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Abstract

Background: Krishna Tulsi, a member of Lamiaceae family, is a herb well known for its spiritual, religious and

medicinal importance in India. The common name of this plant is ‘Tulsi’ (or ‘Tulasi’ or ‘Thulasi’) and is considered

sacred by Hindus. We present the draft genome of Ocimum tenuiflurum L (subtype Krishna Tulsi) in this report.

The paired-end and mate-pair sequence libraries were generated for the whole genome sequenced with the

Illumina Hiseq 1000, resulting in an assembled genome of 374 Mb, with a genome coverage of 61 % (612 Mb

estimated genome size). We have also studied transcriptomes (RNA-Seq) of two subtypes of O. tenuiflorum,

Krishna and Rama Tulsi and report the relative expression of genes in both the varieties.

Results: The pathways leading to the production of medicinally-important specialized metabolites have been

studied in detail, in relation to similar pathways in Arabidopsis thaliana and other plants. Expression levels of

anthocyanin biosynthesis-related genes in leaf samples of Krishna Tulsi were observed to be relatively high, explaining

the purple colouration of Krishna Tulsi leaves. The expression of six important genes identified from genome data were

validated by performing q-RT-PCR in different tissues of five different species, which shows the high extent of urosolic

acid-producing genes in young leaves of the Rama subtype. In addition, the presence of eugenol and ursolic acid,

implied as potential drugs in the cure of many diseases including cancer was confirmed using mass spectrometry.

Conclusions: The availability of the whole genome of O.tenuiflorum and our sequence analysis suggests that small

amino acid changes at the functional sites of genes involved in metabolite synthesis pathways confer special medicinal

properties to this herb.
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Background
Plants of the genus Ocimum belong to the family Lamia-

ceae (Order Lamiales) and are widely distributed in the

tropical, sub-tropical and warm temperate regions of the

world [1]. These plants are known to produce essential

oils comprising of a number of aromatic compounds

and Tulsi is rightly known as the “Queen of Herbs” for

this reason. In India, these plants are mostly grown at

homes for worship and as offerings in temples. Among

plants with medicinal value, those belonging to the

genus Ocimum are very important aromatic herbs or

shrubs.

The genus Ocimum is highly variable and possesses

wide genetic diversity at intra and inter-species levels.

Nine species of Ocimum viz., O. teniuflorum L., O. basi-

licum L., O. gratissimum L., O. kilimandscharicum, O.

micranthum L., O. campechianum L., O. americanum L.,

O. minimum L., and O. citriodorum L., are found in

India, three of which (O. americanum L., O. minimum

L., and O. citriodorum L.) are exotic [2]. It is difficult to

distinguish all these species on the basis of leaf morph-

ology alone (Fig. 1). The metabolites (essential oils) of

genus Ocimum have been reported to possess antioxi-

dant and antifungal properties and to cure many

diseases including bronchitis in Ayurveda, an Indian sys-

tem of medicine [3]. Plants produce specialized metabo-

lites as part of their defense mechanisms and these

metabolites have significant medicinal properties that

cure several human diseases. They can be isolated from

various parts of the plant, including leaves, flowers,

roots, bark, seeds and stem [4]. Pharmacological screen-

ing and the systematic study of the chemical constitu-

ents of plant metabolites provide a basis for developing

new drugs. Some of the important metabolites reported

from Ocimum species include linalool, linalyl, geraniol,

citral, camphor, eugenol, methyleugenol, methyl chavi-

col, methyl cinnamate, thymol, safrol, taxol, urosolic acid

etc. [4]. These metabolites are of immense value in the

pharmaceutical, perfume and cosmetic industries. Metab-

olites derived from Ocimum species have been found to

contain many medicinally relevant properties including

anti-cancer, antioxidant, antifungal and anti-inflammatory

virtues, and are also recommended for the treatment of

malaria, bronchitis, diarrhea, dysentery, etc. [5]. Essential

oils produced as specialized metabolites found in leaves,

seeds, flowers and roots of Ocimum species are used in

pharmaceutics and many systems of traditional Indian

medicine [3, 4]. Genome and transcriptome sequencing of

Fig. 1 Plant and leaf morphology of five Ocimum species prevalent in India viz., O. tenuiflorum subtype Krishna, O. tenuiflorum subtype Rama, O.

gratissimum, O. sacharicum, O. kilmand. Leaf morphologies are quite different for the five species
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medicinal plants serve as a robust tool for gene discovery

and downstream biochemical pathway discovery of medi-

cinally important metabolites [6]. Recently, an abundance

of transcripts for biosynthesis of terpenoids in O. sanctum

and of phenylpropanoids in O. basilicum [7] was reported

during an attempt to compare transcriptomes of the two

species of Ocimum. Despite its important role in trad-

itional Indian medicine and its impressive arsenal of bio-

active compounds, our understanding of Krishna Tulsi

biology is limited. In this paper, we present the draft gen-

ome sequence of the non-model plant O. tenuiflorum

(subtype Krishna), along with transcriptomes of two sub-

types, Krishna and Rama Tulsi from leaf samples. We have

identified a large set of genes involved in the production

of specialized metabolites of medicinal interest such as

apigenin, luteolin, rosmarinic acid pathway, eugenol, and

ursolic acid.

Results
Genome sequencing and assembly of the non-model

plant O. tenuiflorum subtype Krishna

The paired-end (PE; 2x100-bp) and mate-paired (MP;

2x50-bp) DNA libraries were generated for Krishna Tulsi

subtype using Illumina protocols. In total we obtained 373

million reads of PE and 166 million reads of MP data for

Krishna Tulsi. Low quality (LQ) sequence reads were

trimmed (Additional file 1: Figure S1 and Additional file 2:

Figure S2) and reads with quality scores of less than Q30

were removed. The good quality reads were used for

de-novo genome assembly. Median insert size of PE

data was 335 (with a median absolute deviation of 21),

whereas median insert size of MP data was 2473 (with

a median absolute deviation of 704). K-mer 43 was

opted as the best assembly from the statistical analysis

of different k-mers. We obtained a maximum scaffold

length of 184.7 Kb (Table 1) with an N50 length of 27.1

Kb. This assembly gives rise to a total of 78,224 scaffolds

including equal to or more than 100 bp. The current draft

assembly of Krishna Tulsi genome is 374.8 Mb in length.

The genomic content of Krishna Tulsi is 0.72 pg/2C which

is equivalent to 704.6 Mb [8], but the estimated genome

size by k-mer method is 612 Mb and 61 % of the estimated

genome size was assembled. The genome size reported in

the literature [8], may be of a different cultivar. This lower

genome coverage may be due to limited sequencing data

(only two libraries were used in sequencing) or due to a

high percentage of repeats (42.9 %). In terms of depth

of sequencing, we sequenced 59× of the genome with

paired-end (100 bp) and mate-pair (50 bp) libraries

(since one lane can produce approximately 30Gb of

data, even assuming that reads cover the entire 612 Mb

of the estimated genome size). Ocimum species are

characterized by the different basic chromosome numbers

x = 8, 10, 12, or 16 [9, 10]. In case of O. tenuiflorum in-

dividuals with 2n = 32, 2n = 36, and 2n = 76 have been

recorded and the chromosome number of O. tenuiflorum

is observed to be 2n = 36 [8].

A comparative analysis of the assemblies generated

using PE data alone and with both PE and MP data

show that the size and quality of the genome assembled

using PE data alone improved substantially with the in-

clusion of MP data (Additional file 3: Figures S3 and

Additional file 4: Figure S4, Additional file 5: Table S1

and Additional file 6: Table S2).

Validation of de novo genome assembly, annotation and

repeat content of Ocimum tenuiflorum subtype Krishna

genome

The de novo genome assembly was validated by mapping

raw reads to the assembled genome. On an average,

74 % of reads were mapped back to the assembled gen-

ome. Almost 83.3 % of the RNA-seq reads were mapped

to the assembled genome. The completeness of de novo

genome assembly and annotations were also checked

with two other approaches i.e., by using CEGMA (Core

Eukaryotic Genes Mapping approach) [11] and DEG

(Database of Essential Genes) [12] (please see Methods

for details). First, we searched for essential eukaryotic

genes in the O. tenuiflorum assembly. This resulted in

the mapping of 85.1 % of complete core proteins

(CEGMA) and more than 95 % including partial genes

against our genome assembly (Additional file 7: Table S3).

Secondly, we searched for the predicted genes from the

final assembly of essential genes recorded in the DEG

database. We observed that about 89 % of essential genes

were included within the assembly. These genes were also

validated using Pfam domain annotation and were of com-

parable domain lengths as the classical members of that

family (Additional file 8: Table S4). Phylogenetic trees for

highly conserved essential genes like glyceraldehyde 3-

phosphate dehydrogenase (Additional file 9: Figure S5),

cytochrome P450 (Additional file 10: Figure S6) and actin

(Additional file 11: Figure S7) from Krishna Tulsi and their

respective homologues were analyzed and compared with

other plant species. Krishna Tulsi genes were found to

cluster with genes belonging to related species namely,

Table 1 Genome assembly results of Krishna Tulsi

Assembly Statusa Number N50 (bp) Longest seq (Kb) Size (Mb) % GC

Contigs All 510359 2562 37.147 362.4 53.3

Scaffold All 78224 27,111 184.8 374.8 54.5

aContigs/scaffolds equal or more than 100 bp
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Solanum lycopersicum, Cucumis sativus and even with dis-

tantly related Arabidopsis thaliana, indicating that highly

conserved genes, essential to plant growth and function-

ing, have been detected in O. tenuiflorum assemblies.

These trends further support the quality of the genome

assembly.

Regarding the repeat content of the genome, we identi-

fied 78224 repeat regions, with a GC content of 36.1 %,

adding to 160889218 bp (160 Mb), which constituted

42.9 % of assembled genome which is 374806882 bp

(374 Mb) long (Additional file 12: Table S5). Long terminal

repeats (LTRs) are found in large numbers in plant ge-

nomes (Schmidt T, 1999) and a similar trend is also found

in the type of repeats identified in the Tulsi genome.

Genome annotation

We identified 36768 putative gene models in the initial

genome draft (version 1.2) of O. tenuiflorum genome. At

least one gene was observed in each of the 10012 scaffolds,

with an average of three to four genes per scaffold. During

the process of refined gene prediction, 16384 gene models

were observed to have expression evidence (RNA-Seq data

from leaves of Tulsi (Krishna and Rama)). A total of 19384

gene models have been identified by ab initio means

(without any RNA or protein evidence) (Table 2).

All the gene predictions, with or without RNA/protein

evidences, were screened based on length (>100 bp). In

case of sequential overlaps between different gene

models, the gene models which are of longer length and

with RNA or protein evidence for a given region of scaf-

fold were preferred over the ones without any evidence.

There are 31,020 genes with at least one homologue in

NRDB and 24,607 genes which contain at least one Pfam

domain. In total, 3929 unique Pfam domains were iden-

tified for all the predicted genes in Tulsi (please see

URL: http://caps.ncbs.res.in/Ote for the full list of pre-

dicted genes). A majority of domains identified were

protein kinases or LRR-containing domains (Additional

file 13: Figure S8). Further comparison of Pfam results,

with assembled plant genomes of similar size, reveals

that the number of predicted gene models is in overall

agreement in numbers as well as gene boundaries.

Orthology of Tulsi genes

The orthology relationships were deduced between

Krishna Tulsi (O. tenuiflorum; Ote) and four other spe-

cies viz. Arabidopsis thaliana (Ath), Mimulus guttatus

(Mgu), Solanum lycopersicum (Sly) and Oryza sativa

(Osa) (please see Methods for details). We observe 8370

clusters which contain a total of 89922 gene products

from the five plant species (Fig. 2a). M. guttatus and O.

tenuiflorum share the same order (Lamiales), but belong

to different families (Phrymaceae and Lamiaceae, re-

spectively), which was evident from the presence of the

highest number of common gene families (11707) be-

tween them. This was followed by Solanum lycopersicum

(11022), Arabidopsis thaliana (10206) and Oryza sativa

(9154) as expected from taxonomic hierarchy (Fig. 2a).

We found 17584 genes to be orthologous to any of the

above four species. Considering all the 36768 Ote genes,

1282 groups contained only Ote Krishna Tulsi genes

(3302). We obtained 16 Ote genes which lack traceable

orthology to 22 other plant species and homology rela-

tionships (list of these genes is available on the data-

base). Few of these unique Ote genes are transposons.

In order to inspect in detail the distribution of the

orthologous relationship of Ocimum genes across differ-

ent species and taxonomic levels, 22 fully-sequenced

plant genomes (Additional file 14: Table S6) were con-

sidered. The orthologous groups from all 23 species

were organized according to the clustering. Three hun-

dred and thirty four clusters of genes are present across

all the 23 species chosen for the study. Common genes

across all species, comprising of their respective ortholo-

gous group, are plotted as a horizontal stacked bar plot

(Fig. 2b). The pattern of sharing orthologous groups is

quite unique to primitive plant genomes (like lycophyte

and bryophyte) and monocots. However, the pattern

observed in the Tulsi genome is quite similar to that of

M. guttatus (Mgu). Interestingly, this pattern is somewhat

different for two members of Solanacea, which have more

genes shared only in two out of 23 genomes, perhaps due

to other features such as polyploidy.

Genes involved in synthesis of specialized metabolites of

medicinal value: comparative analysis between O.

tenuiflorum (Ote, Krishna Tulsi) and other plant genomes

Next, we performed a restricted analysis of the genes

involved in the metabolite production in Ote and the ge-

nomes of a few plant species that are either closely-related

(S. lycopersicum, V. vinifera) or well-characterised (M.

truncatula, and A. thaliana). We observed 121 (72.45 %),

130 (77.84 %), 106 (63.47 %) and 94 (56.28 %) scaffolds

and contigs from the selected four representative genomes

associated with 167 metabolite-related scaffolds and con-

tigs in Ote Krishna Tulsi (Fig. 3) respectively. In terms of

the number of orthologous genes from this selected plant

genome associated with metabolite genes of Ote, we

Table 2 Genome annotation results of Krishna Tulsi

Annotation Number Average size (bp) Total length (Mb) % of genome Transcript-evidence Ab initio Pfam hit

Gene 36768 2421 86.3 23 16384 19384 24,607
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observed a similar trend of association as 601, 620, 570

and 556 genes in S. lycopersicum, V. vinifera, M. trunca-

tula, and A. thaliana respectively. These numbers agree

with the taxonomic phylogeny and hierarchy, suggesting

that the evolution of genes involved in metabolic pathways

is not a cause of recent expansions or sudden drifts.

Fig. 2 Distribution and clustering of orthologous genes of Tulsi genome to other related plant genomes. a. Distribution of gene families

among five plant genomes. Ocimum tenuiflorum (Ote - green), Arabidopsis thaliana (Ath – black rectangle), Oryza sativa (Osa – red), Solanum

lycopersicum (Sly – blue) and Mimulus guttatus (Mgu – black circle). The numbers in the Venn diagram represent shared and unique gene

families across these 5 species obtained by OrthoMCL. b. Horizontal stacked bar plot of all the genes in 23 different genomes. This figure

shows ortholog group distribution in all 23 plant species including Tulsi. Each row represents a plant species - Physcomitrella patens (Ppa),

Selaginella moellendorffii (Smo), Oryza sativa (Osa), Setaria italic (Sit), Zea mays (Zma), Sorghum bicolor (Sbi), Aquilegia caerulea (Aca), Ocimum

tenuiflorum (Ote), Mimulus guttatus (Mgu), Solanum lycopersicum (Sly), Solanum tuberosum (Stu), Vitis vinifera (Vvi), Eucalyptus grandis (Egr),

Citrus sinensis (Csi), Theobroma cacao (Tca), Carica papaya (Cpa), Brassica rapa (Bra), Arabidopsis thaliana (Ath), Fragaria vesca (Fve), Prunus

persica (Ppe), Glycine max (Gma), Medicago truncatula (Mtr), Populus trichocarpa (Ptr). The bar graph represents ortholog protein groups for

that species subdivided into 22 categories depending on the degree of sharing with the other 22 plant species e.g., category 2 represents the

number of orthologous groups that have representatives from the species of interest and from one more species out of the 23 species

selected for the study
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When compared against 11,389 scaffolds (greater than

10Kb in size) from Ote, 10032, 9997, 8648 and 8277 scaf-

folds were found to be associated with the four reference

plant genomes (Additional file 15: Figure S9, Additional

file 16: Figure S10 and Additional file 17: Figure S11 for

three genomes and Additional file 18: Table S7 for four ge-

nomes). Further, most of the metabolite-related scaffolds

in Ote Krishna Tulsi were associated with chromosomes

1, 6, 8, and 10 of tomato (Fig. 4). In particular, gene prod-

ucts that are likely associated in luteolin synthesis pathway

are observed to cluster in scaffolds, which are similar to

nucleotide stretches in Chromosomes 3, 5, 6, 8 and 10 of

the tomato genome (Fig. 4).

Transcriptome de novo assembly of Krishna and Rama

Tulsi mature leaf samples

De novo transcriptome assembly was performed for the

mature leaf samples of subtype Krishna Tulsi. The best

assembly resulted in 109291 contigs with N50 of 893 bp

and longest sequence of 12.1 Kb. All these contigs added

up to 49.5 Mb with a GC content of 42.9 %. Scaffolding

of these contigs resulted in 89878 scaffolds with N50 of

1597 bp and longest sequence of 12.7 Kb. All these scaf-

folds added up to 56.3 Mb with a GC content of 42.9 %

(Table 3). Similarly, assembly was performed for the sub-

type Rama Tulsi and combined reads (Krishna and Rama

Tulsi) as well (Table 3).

Differential expression of transcripts

The differentially expressed genes found in the tran-

scriptomes of both the Tulsi subtypes were analysed. We

observe a substantial number of genes up-regulated and

down-regulated in Krishna Tulsi, compared to Rama

Tulsi. Some of the highly expressed genes were also con-

firmed by q-RT-PCR technique in different tissue sam-

ples i.e., stems, leaves and flowers and also in five

species viz. O. tenuiflorum subtype Krishna and Rama,

O. gratissimum, O. basilicum, and O. kilmand.

Fig. 3 Phylogenetic representation of five selected plant genomes viz., Solanum lycopercicum (72.45 %), Vitis vinifera (77.84 %), Medicago trucatula

(63.47 %), and Arabidopsis thaliana (56.28 %). The numbers indicate percentage of association of these genomes with the metabolite genes of Ocimum

genome. These percentages agree with the taxonomic phylogeny and hierarchy, suggesting that the evolution of genes involved in metabolic

pathways is not a cause of recent expansions or sudden genome drifts. The inner circle represents chromosomes from respective homolog genome.

Each scaffold is organized in the middle circle and is represented in chronological order as per position on chromosomes. The line represents location

of each scaffold on the respective chromosome. Colors indicate = < 2 genes, =2 genes, = > 2 genes, = Metabolite related

genes. Height of orange columns in outermost circle represents amount of repeats in corresponding scaffolds
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For a comparison, we generated a heat map of the top

50 differentially more abundant genes in Krishna Tulsi

samples (Fig. 5a). Similarly, top 50 differentially more

abundant genes in Rama with respect to Krishna sample

were also plotted (Fig. 5b). Gamma-cadinene synthase is

one of the top 50 differentially expressed transcripts with

RPKM values of 577.0 and 31.7 in Krishna and Rama

Tulsi samples, respectively (please see below for details).

Other highly expressed transcripts in Krishna Tulsi

sample are Heat shock cognate protein 80, Cellulose

synthase A catalyic subunit 6 (UDP-forming), Fructose-

biphosphate aldolase (chloroplatic), Phototropin-2, and

Rubisco activase 1 (chloroplatic). The chalcone syn-

thase or naringenin-chalcone synthase (CHS) is one of

the enzymes important for coloration of plant parts,

which is observed to be highly expressed. Abundance

values of all the transcripts, along with their functional

annotations by NCBI BLAST results and their corre-

sponding Krishna Tulsi genomic scaffold, show several

genes involved in the synthesis of specialized metabolites

implicated to be of medicinal value (Additional file 19:

Table S8).

Fig. 4 Circular representation of O.tenuiflorum metabolite related genes mapped onto chromosomes of Solanum lycopersicum genome. Height of

orange column in outer circle represents amount of repeats present in respective scaffold. The inner circle represents chromosomes from

Tomato genome. Inner circle of rectangles represents scaffolds, each scaffold is organized in the middle circle and is represented in chronological

order as per position on chromosomes. Color of each scaffold indicates following information: =2 genes, = > 2 genes, = Metabolite

related genes. Connecting line between scaffolds and chromosome represents postion of the scaffold in genome. Red color of connecting line represents

presence of metabolite related genes. Scaffold Numbers are mentioned in Additional file 24: Text A

Table 3 Transcriptome assembly of Ocimum tenuiflorum subtype Krishna, Rama and combined data

Assembly Statusa Number N50 (bp) Longest seq (Kb) Size (Mb) % assembly

Krishna Contigs All 109291 893 12.1 49.5 42.9

Scaffold All 89878 1597 12.7 56.3 42.9

Rama Contigs All 108701 623 5.6 39.4 43.4

Scaffolds All 102038 815 6.4 40.5 43.4

Combined reads Contigs All 128469 742 12.2 54.4 42.9

Scaffolds All 115164 1073 12.2 57.1 42.9

aContigs/scaffolds equal or more than 100 bp
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Dark purple coloration of the leaves and stem of sub-

type Krishna Tulsi is one of its characteristic phenotypes,

which distinguishes it from other subtypes and species

of genus Ocimum. Chalcone synthase (CHS) is an en-

zyme belonging to a family of polyketide synthases

which catalyzes the initial step for flavonoid biosynthesis.

Flavonoids are important plant specific metabolites that

perform various functions such as pigmentation, antifun-

gal defense etc. Reviewed protein sequence for CHS

from UniProt (Universal Protein resource) database [13]

was employed to search against annotated protein se-

quences of Krishna Tulsi genome and six transcripts

were obtained as possible hits. The best hit could be

identified with 95 % query coverage and 99 % sequence

identity. The extent of abundance of this hit (protein se-

quence) was checked in the leaf transcriptome of both

the Tulsi subtypes viz. Krishna and Rama. Abundance

(in terms of RPKM) of the six transcripts was, on an

average, two times more in case of Krishna as compared

to Rama (please see Fig. 5), and may be involved in the

coloration phenotype of Krishna subtype plants [14]. For

further confirmation of expression of these transcripts,

q-RT-PCR was performed. As expected, anthocyanin

producing gene was observed to be more abundant in

Krishna young leaf samples and mature leaf samples

(used as control) (Fig. 6a and b). In contrast, the chloro-

phyll binding protein was more abundant in Krishna

mature leaf samples. In addition, we also examined the

presence of gamma-cadeninene synthase gene which is

responsible for aroma [15]. This gene was found to be

more abundant in Rama root sample and young leaf

samples of O. Saccharum, but not observed in higher

quantities in O. kilmund.

Specialized metabolites detection and validation

Nearly 30 specialized metabolites (Fig. 7a) are reported

form the genus Ocimum which are found to have medicinal

values or properties [4]. Amongst these, 14 metabolites

belonging to five basic groups were found to have

complete pathway information in PlantCyc database

(http://www.plantcyc.org/) [16] (Additional file 20: Figure

S12). Hence, genes involved in these pathways were

Fig. 5 Transcript expression of Tulsi Krishna and Rama subtypes are

expressed as RPKM values. Highly significant differentially abundant

RNA scaffolds/transcripts were defined to have RPKM of atleast 5 in

both and the fold-change difference between two subtypes should

be atleast 8 times. Only the transcripts, for which the 95 % lower-

confidence-bound of more abundant subtype and 95 % upper-

confidence-bound of less abundant subtype, and had at least 8 times

difference, were retained. Of these differentially abundant transcripts,

top-50 in Krishna and Rama subtype were plotted in the form of

heat-map. a. Differentially more abundant transcripts in Krishna. b.

Differentially more abundant transcripts in Rama. (please look in

Additional file 24: Text B and C for transcript IDs for a. and b)
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chosen for further analysis and searched against the as-

sembled genome of O. tenuiflorum. Figure 7b highlights

the distribution of the genes identified in various classes of

metabolites of disease relevance (i.e., these metabolites are

well-known as drugs in the cure of human diseases).

A total of 458 genes were identified in Ote genome,

which are either homologous or directly code for enzymes

involved in the synthesis of specialized metabolites (Fig. 8)

(details of gene IDs of these proteins are provided in

Table 4 and Additional file 21: Table S9). Twenty eight O.

tenuiflorum gene products were annotated as putative

terpene synthases using BLAST sequence searches with

E-value of 10−4 and query coverage filter of >75 %

(Additional file 22: Table S10).

Among these specialized metabolites, we focused on

ursolic acid, belonging to sesquiterpenes, since it is known

to have anti-inflammatory, anti-microbial, anti-tumour

and anti-cancer properties. The synthesis of ursolic acid

from squalene is a three-step process starting from

squalene (Fig. 9). α-Amyrin is formed by concerted

cyclization of squalene epoxide, while ursolic acid is

eventually synthesized by the catalytic activity of multi-

functional cytochrome P450. The enzymes involved are,

therefore, squalene epoxidase, alpha-amyrin synthase and

alpha-amyrin 2, 8 monoxygenase. Sequence search algo-

rithms were employed to search for the three enzymes of

this pathway in the Tulsi genome, starting from protein

sequences for each of these enzymes from PlantCyc data-

base as queries. The search for squalene epoxidase in

Tulsi, using the sequence of this enzyme in Oryza sativa

japonica (LOC_Os02g04710.2) as a query, gave rise to a

hit (C3776143), with 50 % sequence identity covering 80 %

of the query length (Additional file 23: Figure S13). Using

Amyrin synthase LUP2 from A. thaliana (Q8RWT0) and

13 other well-accepted alpha/beta amyrin synthases as

a query, four hits were identified in the Tulsi genome

(scaffold16333, scaffold20801, scaffold12312 and maker-

C3776143). In classical amyrin synthases, a QW structural

motif repeats six times in the entire sequence [17, 18],

while there are two functional motifs, viz., a well conserved

SDTAE [19] motif which is believed to form the catalytic

pocket and the MWCYCR [20] motif that is shown to play

Fig. 6 Expression quantification of selected genes by q-RT-PCR method. a. Fold changes of genes involved in color production, obtained through q-RT

PCR. Blue colour horizontal bar is for chlorophyll a-b binding protein, red to denote Gamma-cadenine synthase and green to denote Anthocyanin.

Mature leaf of Krishna subtype was used as control. It can be seen that, genes responsible for color production such as Chlorophyll a-b binding

protein and gene in anthacyanin pathway are down-regulated as compared to mature Krishna leaf, which corresponds to phenotypic characteristics.

b. Fold changes of genes involved in ursolic acid biosynthetic pathway, as obtained through qRT-PCR for 5 different Tulsi subtypes. Blue

colour horizontal bar is for squalene epoxidase, red to denote alpha-amyrin synthase and green to denote Cytochrome P450 monooxygenase.

Mature leaf of Krishna subtype was used as control. Mature leaf of Rama subtype has high expression of genes while expression in Ocimum

kilmund is low. Expression of these genes are uniformly high in small, developing plants. Samples are as follows: 1) O. tenuiflorum (Rama) -

Sampling Leaf. 2) O. tenuiflorum (Rama) - Sampling Root. 3) O. tenuiflorum (Rama) - Mature Leaf. 4) O. tenuiflorum (Krishna) - Sampling Leaf. 5)

O. tenuiflorum (Krishna) - Sampling Root. 6) O. gratissimum - Sampling Leaf. 7) O. gratissimum - Sampling Root. 8) O. gratissimum - Mature Leaf. 9)

O. sacharicum - Sampling Leaf. 10) O. sacharicum - Sampling Root. 11) O. sacharicum - Mature Leaf. 12) O. kilmund - Sampling Leaf. 13) O. kilmund -

Sampling Root. 14) O. kilmund - Mature Leaf
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Fig. 7 (See legend on next page.)
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a crucial role in catalysis. These motifs are observed in the

four hits in Tulsi genome (Additional file 24: Text D).

Further, a phylogenetic tree was constructed using 16

query sequences and these four hits (Fig. 10). One of

the Tulsi hits, (scaffold 16333_mrnal) clusters with a

well-characterized alpha amyrin synthase from C. roseus

(H2ER439) suggesting that this particular scaffold might

indeed retain an alpha amyrin synthase.

Interestingly, many genes involved in the synthesis of

specialized metabolites of relevance in the treatment of

diseases are also more abundant, as observed in the as-

sembled transcriptome (Additional file 21: Table S9).

Similarly, genes involved in the synthesis of 16 other

specialized metabolites (Additional file 25: Table S11),

are also equally interesting. However, this requires de-

tailed understanding of the mechanism of synthesis

and enzymes involved in the pathways. We analysed

RNA-Seq data of two leaf samples in order to compare

the genes related to important metabolite pathways

and the peculiar phenotype of O. tenuiflorum subtype

Fig. 8 Phylogeny of terpene synthases of representative sequences of six classes from the plant kingdom along with putative Tulsi terpene

synthases genes: The tree is color coded as tpsa:red, tbsb:blue, tpsc:yellow, tpsd: green, tpse: blue and tpsf:purple

(See figure on previous page.)

Fig. 7 Number of genes involved in specialized metabolite synthesis in Tulsi genome. a. There are four classes of metabolites present in Ocimum

genome viz., sesquiterpenes (52 %), flavonoids (19 %), terpenes (18 %) and phenylpropanoids (11 %). Number in the bracket is percentage of

sepecialized metabolites present in the genome. 458 genes were identified as coding for enzymes involved in synthesis of specialized

metabolites. b. Specialized metabolic pathways of disease relevance proposed in Ocimum tenuiflorum. Major classes of diseases investigated are

indicated in different colors: anticancer , anticancer-antioxidant , antifungal , antiseptic , anti-infective , antioxidant , and anti-inflammatory

. The enzymes have been labelled with 5–7 letters for convenience. The numbers after the’_’ in the enzyme label represent the number of putative

hits found for the given enzyme in the genomic assembly of O. tenuiflorum. The metabolites involved in the disease relevance and the enzymes in-

volved in the synthesis of these metabolites are as follows: APIGENIN (Flavone-synthaseI-FSYN1, Naringenin-NADPH-oxygen-oxidoreductase-NNOOX),

LUTEOLIN (Flavone-synthaseI-FSYN1, Naringenin-NADPH-oxygen-oxidoreductase-NNOOX, Flavone-3-monooxygenase-F3MON), TAXOL (Taxadiene-

synthase-TSYN, Taxadiene-5-alpha-hydroxylase-T5AHYD, Taxadien-5-alpha-ol-O-acetyltransferase-T5AOOA, Taxane-10-beta-hydroxylase-T10BHYD,

Taxoid-14-beta-hydroxylase-T14BHYD, 2-alpha-hydroxytaxane-2-O-benzoyltransferase-2AH2OB, 10-deacetylbaccatin-III-10-O-acetyltransferase-10D10OA,

3-N-debenzoyl-2-deoxytaxol-N-benzoyltransferase-3ND2DNB, URSOLIC ACID (ursolic-aldehyde-28-monooxygenase-UA28M, Alpha-amyrin-synthase-

AASYN), OLEANOLIC ACID (Beta-amyrin-synthase-BASYN, oleanolic-aldehyde-28-monooxygenase-OA28M), SITOSTEROL (24C-methyltransferase-

24CMET), ROSMARINIC ACID I (4-coumaroyl-4-hydroxyphenyllactate-3-hydroxylase-4C4H3H, Tyrosine-transaminase-TTRAN), ROMARINIC ACID II

(Hydroxyphenylpyruvate-reductase-HPPRE, Tyrosine-3-monooxygenase-TTRAN), METHYL CAHVICOL (Eugenol-o-methyltransferase-EOMET), EUGENOL

(Alcohol-o-acetyltransferase-AOACE, Eugenol-synthase-ESYN, Isoeugenol-synthase-ISYN), LINALOOL (Farnesyl-pyrophosphate-synthase-FPSYN, R-linool-

synthase-RLSYN, S-linool-synthase-SLSYN), CARYOPHYLENE (Alpha-humulene-synthase-AHSYN, Beta-caryophyllene-synthase-BCSYN), SELINENE

(Alpha-selinene-synthase-ASSYN, Beta-selinene-synthase-BSSYN), CITRAL (Geraniol-synthase-GSYN, Geraniol-dehdrogenase-GDHYD)
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Table 4 The enzymes involved in metabolite biosynthesis were identified in the assembled genome and these genes were

analyzed for their expression level in the transcriptome. The RKPM value signifies the level for expression

Sno. Metabolite Disease implication Enzymes involved No. of hits in
Ocimum genome

RPKM
value

Flavonoids

1 Apigenin Anti-cancer Flavone synthaseI 16 -

Naringenin, NADPH oxygen oxidoreductase 17 -

2 Luteolin Anti-cancer Flavone synthaseI 7 34.44

Naringenin, NADPH oxygen oxidoreductase 9 61.34

Flavone 3’ monooxygenase 5 5.53

Naringenin 3’ hydroxylase 26 104.24

Eriodictoyl NADPH oxygen oxidoreductase 7 59.79

Phenylpropanoids

3 Rosmarinic acid
Pathway1

Anti-cancer, anti-oxidant 4-coumaroyl-4’-hydroxyphenyllactate 3-
hydroxylase

19 120.52

Tyrosine_transaminase 2 0.00

4 Rosmarinic acid
Pathway 2

Anti-cancer, anti-oxidant Hydroxyphenylpyruvate_reductase 3 45.78

tyrosine -3-monooxygenase 0 35.58

5 Eugenol Anti-infective Alcohol_o_acetyltransferase 10 4.69

Eugenol synthase 5 68.93

Isoeugenol synthase 5 68.93

6 Methylchavicol Anti-fungal, antiparasitic, anti-
oxidant

Eugenol-o-methyltransferase 4 132.39

Terpenes

7 Citral Antiseptic Geraniol synthase 9 0.00

Geraniol_dehdrogenase 32 46.10

8 Linalool Anti-infective Farnesyl-pyrophosphate synthase 6 128.35

r-linool_synthase 15 132.39

s-linool_synthase 22 32.91

Sesquiterpenes

9 Caryophylene Anti-inflammatory Alpha humulene synthase 27 3.92

Beta-caryophyllene synthase 17 3.92

10 Selinene Anti-oxidant Alpha_selinene_synthase 11 13.31

Beta_selinene_synthase 13

11 Taxol Anti-cancer Taxadiene synthase 3 9.36

Taxadiene 5-alpha hydroxylase 33 3.43

Taxadien-5-alpha-ol O-acetyltransferase 6 26.88

Taxane 10-beta-hydroxylase 41 3.43

Taxoid 14-beta-hydroxylase 22 3.43

2-alpha-hydroxytaxane 2-O-benzoyltransferase 3

10-deacetylbaccatin III 10-O-acetyltransferase 3

3’-N-debenzoyl-2’-deoxytaxol N-
benzoyltransferase

5 4.85

12 Ursolic acid Anti-cancer Cytochrome P450 monooxygenase 23 3.43

13 Oleanolic acid Anti-cancer Beta-amyrin synthase 7 12.69
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Krishna with subtype Rama Tulsi. There were 104

transcripts, whose fold change in expression was ob-

served to be eight times more in Krishna Tulsi than in

Rama Tulsi. Likewise, there were 229 transcripts whose

fold change expression was eight times more in Rama

Tulsi as compared to Krishna Tulsi. These are available

for download at- (caps.ncbs.res.in/download/tdat_data/

Supplementary_tables/Supplementary Table 8.txt).

In the case of the multifunctional Cytochome P450

(which catalyses the last three steps in the synthesis of

urosolic acid, Fig. 9), a predicted gene from scaf-

fold2032 was obtained as a hit, when a reviewed Uni-

Prot entry F1T282 from V. vinifera was considered as

query and searched in the Tulsi genome assembly

using BLAST. This hit retains 61 % sequence identity

and the alignment covers 90 % of the length of the

query (alignments are shown in Additional file 23:

Figure S13). This scaffold contains a total of three pre-

dicted genes viz., Ote100020320011, Ote100020320001

(similar to UHRF1-binding protein) and Ote100020

320031 (gene of interest).

From the available transcriptome assembly, these genes,

identified as involved in the synthesis of urosolic acid,

were analysed for their levels of expression. The RPKM

values were also high for these three genes (please see

Additional file 21: Table S9). To further validate the levels

of expression of these genes, q-RT-PCR was performed

using sequence-specific primers. The presence of these

three enzymes is generally high in all the mature leaf sam-

ples and highest in Rama subtype (using Krishna subtype

Table 4 The enzymes involved in metabolite biosynthesis were identified in the assembled genome and these genes were

analyzed for their expression level in the transcriptome. The RKPM value signifies the level for expression (Continued)

Cytochrome P450 monooxygenase 23 3.43

Sterols

14 Sitosterol Anti-cancer 24C_methyltransferase 1 67.25

-refers to cases where there was no significant transcript evidence

Fig. 9 The synthesis of ursolic acid from squalene is a three-step process starting from squalene. A: Squalene epoxidase, B: α-amyrin synthase, C1:

α-amyrin 28-monooxygenase [Multifunctional], C2: Uvaol dehydrogenase [Multifunctional] and C3: Ursolic aldehyde 28-monooxygenase. Squalene

epoxidase and alpha amyrin synthase, along with alpha amyrin 28 mono-oxygenase, uvol dehydrogenase and ursolic aldehyde 28 mono-

oxygenase, play important role in synthesis of ursolic acid. These three genes have been chosen for quantification of gene expression by q-RT

PCR method in different tissues and species
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as control). Alpha-amyrin synthase is more abundant in

mature leaf samples of O. gratissimum and O. sacharicum

species. However, interestingly, the three enzymes are

found to be more abundant in the young leaf samples

of Rama subtype; in contrast, atleast one of the three

genes is less in the Krishna leaf sample and in all root

samples. The expression of the three genes implicated

in urosolic acid synthesis is uniformly low in samples

of O. kilmund.

Next, to correlate gene expression and to quantify the

presence of ursolic acid and eugenol, chemical profiling

was performed using LC-Mass spectrometry from differ-

ent tissues and samples. Eugenol and ursolic acid were

observed in the highest quantities in mature leaf sample

of Rama subtype and in relatively low quantities in O.

kilmund. The amount of eugenol in the leaf sample of

O. tenuiflorum subtype Rama (2235 ng/mg) is consider-

ably high followed by O. kilmund (1472 ng/mg), O.

sacharicum (651 ng/mg) and lowest in O. gratissimum

(73 ng/mg). In all stem samples, the amount of eugenol

is consistently low with the highest in O. tenuiflorum

subtype Rama (24 ng/mg), O. tenuiflorum subtype

Krishna (17 ng/mg), O. kilmund (15 ng/mg) and below

limits of quantification in O. gratissimum and O. sachar-

icum. The presence of oleanolic acid is also severely re-

duced in stem samples of Rama subtype (2869 ng/mg)

and in Krishna subtype (1088 ng/mg) in comparison to

the mature leaf samples (7556 ng/mg for Rama and

4630 ng/mg for Krishna). The presence of urosolic acid is

50 % less in stem samples of Rama subtype (2883 ng/mg)

when compared to the mature leaf samples (4597),

whereas it is much lower in the stem samples of other

species as compared to the leaf sample. The amount of

ursolic acid in the stem samples of Krishna subtype

(746 ng/mg) is 4.6 times less than that of the mature

leaf samples (3471 ng/mg) (please see Table 5).

Discussion

O. tenuiflorum subtype Krishna Tulsi is one of the non-

model plants of great medicinal value, for which there has

been no genomic information available till date. We have

performed genome sequencing of O. tenuiflorum subtype

Krishna of the paired-end (PE; 2x100-bp) and mate-paired

(MP; 2x50-bp) DNA libraries by Illumina Hiseq 1000. The

best de novo assembly was obtained at k-mer 43 by SOAP-

denovo2, an eukaryotic de novo genome assembler. Re-

peats were identified and masked, and gene prediction

and annotation was carried out using the MAKER annota-

tion pipeline by using genomic, transcriptomics and EST

data. The nearest species whose genome has been se-

quenced is the monkey flower (M. guttatus), which shares

its order Lamiales with O. tenuiflorum (Ote) but falls in a

different family (Phrymaceae). Orthology search of Ote

Krishna Tulsi genes in four genomes viz. A. thaliana

(Ath), M. guttatus (Mgu), S. lycopersicum (Sly) and O.

sativa (Osa) also confirmed the close relationship between

Krishna Tulsi and M. guttatus (Mgu), in terms of the

number of common gene families i.e., 578 out of 2488

total genes. When we considered all the 36,768 predicted

genes from the Krishna Tulsi genome, we found that 1282

ortholog groups have Ocimum-only genes. These 1282

groups contain 13,306 Ocimum genes and hence they are

Fig. 10 Phylogenetic tree of sixteen amyrin query sequences and four putative amyrins from Tulsi. Tulsi hits are marked in blue clour, red ones

are alpha amyrin synthase, greens are beta amyrin synthase and cyan ones are proteins from other class of amyrin. The presence of motifs and

position in the phylogeny indicate that the hits obtained in O. tenuiflorum genome are likely to be alpha-amyrin synthases
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referred to as paralogs by OrthoMCL. Of the remaining

Ote genes, 17,584 genes were found to be orthologous to

any of the other four species studied in this case. We per-

formed an analysis of the genes involved in the metabolite

production in Ote and the genomes of a few other related

plant species. Based on the direct evidence or homology a

total of 458 genes were identified in Ote genome, which

are involved in coding of enzymes implied in the synthesis

of specialized metabolites. Comparative analysis of trans-

ciptomes of O. tenuiflorum subtype Krishna and Rama

was performed to detect potential differentially-regulated

genes and their involvement in metabolite synthesis. On

comparing both the transcriptomes, differentially expressed

genes were observed with a substantial number of genes

more abundant and others less abundant in either subtypes.

Gamma-cadinene synthase is more abundant in Krishna

sample (RPKM value 577.047) as compared to Rama sam-

ple (RPKM value 31.73). To confirm some of the more

abundant genes along with Gamma-cadinene synthase, we

performed q-RT-PCR in different tissue samples i.e., stem

and leaves and also in five species viz. O. tenuiflorum sub-

type Krishna and Rama, O. gratissimum, O. basilicum, and

O. kilmand. Expression of Gamma-cadinene synthase is

found more in Krishna samples as compared to Rama by

q-RT-PCR also. Likewise, Chalcone synthase (CHS) is an

anthocyanin-producing gene, which is observed to be more

abundant in young leaf samples of Krishna and mature leaf

samples in transcriptome data. Subsequently, this has been

confirmed by q-RT-PCR and from mass spectrometry

readings of ursolic acid and eugenol from different tissue

samples and from different species.

Conclusion

We present a draft genome of O. tenuiflorum Krishna

Tulsi subtype Krishna Tulsi. The habitat of genus Ocimum

is tropical climate and it is wide spread over Asia, Africa,

Central and South America. High RNA-seq expression

values of the genes responsible for the purple coloration

of the plant parts in Krishna subtype, as compared to

Rama subtype, were observed. We also identified a fFew

unique genes (16) of Ote, which lack any traceable orthol-

ogy and homology relationships from all the 22 species

used in this study.

Krishna Tulsi is described in the Vedas and Puranas

(ancient scriptures of Hindus) and has a long history of

cultivation, of roughly 3000 years, and is therefore as-

sumed to be of Indian origin [21]. In literature, it is also

referred to as the “Queen of Herbs”. Major genes involved

in the synthesis of medicinally important specialized me-

tabolites in the plant could be unraveled despite limited

data on sequencing and coverage [22]. Expressions of

these genes were confirmed by complementing with

RNA-seq data and q-RT-PCR method. We also investi-

gated one of the important metabolic pathways involving

the production of ursolic acid in detail, by mass-

spectrometry and q-RT-PCR methods. Synthesis of spe-

cialized metabolites or their precursors appear to begin in

the young leaves of Tulsi. Subsequently, the mature leaves

retain the medicinally relevant metabolites. O. tenuiflorum

Rama subtype retains the high abundance of key medicin-

ally relevant metabolites like eugenol and ursolic acid, as

observed in the transcriptome, metabolite quantifications

and q-RT-PCR expression values consistent with its high

medicinal values. Our main emphasis was to unravel the

important metabolite genes by using genomic and tran-

scriptomic data despite limited sequencing information.

Methods

Isolation of genomic DNA from O. tenuiflorum subtype

Krishna Tulsi

Young leaves of Tulsi subtype Krishna and Rama were

used for genomic DNA isolation. About one gram of

leaves were crushed using liquid Nitrogen and DNA ex-

traction buffer (200 mM TrisHCL [pH-8.0], 200 mM

NaCl, 25 mM EDTA and 1 % PVP) was added [23]. The

ground material along with 1/10th volume of 20 % SDS

solution was incubated at 65 °C for 30 min. The tubes

were centrifuged at 14,000 RPM for 10 min at room

temperature to remove the debris. The supernatant was

transferred into a fresh tube and treated with equal

volume of phenol: chloroform: isoamyl alcohol (25:24:1)

and mixed gently for 5 min. The mixture was centrifuged

at 12,000 RPM for 10 min to separate the phases. The

aqueous phase from the centrifuged tube was transferred

to a fresh tube and DNA was precipitated with 1/5th

volume of 2 M NaCl and 2 volumes of ice-cold ethanol.

Table 5 Estimation results of Eugenol and Ursolic acid in different samples

S. No Sample Eugenol (ng/mg) Leaf Stem Ursolic acid (ng/mg) Leaf Stem Oleanolic acid (ng/mg) Leaf Stem

1 O. tenuiflorum (Rama Tulsi) 2235.93 24.91 4597.62 2883.46 7556.84 2869.80

2 O. tenuiflorum (Krishna Tulsi) 449.89 17.16 3471.59 746.02 4630.53 1088.21

3 O. gratissimum 73.88 BLQ 4391.97 1139.15 2584.56 711.08

4 O. scharicum 651.09 BLQ 4436.26 1491.68 2975.63 1024.14

5 O. kilmand 1472.51 15.74 1099.85 191.09 945.22 159.37

• BLQ Below level of quantification
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The DNA was pelleted by centrifugation at 12,000

RPM for 10 min. Precipitated DNA pellet was taken as

a starting material for purification using the Sigma

Genelute plant DNA isolation kit (G2N70, Sigma). The

DNA was run on a 1 % agarose gel to assess the quality.

The A260/280 ratio and quantity were determined

using the nanodrop.

Genome sequencing, assembly and annotation

Genome sequencing was performed by using Illumina

HiSeq 1000 technology in the Next Generation Genomics

Facility at Centre for Cellular and Molecular Platforms

(C-CAMP). Genomic DNA paired-end and gel free

mate-pair library preparation was performed for

Krishna Tulsi using TruSeq DNA sample preparation

kit (FC-121-2001) and Nextera mate-pair sample prepar-

ation kit (FC-132-1001) from Illumina (www.illumina.com).

FASTX-Toolkit [24] and FastQC tools [25] were used for

pre-processing of raw reads and for quality check of the

reads. Genome assembly from reads of PE and MP together

was done by using SOAPdenovo2, a de novo draft genome

assembler [26]. Preliminary assemblies were performed

based on k-mers from 21 to 63 with an interval of two.

Gene prediction and annotation was carried out using the

MAKER annotation pipeline [27] with predicted gene

models using AUGUSTUS [28] and A. thaliana genes as

reference for initial prediction. The gene models were re-

fined using homology searches against all protein sequences

from Viridaeplantae kingdom.

Validation of genome assembly and annotations

To validate genome assembly, we have mapped raw

reads on to the de novo assembled genome by using

REAPR (SMALT) [29], SAMtools [30] and Picard tools

(http://broadinstitute.github.io/picard/). Maximum and

minimum insert size of 500 bp and 0 bp respectively

were selected for mapping. We report an alignment

pairing with best score, using standard Smith-Waterman

scores. The threshold minimum score used was calcu-

lated by the formula to be: < Minimum score > = < world

length > + step size – 1. Here the word length of 13 is

used with a step size of 6. Estimation of the genome size

of the Tulsi genome was done using the k-mer distribution

analysis by Jellyfish [31]. Essential genes implicated in

the regulation, assembly and functioning of plant cells,

have been identified in the Krishna Tulsi assembled

genome using a two-way approach. Firstly, using CEGMA

which was derived from the KOG database [32] (for

eukaryotic genomes) and core proteins in any eukaryotic

genome (including ones in draft stages), essential genes

were annotated. Secondly, a subset of A. thaliana genes

were extracted from a well-characterized Database of

Essential Genes (DEG) and compared against Krishna

Tulsi assemblies. Validation of the extracted genes was

performed by Pfam domain annotation approaches. Pu-

tative essential genes from the Krishna Tulsi dataset

were further searched using BLASTP [33] against the

NCBI (NR) database and closely-related homologues

were aligned and phylogenetic tree constructed.

Repeat identification

Repeat elements in the assembled genome were identi-

fied using RepeatScout (version 1.0.5) [34] and Repeat-

Masker (version 4.0.3) [35]. The library of ab initio

repeats generated by RepeatScout was classified into

known repeat classes using the RepeatClassifier module

of RepeatScout (Additional file 12: Table S5). The RepBase

library of RepeatMasker and the non-redundant library of

ab-initio classified repeats were then used to mask the

repeat elements in the assembled genome. The repeat-

masked genome assembly was then used for genome

annotation.

Genome annotation

The repeat-masked assembled genome of Krishna Tulsi

was processed through the MAKER annotation pipeline

[27]. AUGUSTUS [28] was used for gene prediction,

trained on A. thaliana gene models. RNA-seq data ob-

tained from leaf samples was used as EST evidence to

refine the gene models. Initial gene models of protein se-

quences belonging to Viridaeplantae kingdom, obtained

from the NCBI database, were used as protein evidence

for refining gene prediction. Both EST and protein evi-

dence were prepared using EXONERATE [36] and used

for gene prediction refinement through AUGUSTUS.

All the protein sequences of these gene models were

subjected to validation based on identification of homo-

logues through BLASTP search against NRDB at E-value

cutoff of 10−3. Pfam release 27 was consulted for all

domain predictions with an E-value cutoff of 10−5

using HMMER3 package [37].

Orthology detection

All the predicted gene models from Krishna Tulsi were

used with OrthoMCL tool [38] to identify clusters be-

tween selected species of A. thaliana (Ath), O. sativa

(Osa), S. lycopersicum (Sly), M. guttatus (Mgu). In order

to inspect distribution of the orthologous relationship of

Ocimum genes across different species and taxonomic

levels, ProteinOrtho tool [39] was implemented on

Krishna Tulsi (Ote) gene models along with 22 different

species: Aquilegia caerulea (Aca), Glycine max (Gma),

Setaria italic (Sit), Mimulus guttatus (Mgu), Solanum

lycopersicum (Sly), Arabidopsis thaliana (Ath), Medicago

truncatula (Mtr), Selaginella moellendorffii (Smo), Brassica

rapa (Bra), Oryza sativa (Osa), Solanum tuberosum (Stu),

Carica papaya (Cpa), Physcomitrella patens (Ppa), Theo-

broma cacao (Tca), Camellia sinensis (Csi), Prunus persica
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(Ppe),Vitis vinifera (Vvi), Eucalyptus grandis (Egr), Populus

trichocarpa (Ptr), Zea mays (Zma), Fragaria vesca (Fve),

Sorghum bicolor (Sbi). All the complete proteome sets were

obtained from Phytozome resource [40]. Phylogenetic tree

reconstruction was carried out using ‘RbcS’ (Rubisco small

subunit) coding sequences from all 23 species. CLUSTALW

[41] and Phylip package [42] were employed for multiple

sequence alignment (MSA) and subsequent clustering

using Neighbor Joining (NJ) method, respectively. Distant

homology relationships were verified through PSI-BLAST

[33] at different set of E-value cutoffs. Gene products for

which we were unable to establish any homology or orthol-

ogy relationships, but consisted of a Pfam domain, were re-

ferred to as unique genes specific to Ote.

Comparative analysis between Krishna Tulsi and other

plant genomes

The most recent version of whole genome sequences of S.

lycopersicum, V. vinefera, M. tranculata and A. thaliana

were downloaded from NCBI (ftp://ftp.ncbi.nlm.nih.gov/ge-

nomes/). BLAT [43] was employed for sequence searches

using S. lycopersicum, V. vinefera, M. tranculata and A.

thaliana genomes against two sets of Tulsi genome data:

one containing 11389 scaffolds (which are greater than

10000 bp) and another containing 167 scaffolds and contigs

with metabolite-related genes (identified earlier on the

Krishna Tulsi genome). The figures were prepared using in-

house software written for this purpose.

Isolation of RNA from Tulsi subtypes, Krishna and Rama,

and RNA-seq library preparation

RNA isolation was carried out with 100 mg of the leaf

tissue (Rama and Krishna) using the Sigma Spectrum

Plant Total RNA Kit (STRN50, Sigma). DNA contamin-

ation was removed by DNAse treatment using DNA-

free™ kit (AM1906, Ambion). The DNase free RNA

quality was determined using the Agilent Bioanalyzer.

The RNA Integrity Number (RIN) values of all the

samples were greater than 6. The A260/280 ratio and

the quantity were determined using the nanodrop.

RNA-seq library preparation was done with 1 μg of

total RNA following the TruSeq RNA sample prepar-

ation from Illumina (RS-122-2001).

Transcriptome sequencing and assembly

We assembled all the mRNA reads having HQ scores of

all the bases more than 20, of Krishna and Rama subtype

separately and also by combining the reads from both

of these subtypes by using SOAPdenovo-trans [26] at

different K-mers starting from 19 to 63 at an interval of

two. An insert size of 350 was used for the assembly of

transcriptomes. RNA-seq reads were mapped to the as-

sembled genome by Tophat2 [44], which uses Bowtie2

[45] as a mapping tool. We used a minimum and max-

imum intron length of 50 and 500000 bp respectively.

Maximum multi hits (parameter that dictates the num-

ber of alignments to the reference for a given read) was

assigned as 20 and transcriptome max hits (maximum

number of mappings allowed for a read, when aligned

to the transcriptome) of 60 was used.

Transcript differential expression comparison

To quantify expression in terms of reads per kilo base per

million (RPKM), non-redundant combined assembled

transcript sequences (at 90 % sequence similarity by CD-

hit EST [46]) were taken as reference. This non-redundant

transcriptome was used as the reference transcriptome to

calculate differential expression of transcripts in both the

samples [6, 47]. The reads of RNA-seq experiments from

Krishna and Rama subtypes were mapped back on to the

reference transcriptome by using SeqMap (version –

1.0.12) [48] and RPKM values were determined by using

rSeq: RNA-seq analyzer (version 0.1.1) [49].

Specialized metabolites detection and validation

The dataset obtained after gene prediction on the assem-

bled genome was employed to search for enzymes in-

volved in secondary metabolite production. There are 14

metabolites (flavonoids (2), phenylpropanoids (4), ter-

penes (2), sesquiterpenes (5) and sterols (1)), which are

reported to be present in Ocimum and have known

pathway information in PlantCyc (http://www.plantcy-

c.org/) [16]. Reviewed entries from the UniProt database

and all the known sequences of the enzymes from other

species possessing these enzymes were used as queries to

search in the full dataset of scaffolds and contigs, using

PSI-BLAST at E-value of 10−5 and three iterations. The

protein hits obtained in our dataset were further subjected

to validation using a query coverage filter of 75 %.

In order to study the expression of genes involved in the

synthesis of specialized metabolite (s), the assembled tran-

scriptome of both Ocimum species were searched, employ-

ing the reviewed entry corresponding to each enzyme in

the UniProt database. These searches were performed

using TBLASTN at an E-value of 10−3, and the best hit in

our dataset was selected based on the least E-value. If the

reviewed entry for any of the enzyme was not present, un-

reviewed entries from PlantCyc database were employed.

Quantification of eugenol and ursolic acid using UHPLC-

MS/SRM method

AVantage TSQ triple stage quadrupole mass spectrometer

(Thermo Fisher Scientific, San Jose, CA, USA) equipped

with a heated electro spray ionization (HESI) source was

used for the analysis of eugenol and an APCI probe was

used for the ursolic acid analysis. The mass spectrometer
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was interfaced with an Agilent 1290 infinity UHPLC sys-

tem (Agilent Technologies India Pvt. Ltd., India) equipped

with a column oven (set at 40 °C), auto sampler and a

thermo-controller (set at 4 °C). The needle was washed

from outside with acetonitrile (0.1 % formic acid) before

every injection to avoid any potential carry-over problems.

Separations were performed using a shim-pack XR-

ODSIII column (2 × 150 mm, 2 μm). For Eugenol: Mobile

phase A was water (10 mM Ammonium acetate) contain-

ing 0.1 % formic acid, and mobile phase B was acetonitrile

containing 0.1 % formic acid. For Ursolic acid: Mobile

phase A was water (10 mM Ammonium acetate), and mo-

bile phase B was acetonitrile: methanol (3:1). Injections of

10 μL were performed using flow through a needle

(A)Eugenol:

Eugenol was quantified after derivatizing with pyridine

sulfonyl chloride using estrone-d4 as an internal standard.

Methanol was used to extract eugenol from fresh leaves

(2 mg/mL) and dried stem powder (20 mg/ml). Briefly

10 μL of extract and 10 μL of internal standard (from

2.5 μg/mL) were added into 200 μL of buffer [acetone:

NaHCO3 (1:1)]. To this 10 μL of pyridine sulfonyl chlor-

ide (10 mg/mL) was added and incubated at 60 °C for

15 min. After incubation the derivative was extracted with

800 μL of MTBE and the organic layer was dried and

reconstituted in 50 μL of methanol followed by 10 μL in-

jection for the analysis. A gradient (0–2 mins:30 %B, 2–5

mins:30–90 %B, 5–7 mins:90–100 %B, 7–10 mins:100 %B,

10–10.1 mins:100–30 %B, 10.1–15 mins:30) was then ini-

tiated at a flow rate of 200 μL/min. Operating conditions

were as follows: spray voltage, 3000 V; ion transfer capil-

lary temperature, 270 °C; source temperature 100 °C;

sheath gas 20, auxiliary gas 5 (arbitrary units); collision

gas, argon; S-lens voltage was optimized for individual

metabolites; scan time of 50 millisec/transition; and ion

polarity positive. A standard curve was constructed from

0.078 to 5ngon column to quantify eugenol. The SRM

transition used for the analysis of eugenol is (306.1→ 79)

and for estrone-d4 (416.3→ 274.1).

(B)Ursolic Acid:

Ursolic acid was quantified using estrone-d4 as an in-

ternal standard. A brief extraction was done from 2 mg/

mL of dry powder using 1 mL of methanol (sonication-

3 min, centrifugation −5 min). The extract was further

diluted to 0.2 mg/mL in methanol. From this extract

10 μL was added along with 10 μL of internal standard

(0.1 ug/mL) to 30 μL of methanol and 10 μL was injected

for the analysis. A gradient (0–2 mins:20 %B, 2–8 mins:20–

100 %B, 8–14.5 mins:100 %B, 14.5–14.6 mins:100–20 %B,

14.6–20 mins:20 %B) was then initiated at a flow rate of

200 μL/min. Operating conditions were as follows: Dis-

charge current 4 μA; ion transfer capillary temperature,

270 °C; source temperature 300 °C; sheath gas 20, auxiliary

gas 5 (arbitrary units); collision gas, argon; S-lens voltage

was optimized for individual metabolites; scan time of 50

millisec/transition; and ion polarity positive. A standard

curve was constructed from 0.034 to 2.5 ng on column to

quantify ursolic acid. The same standard curve was used

for the analysis of oleanolic acid. The SRM transition used

for the analysis of both ursolic and oleanolic acid is

(439.4→ 119) and for estrone-d4 (275.3→ 257.1).

Availability of supporting data section

Information on the genes identified in Tulsi, along with

the scaffold numbers, are provided in http://caps.ncbs.-

res.in/Ote.

BioProject : PRJNA251328

SRA id : SRP051184

Accession number of O. tenuiflorum: JQCZ00000000

Also please see DOI for supporting data: https://myno-

tebook.labarchives.com/share/National%2520Centre

%2520for%2520Biological%2520Sciences/MTkuNXw2MjM

wNC8xNS9UcmVlTm9kZS80MjAwNTk4MTM5fDQ

5LjU=

Data available from the Dryad Digital Repository: http://

dx.doi.org/10.5061/dryad.6f1r2

Additional files

Additional file 1: Figure S1. Per base sequence quality of R1 reads of

PE sequences used in final genome assembly.

Additional file 2: Figure S2. Per base sequence quality of R2 reads of

PE sequences used in final genome assembly.

Additional file 3: Figure S3. Distribution of assembled scaffolds

according to their length.

Additional file 4: Figure S4. Distribution of scaffold length difference

between paired end and paired with mate pair end assembly.

Additional file 5: Table S1. Scaffold lengths distribution in the MP + PE

and PE assemblies.

Additional file 6: Table S2. Statistics of scaffold length comparison

from assemblies of PE and MP + PE together.

Additional file 7: Table S3. Completeness of assembly and presence of

essential genes by CEGMA results for O. tenuiflorum at two levels; (a) only

in PE assembly (b) in PE + PM assembly.

Additional file 8: Table S4. Presence of essential genes in O.tenuiflorum

(Tulsi) at three levels; a) in only paired end assembly (ab-initio gene

prediction), b) in paired end and mate-pair assembly’s Level 2 [evidence

from RNAseq, EST and known tulsi genes], c) in paired end and mate-paired

assembly’s Level 1 (gene prediction).

Additional file 9: Figure S5. Phylogenetic trees of essential gene,

cytochrome P450 from O.tenuiflorum and their respective homologues.

Additional file 10: Figure S6. NJ tree for glyceraldehydes phosphate

dehydrogenase protein in O. tenuiflorum (Tulsi, marked in red) and its

nearest homologues.

Additional file 11: Figure S7. Phylogenetic trees of essential genes,

actin from O.tenuiflorum and their respective homologues.
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Additional file 12: Table S5. Repeat elements identified in Tulsi

genome assembly and classified in different groups of repeats.

Additional file 13: Figure S8. Pie chart of distribution of protein

domains (Pfam) of all the predicted genes in O. tenuiflorum subtype

Krishna genome.

Additional file 14: Table S6. List of species used for phylogeny analysis

along with Ocimum to depict taxonomical distribution of this species in

plant kingdom.

Additional file 15: Figure S9. Circular representation of O. tenuiflorum

metabolite-related genes mapped onto Vitis vinefera plant genome. Color

indicate blue = < 2 genes, green =2 genes, yellowgreen = > 2 genes,

red = Metabolite related genes. Connecting line between scaffolds and

chromosome represents postion of the scaffold in genome. Red color of

connecting line represents presence of metabolite related genes.

Additional file 16: Figure S10. Circular representation of O. tenuiflorum

metabolite-related genes mapped onto Medicago tranculata plant genome.

Color indicate blue = < 2 genes, green =2 genes, yellowgreen = > 2 genes,

red = Metabolite-related genes. Connecting line between scaffolds and

chromosome represents postion of the scaffold in genome. Red color of

connecting line represents presence of metabolite related genes.

Additional file 17: Figure S11. Circular representation of O. tenuiflorum

metabolite-related genes mapped onto Arabidopsis thaliana plant genome.

Color indicate blue = < 2 genes, green =2 genes, yellowgreen = > 2 genes,

red = Metabolite-related genes. Connecting line between scaffolds and

chromosome represents postion of the scaffold in genome. Red color of

connecting line represents presence of metabolite-related genes.

Additional file 18: Table S7. Associations of O. tenuiflorum a) scaffolds

related to metabolite-related genes, b) longer length scaffolds (greater

than 10Kb in size) to four different plant genomes.

Additional file 19: Table S8. All the transcripts with their expression

and validation at different level such as genome hit and blast hit results

against non-redundant database of NCBI.

Additional file 20: Figure S12. Pathways of all the 14 important

medicinal metabolites of the Tulsi genome which were studied in detail.

Additional file 21: Table S9. Gene IDs involved in specialized

metabolite production for each of the metabolites with known pathways.

Additional file 22: Table S10. Sequences of putative terpene synthases

in O. tenuiflorum genome.

Additional file 23: Figure S13. a. Sequence alignment of metabolite

protein predicted from Scaffold 14352 from Ocimum and O65402 protein

sequence from Arabidopsis. b. Sequence alignment of protein sequence

predicted in scaffold16333 from Ocimum genome and Q8RWT0 protein

sequence from Arabidopsis. c. Sequence alignment of protein sequence

predicted in scaffold2032 from Ocimum genome and F1T282 protein

sequence from Vitis proteome.

Additional file 24: Text A. List of scaffolds as marked from START to

END in Fig. 4. Text B. List of IDs of transcripts more abundant in Krishna

as compared to Rama subtype (from top to bottom) marked in Fig. 5a.

Text C. List of IDs of transcripts more abundant in Rama as compared to

Krishna subtype (from top to bottom) as marked in Fig. 5b. Text D.

Multiple sequence alignment of amyrin synthases with hits in Tulsi

genome.

Additional file 25: Table S11. Metabolites with unknown pathways

with their disease implications. There are 15 medicinally relevant

metabolites in Ocimum sp. with unknown pathways.
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