priors are shown. A dashed vertical line indicates the value 

of p12 used in the initial analysis (p12 = 5 × 10−6). The green shaded areas in these plots 

show the regions for which the posterior probability of H4 ≥ 0.90 would still be supported. 

Abbreviations: H0, hypothesis 0 (no association with either trait); H1, hypothesis 1 

(association with trait 1, not with trait 2); H2, hypothesis 2 (association with trait 2, not with 

trait 1); H3, hypothesis 3 (association with trait 1 and trait 2, two independent SNPs); H4, 

hypothesis 4 (association with trait 1 and trait 2, one shared SNP).
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Extended Data Fig. 5. GWAS variants correlate with increased SNCA-AS1 expression

Shown here are genome-wide significant SNPs that decrease risk for LBD and their 

correlation with increased SNCA-AS1 expression. a, Scatterplot of beta coefficients and 

association P-values (on a -log10 scale) for SNPs shared between the LBD GWAS (left) and 

PsychENCODE (right). The SNPs represented in this plot are those that are eQTLs 

regulating SNCA-AS1 expression. The top SNP in the LBD GWAS (as determined by the 

lowest association test P-value) is indicated in both scatterplots by a red point. The dashed 

line represents the cut-off for genome-wide significance (5 × 10−8). b, Scatterplot of SNPs 

shared between the LBD GWAS and PsychENCODE, which pass genome-wide significance 

in the LBD GWAS. Spearman’s rho (R) and associated P-value are displayed.
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Extended Data Fig. 6. Tissue and cell-type specificity of SNCA-AS1 and TMEM175
a,b, Plot of SNCA-AS1 and TMEM175 specificity in 35 human tissues (GTEx dataset) (a) 

and seven broad categories of cell types derived from human middle temporal gyrus (Allen 

Institute for Brain Science dataset) (b). Tissues are colored by whether they belong to the 

brain. In all plots, tissues and cell types have been ordered by specificity.
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Extended Data Fig. 7. Tissue and cell-specificity of SNCA-AS1 and SNCA
a,b, Plots of SNCA-AS1 and SNCA specificity in 35 human tissues (GTEx dataset) (a) and 

seven broad categories of cell types derived from human middle temporal gyrus (Allen 

Institute for Brain Science dataset) (b). Tissues are colored by whether they belong to the 

brain. In all plots, tissues and cell types have been ordered by specificity.
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Extended Data Fig. 8. LBD polygenic risk score is associated with dementia severity

Dementia severity score proportions (measured by the Clinical Dementia Rating scale) at 

baseline evaluation relative to LBD polygenic risk score quintiles. LBD patients in the 

highest quintile had significantly more severe cognitive impairment at baseline compared to 

cases in the lowest quintile (χ2 = 5.60, df = 1, test P-value = 0.009).
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Extended Data Fig. 9. Principal components analysis and QQ plot

Quality control metrics of GWAS data. a, Population structure is shown by plotting the first 

two principal components of the study cohorts (n = 2,591 LBD cases and n = 4,027 controls) 

compared to the HapMap3 Genome Reference panel. b, Quantile-quantile (QQ) plot of 

single-variant associations depicting observed (y-axis) versus expected P-values (x-axis). 

The sample size adjusted genomic inflation factor λ1000 was 1.004.

Extended Data Fig. 10. Quality control metrics

This figure depicts quality control metrics of the genome data across study cohorts. a, 

Heterozygous-to-homozygous single nucleotide variant (SNV) ratios. b, Mean coverage 

across the study cohorts.
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Fig. 1 |. Analysis workflow.

Schematic illustration of the analytical workflow.
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Fig. 2 |. Genome-wide representation of common and rare variant associations in LBD.

a-c, Manhattan plots depicting the GWAS results (n = 2,591 cases and 4,027 controls; MAF 

> 1%) (a), the GWAS subanalysis of pathologically confirmed LBD cases only (n = 1,789) 

versus controls (n = 4,027) (b), and gene-based genome-wide SKAT-O test associations of 

rare missense variants (MAF ≤ 1%, MAC ≥ 3) (c). The x-axis denotes the chromosomal 

position for all 22 autosomes in hg38, and the y-axis indicates the association P-values on a 

−log10 scale. Each dot in a and b indicates a single-nucleotide variant or indel, while each 

dot in c corresponds to a gene. Red dots highlight genome-wide significant signals, while 

suggestive variants are indicated with orange dots. A dashed line shows the conservative 
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Bonferroni threshold for genome-wide significance. For a and b, the gene with the closest 

proximity to the top variant at each significant locus is listed. Green font was used to 

highlight known LBD risk loci, while black font indicates novel association signals.
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Fig. 3 |. Regional association plots for eQTL and LBD GWAS colocalizations.

a,b, Regional association plots for eQTL (upper pane) and LBD GWAS signals (lower pane) 

in the regions surrounding TMEM175 (PPH4 = 0.99) (a) and SNCA-AS1 (PPH4 = 0.96) 

(b). The x-axis denotes the chromosomal position in hg19, and the y-axis indicates the 

association P-values on a −log10 scale.
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Fig. 4 |. Genetic risk scores from Alzheimer’s disease and Parkinson’s disease GWAS studies 
illustrate intersecting molecular genetic risk profiles with LBD.

Alzheimer’s disease and Parkinson’s disease genetic risk scores predict risk for LBD and 

highlight overlapping molecular risk profiles. a, Violin plots comparing z-transformed 

Alzheimer’s disease genetic risk score distributions in LBD cases, controls, and 100 random 

Alzheimer’s disease cases. b, Violin plots comparing z-transformed Parkinson’s disease 

genetic risk score distributions for LBD cases, controls, and 100 random Parkinson’s disease 

cases. The center line of each violin plot is the median, the box limits depict the interquartile 

range, and whiskers correspond to the 1.5x interquartile range. Abbreviations: GRS, genetic 

risk score; AD, Alzheimer’s disease; PD, Parkinson’s disease.
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Fig. 5 |. Insights into LBD pathways based on polygenic risk score enrichment analysis.

Functional enrichment analyses of the LBD polygenic risk scores. The x-axis corresponds to 

the enrichment category in LBD cases compared to controls, and the y-axis shows the 

enrichment percentages of significant associations after multiple testing correction. The 

enrichment percentage refers to the percentage of input genes/variants that are within in a 

given pathway. Significant gene ontology (GO) enrichments for biological processes (BP, 

orange), cellular functions (CC, blue), molecular functions (MP, green), and pathways from 

WikiPathways (WP, pink) are shown. The size of each respective dot indicates the P-values 

on a −log10 scale.
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