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Abstract

Rhizoctonia solani is a soil-borne basidiomycete fungus with a necrotrophic lifestyle which is classified into fourteen
reproductively incompatible anastomosis groups (AGs). One of these, AG8, is a devastating pathogen causing bare patch of
cereals, brassicas and legumes. R. solani is a multinucleate heterokaryon containing significant heterozygosity within a
single cell. This complexity posed significant challenges for the assembly of its genome. We present a high quality genome
assembly of R. solani AG8 and a manually curated set of 13,964 genes supported by RNA-seq. The AG8 genome assembly
used novel methods to produce a haploid representation of its heterokaryotic state. The whole-genomes of AG8, the rice
pathogen AG1-IA and the potato pathogen AG3 were observed to be syntenic and co-linear. Genes and functions putatively
relevant to pathogenicity were highlighted by comparing AG8 to known pathogenicity genes, orthology databases
spanning 197 phytopathogenic taxa and AG1-IA. We also observed SNP-level ‘‘hypermutation’’ of CpG dinucleotides to TpG
between AG8 nuclei, with similarities to repeat-induced point mutation (RIP). Interestingly, gene-coding regions were
widely affected along with repetitive DNA, which has not been previously observed for RIP in mononuclear fungi of the
Pezizomycotina. The rate of heterozygous SNP mutations within this single isolate of AG8 was observed to be higher than
SNP mutation rates observed across populations of most fungal species compared. Comparative analyses were combined to
predict biological processes relevant to AG8 and 308 proteins with effector-like characteristics, forming a valuable resource
for further study of this pathosystem. Predicted effector-like proteins had elevated levels of non-synonymous point
mutations relative to synonymous mutations (dN/dS), suggesting that they may be under diversifying selection pressures. In
addition, the distant relationship to sequenced necrotrophs of the Ascomycota suggests the R. solani genome sequence
may prove to be a useful resource in future comparative analysis of plant pathogens.
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Introduction

Rhizoctonia solani (formerly, teleomorph: Thanetophorus cucumeris) is

a globally-distributed, soil-borne fungal phytopathogen employing

a necrotrophic lifestyle. Collectively, the host-range of the R. solani

species spans numerous plant species vital to the agriculture,

forestry and bioenergy industries, including but not limited to:

wheat, rice, barley, canola, soybean, corn, potato and sugar beet

[1]. Chemical control methods may not be feasible nor economical

for the control of many soil-borne pathogens [2]. Hence,

agronomic controls such as crop-rotation are heavily relied upon

to fight this disease, though the polyphagous habit of some isolates

can include commonly rotated crop species. For example, cereal

and legume rotations are susceptible to AG8 [1,3]; and corn,

canola and soybean rotations are susceptible to AG1 and AG2 [4–

5]. Susceptible crop species possess at best, low to moderate levels

of genetic resistance which are of limited use to conventional

breeding strategies [6–8]. The impact of R. solani has been

observed to increase in incidence and severity with increased

adoption of conservation (no-till) farming techniques [2].The

combinations of these factors places R. solani as a significant threat

to global food security and other agro-forestry industries.

The R. solani species complex is comprised of fourteen

anastomosis groups (AGs), most of which are reproductively

incompatible with each other and are numbered AG-1 through

AG-13. The ‘bridging isolate’ AG-BI is the exception, being

compatible with multiple AGs [1,9]. Despite an apparently low

level of phylogenetic divergence between AGs [10] they exhibit

diverse phenotypic variation, particularly with respect to the host-

ranges of phytopathogenic AGs (Supporting Table S1A). Less

frequently, certain AGs have been observed to have a predom-

inantly saprophytic or mycorrhizal life-cycle.

Our study presents a comprehensive genome assembly and

functional analysis of R. solani AG8, causative agent of bare patch

of wheat, barley and legume species [3,11–12]. Of the AGs that

infect wheat, AG8 is the most damaging. In Australia, the impact
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of R. solani on wheat and barley production is estimated upwards of

$77 million per annum and bare patch also remains a major

problem for the production of wheat and other crops in the US

[13]. The host-range of the sequenced isolate WAC10335

(zymogram group ZG1-1 [14]) also extends to legume species of

agricultural and scientific importance: Lupinus spp. (lupin) [15] and

Medicago truncatula (barrel medic) [16], but not to the non-legume

Arabidopsis [17]. As a basidiomycete, the plant pathogens most

closely related to R. solani with genome sequences available are the

biotrophic smuts [18–20], rusts [21–22] and the tree-pathogenic

Moniliophthora spp. [23], which possess vastly different lifestyles.

Thus, the information gained from R. solani is expected to be of

importance in filling gaps in our knowledge of plant pathogen

biology, which apart from rusts and smuts, is skewed towards the

ascomycetes.

Significant genomic resources for other AGs of R. solani have

also recently become publicly available, formerly being limited to

EST libraries of AG1-IA [24] and AG4 [25]. The recent

generation of whole genome sequences of R. solani AGs presents

new opportunities for comparative genomics between R. solani

anastomosis groups. The most comprehensive whole-genome

study to date has been that of the rice pathogen AG1-IA [26]

[GenBank: AFRT00000000]. The genome assembly of the closely

related AG1-IB was published recently [27] [GenBank:

CAOJ00000000], however full scaffold sequences were not in

the public domain at the time of writing and thus AG1-IB data has

not been used for synteny comparisons in this study. The

mitochondrial genome sequence of the potato pathogen AG3

strain Rhs1AP and its comparison to that of AG1-IB has been

published recently [28]. A draft nuclear genome for AG3 is also

available (http://www.rsolani.org with kind permission from

Cubeta et al.), however a nuclear gene dataset and genome survey

have not yet been published [29].

R. solani AG8 exists as a multi-nuclear heterokaryon in which

individual R. solani cells may carry multiple nuclei and copy

number can vary between cells. An average of 8 nuclei per cell has

previously been observed in AG8, but numbers commonly ranged

from 6 to 15 [1]. While reduction of nuclear complexity via

protoplast isolation has been reported for R. solani [30–32], we

chose to assemble a representative haploid assembly of all AG8

nuclei in an agriculturally-relevant isolate and investigate mech-

anisms and type of sequence variations between nuclei in this

largely asexual isolate. We report evidence of SNP-level diversity

between heterokaryotic nuclei of a complex fungal genome, which

has not previously featured extensively in genome studies of fungal

phytopathogens. The heterozygosity between nuclei of AG8

compounded the complexity of its de novo genome assembly

[available from GenBank: AVOZ00000000] and we also describe

novel bioinformatic approaches used to overcome these challeng-

es. This study also compares whole-genome synteny between R.

solani anastomosis groups (AG8, AG1-1A and AG3) and uses

comparative genomics techniques to highlight genes and functions

unique to AG8 and AG1-1A. Predicted properties of AG8 proteins

have been leveraged to generate a list of 308 ‘effector-like’ genes

that may be related to plant-pathogenicity. These collective

resources will be important for further experimentation in this

pathosystem.

Results & Discussion

The haploid consensus genome assembly of R. solani
AG8
The heterokaryotic nature of the R. solani genome posed

considerable challenges for genome assembly. To overcome these

challenges we developed a novel genome assembly pipeline

(Figure 1). The assembly process, including software and

parameters, is described in the Materials and Methods section

with additional information in Supporting Text S1. Preliminary de

novo assemblies exhibited high levels of sequence redundancy and

heterozygosity across gene-encoding regions. We confirmed that

multiple nuclei were present in variable numbers within cells of the

sequenced isolate (Figure 2A). In order to reduce sequence

redundancies caused by the assembly of heterozygous homeologs,

the process used to assemble the AG8 genome included a step to

merge haplotype contigs prior to scaffolding. This step was

followed by generation of a haploid ‘majority consensus’ sequence

from alignments of genomic sequence reads to merged scaffolds.

However prior to this study, the extent of sequence variation

between homeologous chromosomes originating from different

nuclei was unknown. Alignment of genomic deep-sequencing

reads to the genome assembly indicated an abundance of

heterozygous SNP mutations throughout the AG8 assembly

(Figure 2B). As many as 74% of heterozygous SNP alleles were

transition mutations between cytosine and thymine (or their

complementary bases guanine and adenine) (Figure 2C, Support-

ing Table S2A). Nucleotides flanking these CRT ‘hypermutations’

exhibited a moderate bias of approximately 40% for a G at the 39

base (i.e. CpGRTpG) (Supporting Table S2B). These cytosine

and CpG hypermutations were widespread across the AG8

genome and occurred within protein-coding genes and repetitive

DNA regions at similar levels (Figure 2D), with only a slight

reduction in CpG frequency in genes relative to repeats. One of

the consequences of CRT mutation is the introduction of stop

codons into protein-coding open-reading frames (ORFs) [33]. We

reason that it is possible for ORFs to be inactivated by nonsense

mutations in the majority of nuclei, yet still produce functionally

active, full length proteins from a low number of non-mutated

nuclei in R. solani AG8. Thus the assembly process also included a

step which reverted heterozygous mutations between C and T to

cytosine, regardless of allele frequencies. The final R. solani AG8

draft assembly comprises 861 scaffolds, has a total length of

39.8 Mbp which is consistent with previous haploid cytogenetic

Author Summary

The fungus Rhizoctonia solani is divided into several sub-
species which cause disease in a range of plant species
that includes most major agriculture, forestry and bioen-
ergy species. This study focuses on sub-species AG8 which
causes disease of cereals, canola and legumes, and
compares its genome to other R. solani sub-species and
a wide range of fungal and non-fungal species. R. solani is
unusual in that it can possess more than one nucleus per
cell. The multiple nuclei and sequence mutations between
them made assembly of its genome challenging, and
required novel techniques. We observed signs that DNA
sequences originating from multiple nuclei in AG8 exhibit
a high frequency of single nucleotide polymorphisms
(SNPs) and more SNP diversity than most fungal popula-
tions. These SNP mutations also have similarities to repeat-
induced point mutations (RIP). Moreover in AG8, RIP-like
SNPs are not restricted to intergenic regions but are also
widely observed in gene-coding regions. This is novel as
RIP has previously only been reported in repetitive DNA of
distantly-related fungi that have only a single nucleus per
cell. We generated a list of 308 genes with similar
properties to known plant-disease proteins, in which we
found higher rates of non-synonymous mutations than
normal.
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Figure 1. A novel pipeline was employed to assemble the multinucleate, heterozygous genome of Rhizoctonia solani AG8. A) Genomic
DNA from multinucleate cells with variable nucleic copy numbers was prepared for next-generation sequencing (NGS) Illumina paired-end (B) and
mate-paired (C) short-read libraries. The 39 ends of read pairs from both (B) and (C) were tested for overlapping sequence, indicating short DNA
fragment sizes. Overlapping pairs in mate-paired libraries (C) were discarded as these indicated paired-end contaminants which would lead to
assembly errors. D) De novo assembly was performed combining the non-overlapping and overlapping paired-end read pairs that were merged into
longer single-end reads. E) Redundant haplotypes where equivalent regions of the genome from multiple nuclei were present more than once in the
assembly were merged into a single haplotype sequence. F) Non-overlapping mate-paired reads were used to build assembled sequences into larger
scaffold sequences. Stretches of unknown bases (polyN) in the assembly were filled where possible (G) by alignment of genomic NGS reads to the
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estimates of 37 to 46 Mbp [34], an N50 of 65 and an N50 length

of 160.5 kbp (Table 1).

The AG8 genome assembly statistics compared favorably with

those of other R. solani isolates AG1-1A, AG1-1B and AG3 as

shown in Table 1. Sequence comparisons between the whole

genome assemblies of R. solani AG8, AG1-1A and AG3 exhibited

widespread co-linearity or macrosynteny [35] (Figure 3, Support-

ing Table S3). No conclusive evidence for dispensable chromo-

somes, as reported for F. oxysporum [36], was observed.

A single scaffold (Scaffold_77) of ,140 kbp in length was

predicted to represent the mitochondrial genome. The ends of the

mitochondrial scaffold sequence were confirmed to be physically

joined in a circular configuration by PCR (Supporting Text S2).

The mitochondrial scaffold contained the expected set of fungal

mitochondrial genes (atp6, cytb, cox1-3, nad1-5 & nad4L, rps5, rns &

rnl) and was abundant with LAGLIDADG and GIY-YIG intronic

endonucleases. This is consistent with recent reports for the

mitochondrial genomes of AG3 and AG1-IB, which are of

similarly large sizes (235.8 kbp and 162.8 kbp respectively) and

possess high abundances of endonucleases [28].

Within the nuclear genome, repetitive DNA sequences (Sup-

porting Table S4A) represented just over 10% of its total length.

Gypsy retrotransposons were the most abundant repeat type and

represented 4% of the nuclear genome. Protein-coding gene-based

tri-nucleotide simple sequence repeats, WD40-like and tetratri-

chopeptide repeats, represented approximately 1%. Comparing

the repetitive content of AG8 with available repeat data for AG1-

1A, we observed more repetitive DNA in the assembly of AG8

(10.03% of the assembly) compared to that of AG1-1A (5.27%)

[26]. It should be noted that critical differences in assembly, de novo

repeat prediction and repeat classification methods may limit the

comparability of these two datasets, however the proportions of

the most dominant repetitive elements was strikingly similar. The

most dominant transposable elements in both AG8 and AG1-1A

were LTR retrotransposons: the most common being the Gypsy/

Dirs1 family at 3.98% and 3.43% respectively; followed by the

Ty1/Copia family at 0.14% and 0.60% respectively. This pattern

of Gypsy being more numerous than Copia retroelements, appears

to be typical of most fungal genomes [37]. Non-coding RNA

(ncRNA) genes were predicted in silico (Supporting Table S5A),

which overall made up less than 0.007% (26.5 kbp) of the total

genome length.

Manual curation of 13,964 R. solani AG8 protein-coding
genes with RNA-seq support, enables prediction of
proteome and secretome properties
To enable discovery and accurate annotation of protein-coding

genes present in the AG8 assembly, particularly those expressed in

the presence of plant tissues, three high-coverage Illumina RNA-seq

libraries were aligned to the genome to delineate gene exon

boundaries. To obtain transcript data for as many genes as possible,

the libraries included one library of AG8 undergoing vegetative

growth in culture and two ‘‘infection-mimicking’’ libraries. These

libraries were derived from AG8 grown on water agar containing

wheat (Triticum aestivum) or Medicago truncatula seedlings separated by

a permeable nitrocellulose membrane. This enabled collection of

fungal tissue whilst reducing plant tissue contamination to negligible

amounts. Alignment of RNA-seq data and proteins from related

fungal species and pathogenicity gene databases were combined

with in silico gene predictions to automatically predict gene structure

annotations, which were then manually curated.

The density of gene-coding regions was relatively even

throughout the assembled genomic scaffolds (Figure 2Eii), with

reduced density at some scaffold termini with high levels of repeats

(Figure 2Eiii). A total of 13,964 protein-coding AG8 genes that can

serve as a reference for R. solani comparative genomics were

predicted after RNA-seq-assisted manual gene annotation. Of

these, 8,449 proteins had a BLASTP match to the NCBI NR

protein database (Supporting Figure S1, Supporting Table S6).

The taxonomic distribution of lowest-common ancestor taxa for

these BLASTP matches indicated wide conservation of 83%

(7016/8449) of R. solani AG8 with fungal proteins, 52.5% (4436/

8449) specifically conserved within the Basidiomycota (Supporting

Figure S1) and 17.9% conserved within the class Agaricomycetes.

The extracellular secreted component of these proteins was

predicted using a combination of SignalP [38], WolfPsort [39]

and Phobius [40] (Figure 4). A total of 1,959 proteins (14.0% of all

proteins) were predicted to be secreted by one or more methods

and 608 (4.4%) were predicted to be secreted by all three methods.

For comparative purposes, SignalP predictions were applied to R.

solani AG8 and across 86 fungal species (Supporting Table S7).

There were 911 secreted proteins predicted by SignalP for AG8,

which was similar to the numbers predicted for closely-related

plant-pathogenic species of the class Agaricomycetes. The

secretome counts across biotrophic Basidiomycetes of other classes

were relatively variable, e.g. Puccinia striformis (1,264), P. graminis f.

sp. tritici (2,012) and Ustilago maydis (595). However AG8 was within

a similar range to the average predicted secretome count across all

fungi (1,052), which was predominantly comprised of necrotrophs.

To surmise the biological processes important to R. solani AG8

in the infection process, we predicted the functions of its 13,964

genes by comparison to the CAZy (Carbohydrate-Active enZyme)

and Pfam (Protein family) databases. In total, we assigned CAZy

annotations to 1,137 genes (Supporting Table S8B,C) and Pfam

annotations to 6,099 genes (44.5%) (Supporting Table S9A).

Analysis of CAZymes present in the R. solani AG8 genome

(Figure 5) revealed a dual bias for the degradation of the structures

of plant cells and modification of the fungal cell wall for growth or

protection from host-defences (Supporting Table S8C). The most

abundant CAZy families are described here. The most prevalent

glycoside hydrolase (GH) CAZyme class (GH18) represented

chitinases, followed in frequency by classes representing cellulases

(GH5), polygalacturonases (GH28) and beta-glucanases (GH16),

which degrade major components of plant cell walls. The most

abundant glycosyltransferase (GT) classes were strongly geared

towards cellulose (GT2, GT41), hemicellulose (GT77, GT4,

GT34) and chitin (GT2) degradation. The most common

carbohydrate esterase (CE) class contained choline esterases

(CE10). Polysaccharide lyase (PL) CAZymes were strongly biased

towards pectin-degradation, with the two most dominant classes

(PL1 and PL3) both representing pectate lyases. The three most

abundant carbohydrate-binding (CBM) class CAZymes were

lectin-like proteins. Two of these (CBM13 and CBM57) are

predicted to bind cellulose and hemicelluloses and include ricinB-

like lectins. The third (CBM18) contains sialic-acid-binding lectins,

assembly and regions predicted to contain tandem-duplication errors were corrected (H). Processes F, G and H were repeated for several rounds to
ensure complete assembly. I) Minor assembly errors and the presence of RIP mutation between nuclei were corrected by substitution of the most
dominant or pre-RIP allele. The final RIP-depleted, haploid consensus genome assembly (J) was manually annotated using a combination of RNA-seq
and protein homology supporting evidence, producing a final dataset of 13,964 protein-coding genes (K).
doi:10.1371/journal.pgen.1004281.g001
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Figure 2. RIP-like mutation was observed across repetitive and gene-encoding regions of the R. solani AG8 assembly. A) Fluorescence
micrograph of Rhizoctonia solani AG8 hyphae (stained with SYBR green) displaying multiple nuclei within a single cell. Nuclei appear as brightly
fluorescent structures. Hyphal septa are indicated with arrows and the scale bar is equivalent to 20 mm. Prior to genome analysis, sequence variation
between nuclei was unknown. B) Close-up view of the genomic region corresponding to actin gene RSAG8_00181, with short genomic sequence
reads used in its assembly. This is representative of most genomic regions, in which constituent short reads exhibit two dominant haplotypes
differentiated by low frequency SNP mutation. C) Percentage frequency matrix of SNP mutation type at heterozygous sites in the AG8 assembly. The
majority were transition mutations between cytosine and thymine (reverse complement adenine and guanine). D) Frequency logos of the base
composition of the sequences flanking heterozygous C«T transitions in gene and repeat sequences, exhibiting a moderate bias for a 39 guanine (i.e.
CpG) in both. E) Distribution of genes, repeats and cytosine hypermutations across AG8 nuclear scaffolds of at least 100 kbp in length (scaffolds 1-76
and 78-117). All plot data in concentric rings are calculated within sequential 100 kbp windows, in order from the centre outwards: (i) G:C content
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which may play a role in protection from plant host-defenses by

‘shielding’ sugars protruding from the fungal cell wall [41]. The

fourth most frequent CBM class (CBM1) binds chitin and cellulose

and appears to be conserved exclusively within fungal species.

Pfam domains in R. solani AG8 were compared to Pfam

annotations assigned to a panel of 50 pathogenic and non-

pathogenic fungal species (obtained from the JGI Integrated

Microbial Genomes database) (Supporting Figure S2, Supporting

Table S9A) [42]. R. solani AG8 exhibited high abundance of

tyrosine protein kinase signalling, membrane transport, protein-

protein binding, reduction-oxidation, DNA methylation and a bias

among cell-wall degrading enzymes towards pectin and peptidase

degradation. Pfam domains with protein-protein binding functions

were dominated by various classes of tetratrichopeptide repeats,

but also included other domains involved in protein binding

interactions: (WD40-like) PD40 beta-propeller [Pfam: PF07676];

Ankyrin [Pfam: PF13606] and leucine-rich repeats [Pfam:

PF00560]. The most abundant peptidase domain was the CHAT

(Caspsase HetF-Associated with TPRs) domain [Pfam: PF12770]

which may be involved in programmed cell death. In summary, R.

solani AG8 possesses a number of gene families whose members

have a broad range of potential biological roles, for example those

encoding caspases or protein-binding functions. Further study

would be required to determine their relevance to plant

pathogenicity or other lifestyle characteristics. These findings do

however indicate that R. solani AG8 possesses a large number of

carbohydrate-binding lectins of unknown function as well as a

battery of CAZymes suitable for consumption of carbohydrates

commonly found in cereal hosts, but also is geared towards the

degradation of pectin.

Comparison of functional annotations between AG8 and
AG1-IA suggest molecular functions of importance in
host-specific plant-pathogen interactions
Publicly-available protein data for AG1-IA [26] was also used to

generate functional annotations for AG1-IA. Statistical

comparisons between functions predicted in AG8 and AG1-IA

were performed using Fisher’s exact test (p#0.05) (Supporting

Table S10A). R. solani AG8 and AG1-IA primarily infect two

different hosts - wheat and rice respectively. Differences between

them in their relative abundances of functionally-annotated genes

may reveal important differences in their infection strategies.

Overall, fewer Pfam domains were found to be significantly higher

in AG1-IA than in AG8. In AG1-IA (Supporting Table S10B), the

Pfams that were significantly more abundant and may be related

to pathogenicity included several types of transmembrane

transporter domain and formin-like proteins that may be involved

(green, from 40 to 60%); (ii) percentage of 100 kbp window region covered by protein-coding genes (blue, from 0 to 100%); (iii) percent coverage of
repetitive sequences (red, from 0 to 100%). The presence (black) or absence (white) of gene or repeat regions are also indicated directly below rings
(ii) and (iii) respectively; (iv) frequency of heterozygous C«T (and A«G) polymorphisms (orange, 0 to 1000); (v) ratio of heterozygous C«T (and
A«G) sites relative to all SNPs (orange, 0 to 100%).
doi:10.1371/journal.pgen.1004281.g002

Table 1. Assembly statistics of four draft genome assemblies of R. solani.

AG8 AG1-IA AG1-IB* AG3

Host range Wheat, barley, canola, legumes Rice, canola, maize Rice, soybean, brassicas Potato, sugar beet, tomato,
cotton

Sequencing method Illumina: 75 bp paired-end,
200 bp insert size,

Illumina: 100 bp paired-end,
100 bp insert-size, 75 bp
paired-end, 347 bp insert size

26GS-FLX whole-genome
shotgun libraries

Sanger ABI 3730 XL: 4 and
10 kbp plasmid, 40 kbp fosmid

100 bp paired-end, 300 bp
insert size

44 bp mate-paired, 2.2 kbp,
5.3 kbp and 5.6 kbp insert size

16GS FLX 3 kbp long-tag
paired end library

16GS FLX whole-genome
shotgun library

100 bp mate-paired, 2 kbp,
5 kbp and 10 kbp insert size

Assembly method SOAPdenovo 1.05
SSPACE 2.1
GapCloser 1.2

SOAPdenovo 1.05 GS De novo Assembler 2.6 Unknown/In progress

Isolate WAC10335 N/A 7-3-14 (AJ868459) Rhs 1AP

Total assembly length 39.8 Mbp 36.9 Mbp 47.65 Mb 51.0 Mbp

Average scaffold length 46,260 bp 13,949 bp N/A 5,377 bp

Maximum scaffold length 1,192,818 bp 4,751,343 bp 1,082,565 bp 384,139 bp

Minimum scaffold length 1,003 bp 500 bp N/A 360 bp

N50 65 19 N/A 486

N50 length 160,522 bp 474,500 bp N/A 21,841 bp

Total number of scaffolds 861 2,648 1,600 9,484

Protein-coding genes 13,964 (manually curated) 10,489 12,268 N/A*

Predicted tRNA genes 94 102 167 N/A

Predicted ncRNA genes 155 N/A N/A N/A

*scaffold sequences not available for further comparison at time of writing.
doi:10.1371/journal.pgen.1004281.t001
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in cytokinesis. Many more functions were found to be increased in

AG8 relative to AG1-IA (Supporting Table S10C), however most

of these were of too broad or unknown function to infer their

biological roles. Nevertheless, several functions stood out as

potentially important for plant pathogenicity in AG8, including

CAZymes, peptidases, membrane transporters, transcription

factors and toxin-like proteins. Peptidases abundant in AG8

included the CHAT and C14 domain caspases as well as

fungalysin-like peptidases. The CAZyme functions that were

significantly more numerous in AG8 were predominantly glycosyl-

hydrolases (polygalacturonases, b-galactosidases), pectate lyases

and carbohydrate binding proteins (ricin-like and jacalin lectins

and fungal-specific CBM1 proteins). Fungal pathogens of dicots

generally possess higher numbers of pectin-degrading enzymes

than monocot pathogens [43]. Though an important pathogen of

monocot cereals, most notably wheat, the sequenced isolate of R.

solani AG8 was isolated from the dicot lupin and is also an

important pathogen of other leguminous dicots. The abundance of

pectate lyases in AG8 relative to AG1-IA is likely to reflect the

broad host range of the sequenced AG8 isolate.

Interestingly, AG8 had more members of two Pfams similar to

ricinB lectins [44] and delta endotoxins [45], highly toxic proteins

commonly associated with defence against insect predators which

have been prioritised for further study. In contrast to AG1-IA

which had none, AG8 possessed 3 delta-endotoxin-like proteins

(RSAG8_06697, RSAG8_07821 and RSAG8_07820) with the

Pfam domain Bac_thur_toxin [Pfam: PF01338]. This domain was

originally defined based on the insecticidal delta endotoxins of

Bacillus thuringiensis. Pfam matches and orthology analysis suggested

the presence of orthologous delta endotoxin-like proteins in other

phytopathogenic species including Fusarium graminearum (Fusarium

head blight of wheat and barley) and the bacteria Dickeya dadantii

(syn. Erwinia chrysanthemi, soft-rot, wilt and blight on a range of

plant hosts and septicaemia of pea aphid) [46] (Supporting Table

S9A, Supporting Table S11). Whether these ricinB and delta-

endotoxin homologs confer an advantage against competitors or

predators or may instead be toxic to the plant host remains to be

determined.

Prediction of 308 R. solani AG8 plant-pathogenicity gene
candidates
Effector proteins have been observed to be secreted by several

microbial pathogens [47] and cause disease on their respective

hosts. A set of characteristics common to plant pathogenicity

effectors from fungi that would allow reliable bioinformatic

predictions has not yet been accurately defined. However

experimentally validated effectors tend to be low molecular

weight, secreted, cysteine-rich proteins which may contain certain

conserved amino-acid motifs near the N-terminus [47–48]

(Supporting Table S12). Effector-like proteins were predicted in

AG8, requiring: complete annotation from translation start to stop

with ,3 consecutive unknown (‘X’) amino acids; predicted

molecular weight #30 kDa; predicted as secreted with 0–1

predicted transmembrane domains; and with$4 cysteine residues.

A total of 308 AG8 proteins matched all of these criteria. These

candidates were searched for known motifs previously associated

Figure 3. Genome assembly sequence comparisons between R. solani AG8 and isolates from alternate anastomosis groups. Dot-plots
depict nucleotide sequence matches detected via MUMmer (nucmer) between the two largest scaffolds (both Scaffold_1) of R. solani AG8 and AG1-
IA, as well as other homologous scaffolds from AG8, AG1-IA and AG3. Sequence alignments exhibit a predominantly co-linear, macrosyntenic
configuration, however a small number of structural rearrangements can be observed between the larger scaffolds of AG8 and AG1-IA. Due to partial
assembly of these genomes and thus short length of many scaffold sequences depicted here, only longer scaffolds have been labelled with their
numbers along the x- and y-axes, however full details of alignments can be found in Supporting Table S3.
doi:10.1371/journal.pgen.1004281.g003

Comparative Genomics of Rhizoctonia solani AG8

PLOS Genetics | www.plosgenetics.org 7 May 2014 | Volume 10 | Issue 5 | e1004281



with plant pathogenicity, however the occurrence of these motif

matches was not significant relative to the complete protein

dataset. As an example the RxLR-like motif (Kale et al., 2011),

though found in 73% of the predicted effector candidates, was also

found in 77% of the whole R. solani AG8 proteome (Supporting

Table S13) indicating this permissive motif may not be useful for

effector candidate prediction in R. solani AG8. We were also

unable to identify any novel N-terminal-associated motifs that

were highly conserved among these 308 proteins (Supporting Text

S3). However, we observed the ratio of non-synonymous to

synonymous mutations (dN/dS) within these 308 candidate genes

to be 0.97 compared to 0.77 across all genes. Our understanding

of the roles of these 308 effector candidates will benefit from the

addition of further experimental data, resulting in a more succinct

list of candidates with a potential direct role in disease on one or

more of the many plant hosts of R. solani AG8. Unfortunately, no

method for the stable transformation of R. solani AG8 is presently

available and thus functional testing of candidate pathogenicity

genes will be challenging.

To gain further support for an association with pathogenicity,

approximately 10% (29) of the 308 predicted ‘effector-like’ genes

were randomly selected and their mRNA expression relative to a

set of 7 constitutively expressed genes was compared between R.

solani AG8 sampled at 7 days post-infection of wheat and 7 day-old

AG8 mycelia grown on media. Of these 29 genes, 25 (85%) had a

positive fold-change and 17 had a significantly higher relative

expression in-planta (Student’s t-test; p#0.05, log2 fold change $1)

(Supporting Table S14B). This dataset highlights several

plant-pathogenicity candidates, but other genes also important

for pathogenicity may not be changing in abundance during

infection relative to in-vitro growth.

Widespread CpG-biased hypermutations may be similar
to repeat-induced point mutations (RIP) observed in
mononuclear species
Repeat-induced point mutations (RIP) are fungal-specific SNP

mutations previously reported to be restricted to the filamentous

Ascomycota (Pezizomycotina) [49]. RIP in the Pezizomycotina

involves transition mutations converting cytosine to thymine, with

a moderate bias for CpA dinucleotides [49]. Other features of RIP

include targeted mutation of repetitive DNA, with single-copy

DNA regions being largely unaffected. An important exception to

this is where RIP mutations ‘leak’ into single-copy DNA regions

from neighbouring repetitive DNA which occurs more frequently

closer to repeats [50].

The small number of studies looking for RIP-like mutations in

the Basidiomycota do not exhibit the characteristic CpA mutation

bias observed in the Pezizomycotina [49], however two studies

have reported a CpG dinucleotide bias between repetitive DNA

sequences within the Basidiomycota and a TpCpG trinucleotide

bias specific to the subphylum Pucciniomycotina [51–52]. As an

Agaricomycete, we expect R. solani to exhibit a bias towards CpG

but not TpCpG. However, it should also be noted that

hypermutations of CpG may also be caused by widely conserved

processes involving the methylation of cytosine to 5-methylcytosine

(5mC) and subsequent deamination which converts 5mC to

Figure 4. Summary of secreted proteins predicted by 3 different methods: SignalP, WolfPsort and Phobius.
doi:10.1371/journal.pgen.1004281.g004
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Figure 6. Percentage of heterozygous CpG«TpGmutations not occurring in repetitive DNA versus distance from nearest repetitive
DNA region. Percentage values were calculated based on mutations contained within incremental distance ranges of 100 bp.
doi:10.1371/journal.pgen.1004281.g006

Figure 5. Summary of R. solani AG8 genes assigned with CAZyme functional annotations. An overall summary is presented for the 5
CAZyme categories: carbohydrate-binding molecules (CBMs), carbohydrate esterases (CEs), glycosyl transferases (GTs), glucoside hydrolases (GHs)
and polysaccharide lyases (PLs). Individual summaries are also presented for each category, showing their most abundant CAZyme classes.
doi:10.1371/journal.pgen.1004281.g005
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thymine [53]. Importantly, conversion of cytosine to thyimine via

methylation and deamination does not actively target repetitive

DNA or ‘leak’ in the same manner as RIP.

Analysis of nucleotides immediately flanking heterozygous

C«T SNP sites in AG8 exhibited a CpG dinucleotide bias

consistent with previous observations of ‘RIP-like’ cytosine

hypermutations in the Basidiomycota [52] (Figure 2D). The

distribution of these RIP-like mutations in AG8 was observed to

occur across repetitive and gene-encoding regions alike at a

relatively constant ratio versus non-RIP-like mutations, where

heterozygous C«T alleles comprised ,70–80% of all SNP

mutations (Figure 2Eiv-v) and in turn CpG dinucleotides comprised

,40–50% of heterozygous C«T alleles. In mononuclear fungal

genomes, RIP has previously only been observed to act upon

repetitive DNA or to ‘leak’ into adjacent non-repetitive sequences

[50]. Due to the novel genome assembly process for AG8 which

involved merging of redundant haplotypes, a survey of SNP

mutations in its annotated repetitive DNA would likely lead to

incorrectly inflated counts of RIP-like mutations. Therefore we

instead looked at the frequency of CpG«TpG mutations versus

their distance from the nearest repeat, which indicated that CpG

mutations were more frequent closer to repeats (Figure 6).

Furthermore, although the ratios of (C«T/all SNPs) and

(CpG«TpG/C«T) were relatively similar between genes and

other regions of the genome, the frequency of mutations in gene

regions were lower than in the genome as a whole, suggesting

strong selection pressures to retain protein function. The ratio of

CpG/CpH (where H=not G) was slightly lower in repeats (0.3)

than in genes (0.4) (Table 2) and we speculate that this likely to be

due to complete (i.e. homozygous) conversion of CRT occasion-

ally occuring across all copies of a repeat, as they are under no

selection pressure to retain their pre-RIP sequences. Thus there

would be fewer sites that can be detected as heterozygous SNPs by

aligning genomic reads to the genome assembly.

Regardless of whether the underlying process is similar to RIP

or not, CpG-biased hypermutation is likely to play an important

role in the evolution of the AG8 genome. RIP has been recently

proposed to have the potential to randomly introduce nonsense

mutations, converting longer secreted proteins into small, secreted

proteins thus making them gradually more effector-like [54]. Stop-

codon frequency across the 12,771 annotated AG8 genes

possessing stop codons is highest for TGA (40%) compared to

Table 2. The average distance between various types of SNP mutations, within the AG8 genome assembly, genes, predicted
‘effector-like’ genes and repetitive DNA.

Mutation type Whole genome All genes Predicted effector-like genes Repetitive DNA

All SNPs 70 bp 63 bp 55 bp 86 bp

CpN 102 bp 89 bp 81 bp 137 bp

CpA 422 bp 359 bp 337 bp 490 bp

CpC 214 bp 185 bp 165 bp 301 bp

CpG 370 bp 307 bp 265 bp 583 bp

CpT 491 bp 417 bp 386 bp 539 bp

CpH 141 bp 126 bp 116 bp 178 bp

CpG : CpH 0.4 0.4 0.4 0.3

doi:10.1371/journal.pgen.1004281.t002

Table 3. The frequency and relative densities of heterozygous SNPs within the R. solani AG8 genome assembly and SNPs between
the genomes of AG8 and isolates from other anastomosis groups.

Anastomosis Group

compared to AG8 Type Genes Coding exons Introns Intergenic regions

AG8 (same isolate) regions tested (bp) 20503767 13464568 3667188 15284359

#SNPs 326180 195631 71965 175032

SNPs/kbp 15.9 14.5 19.6 11.5

AG1-IA regions tested (bp) 2502163 5890599 1871646 389538

#SNPs 442164 959137 427195 66890

SNPs/kbp 176.7 162.8 228.2 171.7

AG1-IB regions tested (bp) 1217710 5038424 1702580 321017

#SNPs 191835 713605 341024 44540

SNPs/kbp 157.5 141.6 200.3 142.7

AG3 regions tested (bp) 7610668 9721494 2903912 1158968

#SNPs 866515 957888 421808 144493

SNPs/kbp 113.9 98.5 145.3 124.7

Statistics are presented relative to genes, coding exons, introns and intergenic regions (sequences between 2 adjacent genes) in the R. solani AG8 genome.
Comparisons between AG8 and alternate anastomosis groups were restricted to AG8 regions that aligned to alternate AG sequences across their full length.
doi:10.1371/journal.pgen.1004281.t003
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TAA (31%) and TAG (29%). As TGA stop codons would be the

primary nonsense product of CpG-biased hypermutation, similar

evolutionary processes may also occur in AG8. Furthermore, the

presence of multiple nuclei in AG8 could potentially compensate

for loss of gene function due to hypermutation in one or more

nuclei, allowing for a higher tolerance for the accumulation of

mutations in gene-coding regions. Analysis of total SNP, and CpN

dinucleotide frequencies (expressed in Table 2 as average distance

in bp between mutations), showed that a SNP mutation occurred

on average every 70 bp, cytosine hypermutations occurred every

89 bp and that there was a 40% bias towards CpG mutations

occurring every 307 bp. Within the 308 predicted ‘effector-like’

genes, SNP mutations occurred on average every 55 bp, cytosine

hypermutations every 81 bp and CpG mutations occurred every

265 bp. However, the ratios of (C«T/all SNPs) and

(CpG«TpG/C«T) were not significantly different between the

complete set of 13,964 AG8 genes and the 308 effector-like genes.

Interestingly, despite apparently similar mutation ratios, the ratio

of non-synonymous to synonymous SNP mutations (dN/dS) was

0.97 in ‘effector-like’ candidates compared to 0.77 across all genes.

This may suggest that the increased mutation rate conferred by

CpG-biased hypermutation is advantageous for accelerating the

adaptation of pathogenicity genes which, if being actively counter-

acted by plant defences, are likely to be under diversifying

selection.

Comparison of SNP-level diversity within the R. solani

AG8 whole-genome with diversity in other species
The density of heterozygous SNP mutations within AG8 was

compared to SNP densities between the genome assemblies of

AG8 and AG1-IA, AG1-IB and AG3 (Table 3). SNP density in

AG8 was highest within intronic regions (19.6 SNPs/kbp),

moderate in coding exons and genes (14.5–15.9 SNPs/kbp) and

lowest in intergenic regions (11.5 SNPs/kbp). Comparisons of SNP

mutations between AG8 and alternate AGs exhibited an

approximately ten-fold increase in SNP density compared to the

rate of heterozygous SNPs within AG8. The corresponding values

within for comparisons between AG8 and AG1-IA ranged from

162.8–228.2 SNPs/kbp, AG1-IA from 141.6–200.3 SNPs/kbp

and AG3 from 98.5–145.3 SNPs/kbp. We note however that in

these comparisons between the genome assemblies of AG8 and

other AGs, it was not possible to ascertain whether these SNPs (or

homologous bases) were homozygous or heterozygous in the

alternate AG. Nevertheless a higher SNP density between the AG8

genome and those of the other three AGs, relative to heterozygous

AG8 SNPs, was consistent in all three comparisons.

Comparisons between individual genomes and fungal popula-

tion genetics studies were also used to place the SNP diversity

within R. solani AG8 into a wider context. Similar to AG8, the

Basidiomycete stripe rust fungus Puccinia striformis is heterokaryotic

but exhibits a lower SNP density within its genome assembly of

5.98 SNPs/kbp [21]. It may be significant that P. striformis is

binucleate and therefore only possesses 2 nuclei per cell as opposed

to the 6–15 nuclei that have been observed within cells of R. solani

AG8 [1]. Similarly, SNP variation across a population of shiitake

mushroom (Lentinula edodes) was reported to be 4.6 SNPs/kbp

(186,0789 SNPs in 40.2 Mbp) [55]. In barley powdery mildew

(Blumeria graminis), the SNP rate observed between pairs of isolates

was lower at 1 SNP/kbp [56]. Across isolates of the multinucleate

endomycorrhizal Glomeromycete Rhizophagus irregularis [57] and

the beetle-symbiont Leptographium longiclavatum [58], even lower

SNP densities of 0.2 SNPs/kbp (28,872 SNPs in 140.9 Mb) and

0.6 SNPs/kbp (17,266 in 28.9 Mbp) respectively, were observed.

In contrast, a population study of the multinucleate human

pathogens Coccidioides immitis and C. posadasii reported a rate of 23.7

SNPs/kbp relative to the C. immitus RS reference genome assembly

(687,250 SNPs in 28.95 Mb) [59], which though slightly higher is

within a similar range to R. solani AG8 (Table 3). In conclusion, the

SNP diversity in R. solani AG8 appears to be higher than that

observed thus far within individual isolates of binucleate rusts,

between isolates of the same pathogenic species and across non-

pathogen populations. Furthermore, diversity within R. solani AG8

is comparable to a population of another multinucleate pathogen

(C. immitus) and much higher than that observed within a

population of a multinucleate non-pathogen (R. irregularis). We

speculate that the combination of multinuclearity and selection

pressures relating to pathogenicity may be driving the accumula-

tion of widespread heterozygous SNP diversity in R. solani AG8.

Conclusions
In this study, we present a novel bioinformatics pipeline for the

accurate and comprehensive assembly of a complex fungal

genome, the heterozygous and multinucleate pathogen Rhizoctonia

solani AG8 (Figure 1). The combination of genome and

transcriptome sequencing allowed for data-driven gene prediction

and comparative genomics with other publically available

genomes of alternate anastomosis groups and other fungal species.

Using a combination of novel genome assembly methods, RNA-

seq, manual gene curation and comparative genomic techniques, a

list of 308 ‘effector-like’ plant-pathogenicity gene candidates has

been predicted. Analysis of mRNA expression for a subset of

candidate pathogenicity genes during infection of wheat has

highlighted several candidates for further study. Additionally,

comparisons to available data for alternate AGs of R. solani have

highlighted important differences, which may be related to

differing host ranges, host tissue preference and environmental

stress tolerance. The resources presented here should provide

powerful tools for the identification of host-specialised mechanisms

for fungal-plant interactions and pathogenicity for this important

group of fungal pathogens.

CpG-biased hypermutations were observed between nuclei of

AG8, within genes and repeat sequences alike and have some

similarities with repeat-induced point mutation (RIP). Previous

observations of RIP in haploid fungal genomes have only reported

its activity upon repetitive sequences [49,52] or non-repetitive

regions within a finite distance of a repeat [50]. Although we

observed hypermutation within genes, intriguingly these mutations

were more numerous with increasing proximity to repeats,

suggesting that repeats are mutated more frequently than genes

and that a process similar to ‘RIP-leakage’ may occur. Further-

more, the molecular mechanisms of RIP have not yet been fully

characterised [60] and the consequences of combining RIP-like

hypermutation and multinuclearity in R. solani are unknown. In

the basidiomycete human pathogen Cryptococcus neoformans, increas-

es in ploidy and the accumulation of mutations have been

implicated as mechanisms for its adaptation to immune- and drug-

related selection pressures [61]. Also of note is that across isolates

of the human-pathogenic and multinucleate ascomycete Coccidio-

dies immitus, higher relative frequencies of repeat-associated CpG

mutation have also been observed [59] (unusual for species of the

Pezizomycotina which typically exhibit a bias towards mutation of

CpA [49]). We speculate that RIP-like SNP mutations accumu-

lating in multiple nuclei may similarly be a means by which R.

solani is also able to rapidly generate allelic diversity despite being

predominantly clonally propagated [1]. Loss-of-heterozygosity and

copy-number variation analyses to confirm this hypothesis would

require further study using a sequencing platform which can

produce longer read lengths and higher base-call accuracies than

Comparative Genomics of Rhizoctonia solani AG8

PLOS Genetics | www.plosgenetics.org 11 May 2014 | Volume 10 | Issue 5 | e1004281



those used in this study. However, if this is the case, this

mechanism may be a factor contributing to the relatively mild

effectiveness of fungicide treatment against this pathogen [62] and

its adaptation to a broad range of plant hosts.

Materials and Methods

Isolation and sequencing of R. solani AG8
R. solani AG8 isolate WAC10335 was isolated from lupin and

provided by the Department of Agriculture and Food of Western

Australia (DAFWA). Anastomosis group was confirmed by

ribosomal ITS sequences and host-range was confirmed by

inoculation assays on wheat, lupin and Medicago truncatula [3]. R.

solani does not readily produce sexual or asexual spores thus single

spore isolation was not possible, therefore a single rapidly growing

hyphal tip was excised from a colony growing on PDA and

transferred to water agar containing 250 mg/ml cefotaxime.

Pathogenicity of the resulting culture was confirmed as equivalent

to the original. A pure in vitro culture of R. solani was produced by

incubation in PDB at 25uC with gentle shaking for 7 days. Hyphae

were filtered from the culture through sterile Miracloth and rinsed

with sterile water. DNA was purified by grinding hyphal tissue in

liquid nitrogen and suspension in DNA extraction buffer (2% (w/

v) CTAB, 1.4 M NaCl, 0.2% (v/v) b-mercaptoethanol, 20 mM

EDTA and 100 mM Tris-HCl) and mixing at 60uC. Following

two rounds of chloroform/isoamylalcohol extraction, the aqueous

supernatant was treated with RNase I (Invitrogen) at 20 mg/ml.

The DNA was purified through an additional two rounds of

chloroform/isoamylalcohol extraction and precipitated by adding

0.1 volumes of 3M NaOAc (pH 5.2) and 0.6 volumes isopropanol.

The resulting DNA pellet was resuspended in 10 mM Tris-HCl

(pH 8.0) buffer and quantitated by Qubit (Invitrogen) and

BioAnalyser prior to sequencing.

Next-generation sequencing and pre-assembly data
quality control
Two Illumina paired-end libraries of genomic DNA were

sequenced, with 75 and 100 bp read lengths and median insert

lengths of 250 bp and 300 bp respectively. Three Illumina

genomic mate-pair libraries with insert lengths of 2 kbp, 5 kbp

and 10 kbp were also obtained. Paired-end libraries were

combined and trimmed for sequencing adapter/primer sequences,

low-quality (,Q30), and low-complexity sequences via CutAdapt

v1.1 [63] filtered for adapter sequences from the Truseq RNA and

DNA sample preparation kits versions 1 and 2. Pairs with one or

more reads #50 bp after trimming were discarded. Where

possible, overlapping 39 ends between pairs were merged into

long singleton reads via FLASH v 1.2.2 [64]. FLASH was also

applied to the mate-paired libraries, to remove paired-end

contamination of incorrect insert length and pair orientation

which would complicate genome assembly (Supporting Text S1).

For the purpose of gene annotation, Illumina paired-end

libraries of 100 bp read lengths were obtained from 3 mRNA

libraries derived from AG8 grown under: vegetative conditions (7

days at 25uC in PDB with gentle shaking) (non-infection) and;

Medicago or wheat infection-mimicking conditions. Under infec-

tion-mimicking conditions, AG8 was cultured on a film of

nitrocellulose overlaid on water agar containing young sterilised

Medicago truncatula or wheat seedlings. After seven days incubation

at 25uC the film and hyphae were removed, ensuring negligible

plant contamination in subsequent RNA extractions with TRIzol

(Sigma-Aldrich, St. Louis, MO). Two sequencing libraries were

generated per mRNA library, with 200 bp and 500 bp insert sizes.

Transcript libraries were trimmed for contaminant sequences via

Cutadapt v1.1 as per genomic reads.

Genome assembly
Complex genome structure caused by heterozygosity and

multinuclearity prevented the use of commonly employed de novo

assembly methods. To this end, a novel pipeline was developed for

AG8 (Supporting Text S1). Paired-end libraries were assembled

with SOAPdenovo v1.0.5 (k-mer length = 61) [65]. This assembly

was scaffolded with SSPACE 2.0 using the parameters (end

extension, min size 500 bp) [66] and subject to 5 rounds of

Gapcloser2 [65] using paired-end and 39 end merged single-end

reads. Mate-paired reads were used for scaffolding but excluded

from gap-closing to avoid introducing inversion errors (Supporting

Text S1). Haplotype redundancy was reduced using HaploMerger

v20111230 [67] (batchD: filterAli = 0; minlength = 10 bp; max-

Internal = 10000000; mincoverage = 0). Tandem duplication as-

sembly errors (common to polyploid assemblies) were corrected by

a twofold approach (Supporting Text S1). The first method

involved intra-scaffold re-assembly between rounds of scaffolding

and gap-closing, where gaps were broken and tested for overlap

via CAP3 [68]. The second method involved self-alignment via

BLASTN [69], applied after scaffolding, gap-closing and N-

breakage rounds had completed. Alignments occurring in tandem

on the same sequence were identified, and the sequences of the

second repeat plus the intermediate region were removed from the

assembly if repeats were #500 bp apart or $30% polyN in

intermediate region. Introduction of errors by these processes was

corrected by re-alignment of raw genome reads with bowtie2 v

2.0.5 [70] followed by local-realignment at indels, variant-calling

and variant-consensus generation via GATK v1.6.11 [71]. Variant

Call Format (VCF v4.0) tables of SNP and indel variation between

the paired-end, 39-end merged (long single-end reads), 2 kbp

mate-paired, 5 kbp mate-paired and 10 kbp mate-paired sequence

libraries relative to the genome assembly sequences, were merged

with VCFtools v0.1.6 [72] where variants agreed between at least

2 out of the 5 libraries. The most frequent alleles in the merged

VCF were incorporated into the consensus sequence of the final

assembly, with the exception of sites where cytosine (C) to thymine

(T) (reverse complement: G to A) polymorphisms were observed at

which the assembly was reverted to the C (or G) allele regardless of

allelic frequency. The genomic distribution of SNP mutations was

calculated using BEDTools v0.1.7 [73].

Genome assembly sequences of AG8, AG1-IA and AG3 were

compared using MUMmer 3.0 [74] using both nucmer and

promer (parameters: –maxmatch). Summary statistics were

derived from coordinate outputs.

Repetitive DNA prediction, annotation and curation
Repetitive sequences were predicted via RepeatScout v1.0.5

[75], requiring consensus sequences $50 bp and $5 copies. Full-

length repeats were reconstructed from RepeatScout outputs with

CAP3 (v10.15.7, -h100 -p80 -z1) [68], manually curated and

mapped to the genome assembly via RepeatMasker v3.2.9

(parameters: -e crossmatch -s) [76]. Repeat types were char-

acterised using a combination of BLASTn vs NCBI Nucleotide,

BLASTx vs NCBI Protein [69], CENSOR vs REPBASE v17.11

[77] and TEClass [78]. Repeat regions were also predicted with

TransposonPSI v08222010 [79] and RepeatMasker vs RE-

PBASE v17.11 (species = ‘‘Eukaryota’’) [80]. All repeat data,

excluding repeats corresponding to protein-coding genes (Sup-

porting Table S4B), were used as negative support for gene

annotation.
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Transcriptome alignment and assembly
Exon splice-junctions were determined by aligning six RNA-seq

libraries to the AG8 assembly via TopHat 2.0.4 (minimum intron

size 20 bp, maximum intron 5000 bp, no coverage search, 2 splice

mismatches, microexon search enabled, very sensitive, 20 read

mismatches, 3 segment mismatches, max insertion length 12 bp,

max deletion length 12 bp, report discordant and secondary

alignments) [81]. Transcriptome de novo assembly was performed

via Trinity r2012-03-17 (k-mer trimming with JellyFish 1.1.4,

jaccard clipping, minimum contig length 150 bp, min k-mer

coverage 56, minimum glue 5, minimum percent read mapping

70%) [82–83]. Combined and individual library-specific assem-

blies were used for manual gene annotation.

Gene prediction, annotation and curation
The library-specific and the combined transcriptome assemblies

were used to determine exon structure using PASA r2012-06-25

(minimum percent aligned 75%, maximum intron length

5000 bp). The output of PASA was passed to the EvidenceMo-

deller r2012-06-25 auto-annotation pipeline [84], which also

incorporated the following supporting data: splice-junctions

determined from RNA-seq alignment to the genome assembly

via Tophat 2.0.5; in silico gene prediction via GeneMark-ES v3.2.3

[85]; ESTs and proteins of previously sequenced fungi and

PHIbase v3.4 [86] aligned to the genome assembly with AAT

r03052011 [87]; predicted repetitive DNA (see above) and; non-

coding locus predictions via tRNAscan-SE v1.23 (genomic, COVE

only) [88] and Infernal v1.0 [89]. Gene annotations were

evaluated by EvidenceModeller, visualised in Apollo v1.11.6

[90] and manually curated. Predicted protein translations were

compared to the NCBI NR Protein database by BLASTP [69]

(BLAST v2.2.26, e-value#1e23, top 20 hits) and the taxonomic

distribution of their corresponding lowest-common ancestor taxa

was summarised with MEGAN5 (LCA parameters: minimum

support 1, minimum score 40, max expected 1e23, top percentage

100) [91].

Functional annotation
Conserved protein domains in AG8 and AG1-IA were

predicted with HMMER 3.0 [92] versus Pfam(A) v26.0 [88] with

gathering cutoffs. Carbohydrate-active enzymes (CAZymes) were

predicted with CAT v1.8 [93]. Multiple alignments of the most

abundant CAZyme families were generated with MAFFT L-INS-i

v7.130 [94] (Supporting Table S15). Comparison of Pfams were

performed between R. solani AG8 and other sequenced fungi from

JGI IMG v4 [42]. Orthology comparisons between AG8 predicted

proteins and protein datasets from 197 fungal, oomycete,

prokaryotic, insect and nematode species and included a range

of pathogens with different host ranges and non-pathogens

(Supporting Table S11) was performed via ProteinOrtho v4.26

(BLASTP v2.2.26, E-value = 1e-05, alg.-conn. = 0.1, cover-

age = 0.5, percent_identity = 25, adaptive_similarity = 0.95, in-

c_pairs = 1, inc_singles = 1, selfblast = 1, unambiguous = 0) [95].

Predicted secretome comparisons were performed using SignalP

4.1 [38] between R. solani AG8 and 86 other fungi (Supporting

Table S7).

Candidate ‘effector-like’ pathogenicity genes were classified by:

complete annotation with translation start and stop codons and #

3 consecutive unknown ‘X’ amino acids; predicted to be secreted

by at least one method; 0–1 predicted transmembrane domains

(single domains can be mis-predicted within secretion signal

peptides); predicted molecular weight #30 kDa; and $4 cysteine

amino acids. Molecular weights and amino-acid compositions

were predicted with Bio::Tools::SeqStats (BioPerl) [96]. Sub-

cellular localisation, secretion status and transmembrane domains

were predicted with Phobius v1.01 [40], SignalP v4.1 [38] and

WolfPSort v0.2 [39]. Matches to motifs previously associated with

plant pathogenicity effectors (Supporting Table S13) were

searched with PREG [97] (Supporting Table S13). We also

attempted to identify high frequency novel motifs within the

‘effector-like’ candidates with MEME v4.9.1 (model =ANR,

minsites = 2, maxsites = 300, nmotifs = 50, minwidth= 5, max-

width = 50) [98] (Supporting Text S3).

Heterozygous SNP mutations derived from genomic read

alignment to the final genome assembly, as described above,

within all genes and predicted ‘effector-like’ genes were tested for:

1) stop-codon bias; 2) gene structure location bias with SNPeff

[99]; 3) non-synonymous vs synonymous SNP ratio (dN/dS) via

SNPeff [99]; 4) frequency and density via BEDtools coverageBed

[73].

Validation of expression of predicted plant-pathogenicity
genes during wheat infection
Gene expression of selected genes (Supporting Table S14A)

was tested via quantitative polymerase chain reaction (qPCR) in

wheat roots at 7 days post-infection and in 7 day old in vitro grown

PDB culture. Wheat samples were inoculated with millet seeds

pre-infect with WAC10335 and grown in pots of vermiculite for 7

days at 24uC. Wheat seeds were surface-sterilised and germinated

on moist filter paper at 4uC for 4 days, then planted into pre-

infected vermiculite pots and covered by a layer of fresh fine

vermiculite. The pots were transferred to a growth room at 16uC

and 12 hours light/day (150 mmol.m22.s21) for 7 days. Plants

were harvested and root and above ground tissues separated.

RNA was extracted from root tissue using Trizol reagent (Sigma)

according to the manufacturer’s instructions and cDNA produced

using Superscript III (Invitrogen) following the manufacturer’s

instructions. Quantitative PCRs used SsoFast EvaGreen Super-

mix (BioRad).

A total of 29 out of 308 predicted ‘effector-like’ pathogenicity

genes were selected for testing based on their assigned functional

annotations. Seven control genes were also selected based on

stable expression, averaging $70 FPKM and #0.16 fold change

between libraries, across the three RNA-seq libraries discussed in

this study and/or for putative functions suggesting stable

expression patterns (e.g. actin and tubulin). Primer pairs were

designed from coding-exon sequences (CDS) using primer3 [100]

(opt. amplicon 200 bp, primer 18–25 bp, opt. Tm 60uC, max.

DTm 1uC, min. GC clamp 2 bp, max. homopolymer 3 bp). In

silico PCR screening via e-PCR [101] required #1 amplicon

(10 bp to 10 kbp) versus genome assembly and CDS sequences.

Quantitative PCR was performed with 2 technical replicates and 3

biological replicates. Log2 fold-changes between in-vitro and

infection samples were calculated by the DDCT method in

accordance with Anderson et al. [102], relative to the mean of 7

controls. A two-tailed Student’s T-test was applied to relative

abundances between in planta and in vitro samples (equal variance,

p-value#0.05).

Supporting Information

Figure S1 Summary of ‘‘lowest-common-ancestor’’ taxa as-

signed to 8,449 R. solani AG8 proteins by BLASTP to NCBI

Protein. Higher level taxa contain protein counts both for widely-

conserved R. solani AG8 proteins for which that taxon has been

assigned as its lowest-common-ancestor, as well as cumulative

counts for all lower-level taxa contained within.

(TIF)
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Figure S2 Pfams abundant in R. solani AG8 compared to species

from JGI Integrated Microbial Genomes.

(TIF)

Table S1 Summary of known R. solani anastomosis group host-

ranges (A) and supporting publications (B).

(XLSX)

Table S2 Heterozygous SNP (A) and dinucleotide (B) mutations

in the R. solani AG8 genome assembly.

(XLS)

Table S3 Whole-genome alignments between assemblies of R.
solani AG8, AG1-IA and AG3 depicted in Figure 3.

(XLSX)

Table S4 Repetitive DNA content of R. solani AG8. (A)

Summary tables of repeat proportions within the R. solani AG8

genome assembly. (B) Curated classifications of repeat types. (C)

Genomic coordinates of repetitive DNA regions mapped by

RepeatMasker. (D) Repeat predictions made via TransposonPSI.

(E) Consensus sequences of de novo predicted AG8 repeat families

in FASTA format.

(XLS)

Table S5 Summary of non-coding RNA regions predicted

within the R. solani AG8 genome assembly. (A) ncRNA predictions

made via Infernal and their genomic coordinates. (B) Summary of

Infernal predictions. (C) tRNA predictions made via tRNAScan.

(XLSX)

Table S6 Best matches of manually curated R. solani AG8 genes

to NCBI Protein database by BLASTP.

(XLSX)

Table S7 Comparison of SignalP 4.1 predictions between R.
solani AG8 and 86 fungal species.

(XLSX)

Table S8 Carbohydrate-active enzymes (CAZymes) present in

the R. solani AG8 genome. (A) Annotations made via the CAZymes

Analysis Toolkit. (B) Manual curation of data presented in (A). (C)

Summary counts of CAZyme content of R. solani AG8.

(XLSX)

Table S9 Pfams comparisons between R. solani AG8 and species

of the JGI Integrated Microbial Genomes database. Data is

summarised for Pfams abundant in AG8 in (A) and presented in

full in (B).

(XLS)

Table S10 Comparison of Pfam annotations between R. solani
AG8 and AG1-IA. (A) Counts of genes with Pfam annotations for

both AGs. (B) Pfams significantly enriched in AG1-IA relative to

AG8. (C) Pfams significantly enriched in AG8 relative to AG1-IA.

(D) Full Pfam annotations for AG1-IA. (E) Full Pfam annotations

for AG8.

(XLSX)

Table S11 Summary of orthology relationships between R. solani
AG8 and 197 species. Compared species include fungal,

oomycete, insect and prokaryotic species exhibiting a wide range

of pathogenicity phenotypes.

(XLSX)

Table S12 Predicted ‘effector-like’ plant pathogenicity genes of

R. solani AG8 and data supporting their prediction.

(XLSX)

Table S13 Summary of matches in R. solani AG8 proteins to

known plant pathogenicity motifs.

(XLSX)

Table S14 Summary of relative mRNA expression of selected

predicted ‘effector-like’ genes. Selected genes were isolated from

7 dpi infected wheat versus 7 day old in vitro culture. (A) Raw CT

values for all genes tested. (B) Genes with significantly up-regulated

mRNA expression in planta.

(XLSX)

Table S15 Multiple alignments of the most abundant CAZyme

families in R. solani AG8.

(XLSX)

Text S1 Methods used to assemble a haploid representation of

the multinucleate genome of R. solani AG8.

(DOCX)

Text S2 The mitochondrial genome of R. solani AG8. Confir-

mation of circularity and correct scaffolding across internal gap of

mitochondrial Scaffold_77 by PCR and its predicted mitochon-

drial genes and non-coding RNA regions.

(DOCX)

Text S3 De novo MEME search for novel motifs among the 308

R. solani AG8 effector candidates.

(TXT)
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