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Abstract

IMPORTANCE Children with medical complexity (CMC) represent a growing population in the

pediatric health care system, with high resource use and associated health care costs. A genetic

diagnosis can inform prognosis, anticipatory care, management, and reproductive planning.

Conventional genetic testing strategies for CMC are often costly, time consuming, and ultimately

unsuccessful.

OBJECTIVE To evaluate the analytical and clinical validity of genome sequencing as a

comprehensive diagnostic genetic test for CMC.

DESIGN, SETTING, AND PARTICIPANTS In this cohort study of the prospective use of genome

sequencing and comparison with standard-of-care genetic testing, CMCwere recruited fromMay 1,

2017, to November 30, 2018, from a structured complex care program based at a tertiary care

pediatric hospital in Toronto, Canada. Recruited CMC had at least 1 chronic condition, technology

dependence (child is dependent at least part of each day onmechanical ventilators, and/or child

requires prolonged intravenous administration of nutritional substances or drugs, and/or child is

expected to have prolonged dependence on other device-based support), multiple subspecialist

involvement, and substantial health care use. Review of the care plans for 545 CMC identified 143

suspected of having an undiagnosed genetic condition. Fifty-four families met inclusion criteria and

were interested in participating, and 49 completed the study. Probands, similarly affected siblings,

and biological parents were eligible for genome sequencing.

EXPOSURES Genome sequencing was performed using blood-derived DNA from probands and

family members using establishedmethods and a bioinformatics pipeline for clinical genome

annotation.

MAINOUTCOMES ANDMEASURES The primary study outcomewas the diagnostic yield of

genome sequencing (proportion of CMC for whom the test result yielded a new diagnosis).

RESULTS Genome sequencing was performed for 138 individuals from 49 families of CMC (29male

and 20 female probands;mean [SD] age, 7.0 [4.5] years). Genome sequencing detected all genomic

variation previously identified by conventional genetic testing. A total of 15 probands (30.6%; 95%CI

19.5%-44.6%) received a new primarymolecular genetic diagnosis after genome sequencing. Three

individuals had novel diseases and an additional 9 had either ultrarare genetic conditions or rare

genetic conditions with atypical features. At least 11 families received diagnostic information that had

clinical management implications beyond genetic and reproductive counseling.
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Abstract (continued)

CONCLUSIONS ANDRELEVANCE This study suggests that genome sequencing has high analytical

and clinical validity and can result in new diagnoses in CMC even in the setting of extensive prior

investigations. This clinical populationmay be enriched for ultrarare and novel genetic disorders.

Genome sequencing is a potentially first-tier genetic test for CMC.

JAMA Network Open. 2020;3(9):e2018109. doi:10.1001/jamanetworkopen.2020.18109

Introduction

Childrenwithmedical complexity (CMC)1-4 have at least 1 chronic condition, technology dependence,

multiple subspecialist involvement, and substantial health care use. Although these children

compose less than 1% of the pediatric population, they account for 33% of all pediatric health care

spending.2 A genetic cause is suspected in a large proportion of CMC, but most remain undiagnosed

with conventional genetic testing.5 For many families, the diagnostic process is time intensive,

resource intensive, and emotionally intensive.5 Children with medical complexity are a priority

population for testing novel interventions.1,6 Genome sequencing has the potential to enhance the

efficiency and effectiveness of diagnostic genetic testing in pediatric medicine,7,8 including in CMC.

Collectively, rare genetic conditions are an important cause of severe pediatric morbidity and

mortality.9,10 A genetic diagnosis can inform prognosis, anticipatory care, management, and

reproductive planning. Chromosomal microarray analysis (CMA)7,11-13 and exome sequencing (ES)13-17

are now established clinical genetic tests in resource-rich countries for a range of pediatric

presentations. Genome sequencing offers several advantages compared with both CMA and ES8,18

and is a comprehensive genetic test potentially capable of detecting nearly all sequence and

structural variation in the human genome.7,8,17,19-25 Rapid genome sequencing as a first-tier test in

neonatal and pediatric intensive care units has been associated with a high diagnostic yield and

potential health care cost savings.22-26 In contrast, genome sequencing is understudied in other

settings.7,8,20,27

The goal of this observational cohort study in a population of CMCwas to evaluate the analytical

and clinical validity of genome sequencing as a genetic test.28,29We anticipated that genome

sequencing would be a high-yield and comprehensive testing strategy and that the undiagnosed

CMC populationmay be enriched for rare and novel genetic disorders.

Methods

Recruitment, Inclusion and Exclusion Criteria, and Phenotyping

We recruited CMC younger than 18 years from a structured complex care program30 based at a

tertiary care pediatric hospital during an 18-month period (May 1, 2017, to November 30, 2018). The

standard operational definition for CMC has been published elsewhere.31 Families were eligible to

participate if an underlying genetic condition was suspected in the child (proband) but had not been

established by conventional genetic testing. The study size was limited by available funding to a

maximum of 50 families. Children with genetic diagnoses that explained only a component of their

primary phenotype and thosewith a variant of uncertain significance that could represent a diagnosis

were included. Exclusion criteria were the following: the child was no longer actively followed up by

the complex care program, neither biological parent was available for the study, genetic testing was

in progress, and the child was involved in another research study of genome sequencing. All

probands were seen in consultation by a clinical geneticist at the time of enrollment (if not already

seen within the last 12 months) to ensure access to standard-of-care testing. Phenotype and family

history data were extracted from the electronic medical record and entered into PhenoTips.32

Phenotypic information is represented in PhenoTips using the Human Phenotype Ontology.33Data
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regarding conventional molecular genetic testing were also extracted from the electronic medical

record. This study followed the Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) guideline for observational cohort studies.34 The study was approved by the

Research Ethics Board at The Hospital for Sick Children. Parents and/or guardians provided written

consent on their child’s behalf. Where appropriate, children provided written and/or oral assent.

Genome Sequencing andVariant Annotation

Genome sequencing was performed at the Centre for Applied Genomics (Toronto, Ontario, Canada)

using established methods,8with high-quality DNA extracted from whole blood. In brief, library

preparation was performed from 500 ng of DNA using the TruSeq Nano DNA Library Preparation Kit

(Illumina Inc) omitting the polymerase chain reaction amplification step, followed by sequencing on

a HiSeq X platform (Illumina Inc) per recommended protocols. Base calling and data analysis were

performed using Bcl2FASTQ or HiSeq Analysis Software version 2-2.5.55.1311 (Illumina Inc) and reads

weremapped to the hg19 reference sequence using Burrows-Wheeler Aligner, version 0.7.12 (Illumina

Inc). Single-nucleotide variations (SNVs) and indels were detected using Genome Analysis Toolkit,

version 3.4-46 or version 3.7 (Broad Institute). Detected variants were annotated using a custom

pipeline based on ANNOVAR (ANNOtate VARiation; Center for Applied Genomics, University of

Pennsylvania)35 as previously described8 and with the addition of SpliceAI (Illumina Inc).36 Copy

number variations (CNVs) were detected using the read depthmethods ERDS (Estimation by Read

Depth with Single-nucleotide variants; Duke University)37 and CNVnator (Yale University)38with a

window size of 500 bp. High-quality CNVs were defined as those detected by ERDS that were also

detected by CNVnator with greater than 50% reciprocal overlap.39 Structural variants were detected

using the algorithmsManta (Illumina Inc),40 LUMPY (University of Virginia),41 and DELLY (European

Molecular Biology Laboratory).42 Structural variants that were detected by at least 2 callers were

prioritized, with variants supported by at least 5 paired or split reads considered as higher stringency.

Short tandem repeats were genotyped at 54 targeted loci of known or potential clinical relevance

using ExpansionHunter version 3.1.2 (Illumina Inc).43Mitochondrial variants were converted to

NC_012920 coordinates with a custom script and then annotated using MitImpact19 version 2.444

(Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza).Where necessary, read alignments

weremanually inspected using Integrative Genomics Viewer45 (Broad Institute). Rare SNVs and indels

were defined as those present at less than 1%allele frequency in large population control data sets,46-48

and rare structural variants and CNVs were those present in less than 1% of unaffected parents in the

Autism Speaks MSSNG data set.49 Copy number variations were also annotated with respect to the

degree of overlap with those in the Database of Genomic Variants.50,51 Genome sequencing data for

this study will be deposited in the European Genome-Phenome Archive.

Interpretation and Clinical Confirmation of Variants

Candidate variants that were deemed relevant to the primary phenotype according to established

laboratory reporting criteria52were discussed with the clinical team and designated as diagnostic by

consensus. Diagnostic variants in established disease genes were classified as likely pathogenic or

pathogenic using the American College of Medical Genetics and Genomics criteria.52Maternity and

paternity were confirmed for putative de novo variants. In 3 instances (CMC 21 and THOC2 [OMIM

300395] variant, CMC 24 and CLCN4 [OMIM 302910] variant, and CMC 38 and CAD [OMIM 114010])

variant), additional functional studies supportive of a damaging association with the gene or gene

product were facilitated by international collaborators.53-55We also reported secondary findings in

American College of Medical Genetics and Genomics Secondary Findings version 2.0 genes56with

potential childhood-onset phenotypes. All diagnostic variantswere confirmed by an orthogonalmethod

in a laboratorywith Clinical Laboratory ImprovementAmendments andCollege of AmericanPathologists

certification. Changes in medical management triggered by the genome sequencing results were

recorded by the clinical team.
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Statistical Analysis

All analyses were performed using R statistical software, version 4.0.2 (R Foundation for Statistical

Computing). Fisher exact test for comparison of proportions and Kruskal-Wallis test for comparison

of medians were used for within-group comparisons. All P values were from 2-tailed tests and P < .05

was considered statistically significant.

Results

Review of the care plans30 for 545 CMC identified 143 families who appeared tomeet eligibility

criteria (Figure 1). Fifty-four families met inclusion criteria and were interested in participating, of

which 50were assigned research identification numbers (Figure 1). Prior to genome sequencing, 1

proband (CMC 27)was found through detailedmedical record review to have had a diagnostic variant

detected in the course of another research study. The result was clinically confirmed and disclosed

to the care team for the first time. This individual was excluded from the present study so as not to

artificially inflate the diagnostic yield of genome sequencing, leaving 49 participating families.

Phenotype and Family History Characteristics

Of the 49 probands who underwent genome sequencing, 29 (59.2%) were boys. Themean (SD) age

was 7.0 (4.5) years. The self-reported races/ethnicities were European orWhite (n = 26), South Asian

(n = 10), other or mixed (n = 5), Middle Eastern (n = 4), Ashkenazi Jewish (n = 3), and East Asian

(n = 1). Six probands (12.2%) had a first-degree relative with at least partial phenotypic overlap, and

there was parental consanguinity for 5 probands (10.2%). All probands met criteria for medical

complexity as a consequence of congenital anomalies and/or neurologic or developmental features.

Themedian number of Human PhenotypeOntology terms coded per probandwas 24 (range, 6-58).

The 1219 total features were distributed across 15 phenotypic categories (eFigure 1 in the

Supplement), and each category was represented in 8 individuals or more (eFigure 2 in the

Supplement). Themost frequently represented category was neurologic or developmental, with 288

Figure 1. Study Recruitment Flowchart

143 Families met eligibility criteria after initial medical record review

54 Interested and eligible families

50 Families enrolled in study

49 Families (138 individuals) underwent genome sequencing

1 Excluded (diagnosed via a targeted test)

89 Excluded

9 Already underwent genome sequencing

7 Already diagnosed

5 Genetic testing in progress

2 Deceased

1 Neither biological parent available

1 Genetic cause not suspected

1 No longer in the complex care program

18 No response

21 Not interested

24 Did not follow up

4 Excluded

2 Deceased

2 Unable to schedule a visit
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total features (23.6%; eFigure 1 in the Supplement) and at least 1 feature in this category in 47

probands (95.9%; eFigure 2 in the Supplement).

Conventional Genetic Testing

Themedian number of conventional genetic tests per proband was 4 (range, 1-13), and a total of 232

tests were performed in this patient cohort (eFigure 3 in the Supplement). Six individuals met

inclusion criteria but were nonetheless known at the time of recruitment to have variants that might

explain at least part of their phenotype (eTable 1 in the Supplement). Testing organized at the time

of enrollment in this study included 9 CMA tests, 7 ES tests, 2 next-generation sequencing gene panel

tests, and 2 single-gene tests. By the completion of the study, 48 probands (98.0%) had undergone

CMA testing and 33 (67.3%) had undergone ES (eFigure 4 in the Supplement). Of the 16 probands

who did not undergo ES, 7 did not meet clinical eligibility criteria within the provincial health care

system, 4 were diagnosed by genome sequencing before ES was approved for funding and initiated,

3 were offered ES but the families did not follow up, and 2 were diagnosed by next-generation

sequencing gene panel tests.

Genome Sequencing Coverage andAnalytical Validity

We performed genome sequencing for 138 individuals from 49 families. This included 40 parent-

child trios, 4 singletons (child only; these were not upgraded to trios once parent samples became

available because diagnoses had already been made), 3 mother-child pairs (the fathers were

unavailable), and 2 quartets (parent-child trio with affected sibling). Across the cohort, the mean

depth of coverage of genome sequencing was 36X (eFigure 5 in the Supplement). Themedian

percentage of base pairs with genome-wide coverage at least 10Xwas 97% and at least 20X

was 95%.

In total across the study cohort, 132 genomic variants were identified by clinical genetic testing

and reported back to the ordering clinician (106 SNVs or indels, 17 CNVs, 7 short tandem repeat

lengths, and 2mitochondrial DNA variants). These were mostly categorized as either variants of

uncertain significance or likely benign. For 8 putative variants across 5 individuals that were not

detected by genome sequencing, the clinical result was later retracted or discounted. For 3 variants

this was because of sample mix-ups; the remaining 5 SNVs failed Sanger confirmation and/or were

also not detected by an orthogonal clinical test (eg, clinical ES). Genome sequencing detected the

remaining 124 variants (100%), indicating excellent analytical validity.

Primary Diagnostic Findings FromGenome Sequencing

In total, 15 of 49 probands (30.6%; 95% CI, 19.5%-44.6%) received a new primary molecular genetic

diagnosis by genome sequencing during the study period (Table 1).53,57-63 There were nomarked

differences in demographic or clinical features between the diagnosed and undiagnosed subgroups,

aside from a higher median age in the diagnosed subgroup (eTable 2 and eFigure 6 in the

Supplement). Concerns for an underlying genetic condition were first documented prenatally or in

the immediate neonatal period in 10 of the 15 probands (66.7%), and the median duration of the

diagnostic process (from first clinical genetic test to disclosure of diagnosis) was 8 years (range, 5-17

years) (Figure 2). Most diagnostic variants were exonic sequence-level variants (Table 1).53,57-63 A

maternally inherited single-exon duplication in theX chromosomegeneKDM6A (OMIM300128) causing

Kabuki syndrome in CMC 16 was not detected by CMA, ES, or an initial multiplex ligation-dependent

probe amplification test of that gene.

These study participants contributed to the discovery of 3 new genetic conditions

(Table 1),53,57-63 including RAC3 (OMIM 602050)-related disorder57 and 2 novel autosomal dominant

neurodevelopmental syndromes that have been delineated through international collaborations.64,65

By conservative measures, another 9 probands had either ultrarare genetic conditions (fewer than

approximately 25 reported individuals in the scientific literature) or very rare genetic conditions with 1

ormore atypical features (Table 1).53,57-63 Selected variants of uncertain significance aswell as selected
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variants in genes not yet associated with a human phenotype are reported in eTable 3 in the

Supplement. A small deletion of uncertain significance overlapping TLK2 (OMIM 608439) and 3 deep

intronic variants of uncertain significance were not detected by ES (eTable 3 in the Supplement). In

particular, the biallelic variants in JAM3 (OMIM 606871; NM_032801) are suspected to be diagnostic

despite c.256 + 1260G>C classifying as a variant of uncertain significance (eTable 3 in the Supplement).

Entries were made in GeneMatcher66 for each gene of unknown significance. In addition to the 15

probands who received genetic diagnoses with genome sequencing, 1 proband (CMC 23) received a

clinical diagnosis of PHACE (posterior fossa malformations, hemangioma, arterial anomalies, cardiac

defects, eye anomalies) syndrome67 at the time of enrollment after excluding the phenotypic features

explained by a pathogenicHNF4A (OMIM 616026) variant.

Table 1. 16 Primary Diagnostic Variants Identified by Genome Sequencing in 15 Study Participants

Study ID Sex Selected features Gene
MIM No. gene
(phenotype) IP Variant details (zygosity) [transcript] Origin

Associated human
phenotypea

CMC 05 M GDD or ID, CNS anomalies RAC3 602050 (NA) AD c.182A>T / p.(Gln61Leu) (het)
[NM_005052.2]b

De novo Novel disorder57

CMC 06 M GDD or ID, MCA,
craniofacial, otherc

HDAC8 300269
(300882)

XL c.134_137del / p.(Ile45Lysfs*9)
(hem) [NM_018486.2]b

De novo Rare disorder

CMC 09 M GDD or ID, seizures,
cerebral atrophy

H3F3B 601058 (NA) AD c.365C>G / p.(Pro122Arg) (het)
[NM_005324.4]

De novo Novel disorder

CMC 10 F GDD or ID, microcephaly CASK 300172
(300749)

XL c.1685dup / p.(Ser562Argfs*18)
(het) [NM_003688.3]

De novo Ultrarare disorder

CMC 12 F GDD or ID, seizures, HL,
CNS anomalies

PDHA1 300502
(312170)

XL c.937_940dup / p.(Ser314Lysfs*3)
(het) [NM_000284.3]b

De novo Rare disorder

CMC 16 M GDD or ID, craniofacial,
otherc

KDM6A 300128
(300867)

XL chrX:44818001-44826000×2 Maternal Rare disorder

CMC 17 F GDD or ID, seizures,
constipation

FBXW7 606278 (NA) AD c.1920C>A / p.(Ser640Arg) (het)
[NM_033632.3]

De novo Novel disorder

CMC 19 F GDD or ID, seizures, ASD STXBP1 602926
(612164)

AD c.1454T>A / p.(Ile485Asn) (het)
[NM_003165.3]b,d

De novo Rare disorder

CMC 20 F GDD or ID, CNS anomalies NKX6-2 605955
(617560)

AR c.234del / p.(Leu79Cysfs*109) (hom)
[NM_177400.2]a

Maternal and
paternal

Ultrarare disorder

CMC 21 M GDD, seizures, respiratory THOC2 300395
(300957)

XL c.229C>T / p.(Arg77Cys) (hem)
[NM_001081550.1]b

De novo Ultrarare disorder

CMC 24 M GDD or ID, seizures,
ASD, otherc

CLCN4 302910
(300114)

XL c.1106C>T / p.(Pro369Leu) (hem)
[NM_001830.3]

De novo Rare disorder

CMC 35 F GDD, macrocephaly,
CNS anomalies

PIK3CA 171834
(602501)

AD c.1093G>A / p.(Glu365Lys) (het)
[NM_006218.2]b

De novo Rare disorder

CMC 38 F GDD or ID, regression,
seizures, anemia

CAD 114010
(616457)

AR c.1576G>A / p.(Gly526Arg) (hom)
[NM_004341.4]

Maternal and
paternal

Ultrarare disorder

CMC 47 M GDD or ID, seizures,
CNS anomalies, otherc

FOXG1 164874
(613454)

AD c.177_186del / p.(Pro60Argfs*129)
(het) [NM_005249.3]

De novo Rare disorder

CMC 48 F Microphthalmia,
sclerocornea, Peters
anomaly, aphakiae

PXDN 605158
(269400)

AR c.1569_1570insT /
p.(Thr524Tyrfs*53) (het)

Maternal Ultrarare disorder

c.3206C>A / p.(Ala1069Asp) (het) Paternal

[NM_012293.2]

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; ASD, autism

spectrum disorder; CNS, central nervous system; F, female; GDD, global developmental

delay; hem, hemizygous; het, heterozygous; HL, hearing loss; hom, homozygous; ID,

intellectual disability; IP, inheritance pattern; M, male; MCA, multiple congenital

anomalies; MIM, Mendelian Inheritance in Man; NA, not available; XL, X chromosome–

linked.

a Ultrarare was defined as there being fewer than approximately 25 reported individuals

in the scientific literature (as of August 2019). We used what is likely a more

conservative definition of ultrarare than the European Parliament (“diseases affecting

no more than one person in 50000”)58 because of inadequate population incidence

and prevalence data.

b ClinVar Accession Number: VCV000585005.1 (RAC3; same patient); VCV000211139.1

(HDAC8; different patient); VCV000214945.1 (PDHA1; same patient);

VCV000595655.1 (STXBP1; different patient); VCV000504099.2 (NKX6-2; same

patient); VCV000488436.1 (THOC2; different patient); VCV000419222.3 (PIK3CA;

different patient).

c Atypical but previously reported feature seen in association with the genetic diagnosis:

choanal stenosis or atresia and intermittent cytopenias (CMC 06) each in at least 1

individual with Cornelia de Lange syndrome59-61; hyperinsulinemic hypoglycemia (CMC

16) may be an underappreciated feature of Kabuki syndrome62; congenital

diaphragmatic hernia (CMC 24) in at least 1 individual with CLCN4-related disorder53;

and congenital microcephaly (CMC 47) in at least 1 individual with FOXG1-related

disorder.63

d Mosaic variant in blood.

e Additional features in this participant that are not explained by the PXDN variants (and

also are absent in her monozygotic twin) include intrauterine growth retardation,

seizures, unilateral renal dysplasia, and hemihypertrophy of lower limb.
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Clinical Implications of Diagnostic Information

All primary diagnostic variants informed genetic and reproductive counseling. Four diagnoses had a

sibling recurrence risk of 25% or more, and the remainder were the result of apparent de novo

variants with a low (�1%) empirical recurrence risk (Table 1).53,57-63 There were also reportable

secondary findings in 2 probands (pathogenic variants inMYH7 [OMIM 160760] and LDLR [OMIM

606945], respectively; Table 268,69), which were inherited from previously undiagnosed parents. In

total, 7 of the 49 families who participated in this study received diagnoses (via primary diagnostic

variants, secondary findings, or new clinical diagnoses) that had immediate implications for medical

Figure 2. Timeline of the Diagnostic Process
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Horizontal lines indicate the duration of the diagnostic

process from initial suspicion for an underlying genetic

condition to diagnosis by genome sequencing.

Table 2. Management Implications Beyond Reproductive Risk Counseling Resulting From Study Diagnoses

Study ID Condition Selected management implications

Immediate implications for medical management

CMC 06 Cornelia de Lange syndrome Clinical practice guidelines and syndrome-specific growth curves

CMC 16 Kabuki syndrome Clinical practice guidelines and syndrome-specific growth curves

CMC 17 MYH7-related cardiomyopathya Echocardiogram and electrocardiogram, surveillance, and
cascade testing in family

CMC 20 Familial hypercholesterolemiab Lipid profiling and surveillance and cascade testing in family

CMC 23 PHACE syndromec Magnetic resonance angiography of brain, neck, and aortic arch

CMC 35 PIK3CA-related
overgrowth syndrome

Screening for overgrowth-associated malignant neoplasmd

CMC 38 Uridine-responsive epileptic
encephalopathy

Uridine supplementation

General recommendations only

CMC 10 CASK-related disorder Published guidelines with management and surveillance
recommendations,68 and specific intervention listed in CDG
(regarding risk of hearing impairment)

CMC 12 Pyruvate dehydrogenase
complex deficiency

Published guidelines with management and surveillance
recommendations,68 and specific intervention listed in CDG
(regarding possible dietary and medical therapy)

CMC 19 STXBP1 encephalopathy
with epilepsy

Published guidelines with management and surveillance
recommendations68

CMC 20 NKX6-2–related disorder Published guidelines with management and surveillance
recommendations68

CMC 48 Anterior segment dysgenesis 7 Specific intervention listed in CDG (regarding risk of glaucoma)

Abbreviations: CDG, Clinical Genomic Database;

PHACE, posterior fossa malformations, hemangioma,

arterial anomalies, cardiac defects, eye anomalies.

a Likely pathogenicMYH7 variant (NM_000257:c.

3158G>A): heterozygous and inherited from father.

b Pathogenic LDLR variant

(NM_000527:c.1476_1477del): heterozygous and

inherited frommother.

c Clinical diagnosis (see text for details).

d Targeted therapy is also in development.69
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management (Table 2).68,69 Targeted therapywas initiated for a child with uridine-responsive epileptic

encephalopathy.70 At least 5 other diagnoses had published guidelines with management and

surveillance recommendations68 and/or specific interventions listed in the Clinical Genomic Database.71

Discussion

More than 20% of 545 children in a clinically heterogeneous and well-phenotyped population of

undiagnosed CMCwere suspected to have a genetic disorder that had not yet been diagnosed by

conventional genetic testing. In a subset of 49 families who underwent genome sequencing, the

diagnostic yield was 30.6%. Several diagnoses had clinical implications that extended beyond

genetic and reproductive counseling. The phenotypic complexity and extensive prior genetic testing

with negative results were likely associated with the apparent enrichment, compared with other

pediatric populations that undergo ES, for novel, ultrarare, and atypical presentations of rare genetic

conditions. Genome sequencing detected all genetic variation identified by prior tests. These

findings support a role for genome sequencing as a first-tier genetic test in CMC, andmore generally

as a cornerstone for use in pediatric undiagnosed disease programs.72

Establishing definitive genetic diagnoses for CMC can enable a better understanding of disease

progression, guidemedical care, and inform reproductive planning. Nonetheless, the importance of

obtaining a genetic diagnosis may be underappreciated by some traditional metrics.73Many parents

reported the value of receiving positive results even in the absence of specific anticipatory care or

management recommendations. This finding aligns with related literature that reflects on the

intrinsic value of a diagnosis.74,75 The benefits associated with diagnosis are not restricted to young

children and their parents. Rereferral for clinical genetics assessment should be considered for older

children and teenagers with unexplained medical complexity who have not undergone genome-

wide sequencing. Additional recommendations to improve the integration of genomics into the care

of CMC include representation in care maps and care plans,30,76 review of prior clinical genetic

testing results at each visit, inclusion of a genetics health care professional in multidisciplinary case

review, and periodic consideration of the role for further genetic testing (for fully or partially

undiagnosed patients) or of the potential implications for management and opportunities to

participate in rare disease research (for diagnosed patients). Trio genome-wide sequencing is

associated with a higher diagnostic yield than only the proband undergoing sequencing,23 and in our

study facilitated novel disease gene discovery. However, 1 or both biological parents being

unavailable for testing is not an absolute contraindication to clinical genome-wide sequencing.

The potential value of a genome sequencing result that shows no primary genetic diagnostic

findings has not been clearly established. Reannotation and reanalysis of existing genome

sequencing data can result in new diagnoses even after a relatively brief period of time.19However,

in specific clinical contexts, a lack of any diagnostic or candidate variants reduces the likelihood of a

typical mendelian disorder. In the study participant (CMC45)whomet clinical diagnostic criteria for

Aicardi syndrome (a condition without a known genetic cause), a negative genome sequencing result

decreased the likelihood of amendelianmimic. In a young child with neurological deficits associated

with a perioperative event and otherwise putatively isolated transposition of the great arteries (CMC

28), a negative genome sequencing result similarly decreased the likelihood of amultisystem genetic

syndrome. Such potential advantages of increasingly comprehensive genetic testing are deserving

of further study.73

Limitations

This study has some limitations. It was a single-center study, and the precise criteria for CMC

enrollment in structured complex care programs differ by institution and region. The extensive

phenotyping and availability of clinical ES may have been associated with the number and nature of

the diagnoses made with genome sequencing in our cohort. A detailed comparison of phenotypic

features between these study participants and the full CMC cohort fromwhich theywere ascertained
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was not possible. The diagnostic yield of genome sequencing in an unselected group of testing-naive

CMC remains unknown. The systematic interpretation of many types of genomic variation (eg,

complex structural variants) identified by genome sequencing remains challenging. The

identification of pharmacogenetic variants was also beyond the scope of this initial study.77

In contrast to CMA and ES, genome sequencing is not yet widely available as a clinical test. This

study was not designed to compare genome sequencing with ES. Proven advantages of genome

sequencing germane to its use as a first-tier test include improved coverage of exonic regions as well

as comprehensive detection of all sequence and structural variation in the nuclear andmitochondrial

DNA.8,18 The added value of genome sequencing comparedwith ES is expected to increase over time

as variant calling algorithms and annotation improve and as patient and control databases

accumulate more genome sequencing data. As illustrated by the biallelic variants in JAM3 in CMC 31

(eTable 3 in the Supplement), it remains challenging to classify novel deep intronic variants as likely

pathogenic or pathogenic without dedicated functional studies that are beyond the scope of most

clinical laboratories. At present, however, most diagnosedmendelian disorders are caused by exonic

SNVs or large CNVs. If trio ES has already been performed on a clinical basis, reannotation and

reanalysis of the existing data are likely amore cost-effective strategy than genome sequencing in the

short term.78-80

Conclusions

Children with medical complexity require interventions that differ in key ways from general care.1,6

Genome sequencing has the potential to increase the proportion of CMC for whom diagnoses are

established. As a first-tier test, we speculate that genome sequencing could reduce the time and

emotional burden of the diagnostic process and reduce health care system costs.5 Additional omic

technologies,81 such as RNA sequencing82-84 and genome-wide DNAmethylation testing,85,86may

further increase diagnostic yield in this population when used as an adjunct to genome sequencing.

Beyond disease-specific therapeutics,69,70 having a confirmedmolecular diagnosis will be a

prerequisite to participating in gene therapy and genome editing trials. In time, we anticipate that

genome sequencing will be a standard-of-care genetic test for undiagnosed CMC.
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