
RESEARCH ARTICLE Open Access

Genome-wide alteration of 5-
hydroxymenthylcytosine in a mouse
model of Alzheimer’s disease
Liqi Shu1†, Wenjia Sun2†, Liping Li3,4†, Zihui Xu1,5, Li Lin1, Pei Xie3,4, Hui Shen3,4, Luoxiu Huang1, Qi Xu6,

Peng Jin1* and Xuekun Li3,4*

Abstract

Background: Alzheimer’s disease (AD) is the most common form of neurodegenerative disorder that leads to a

decline in cognitive function. In AD, aggregates of amyloid β peptide precede the accumulation of neurofibrillary

tangles, both of which are hallmarks of the disease. The great majority (>90 %) of the AD cases are not originated

from genetic defects, therefore supporting the central roles of epigenetic modifications that are acquired progressively

during the life span. Strong evidences have indicated the implication of epigenetic modifications, including histone

modification and DNA methylation, in AD. Recent studies revealed that 5-hydroxymethylcytosine (5hmC) is

dynamically regulated during neurodevelopment and aging.

Results: We show that amyloid peptide 1–42 (Aβ1-42) could significantly reduce the overall level of 5hmC in vitro. We

found that the level of 5hmC displayed differential response to the pathogenesis in different brain regions, including

the cortex, cerebellum, and hippocampus of APP-PSEN1 double transgenic (DTg) mice. We observed a significant

decrease of overall 5hmC in hippocampus, but not in cortex and cerebellum, as the DTg mice aged. Genome-wide

profiling identified differential hydroxymethylation regions (DhMRs) in DTg mice, which are highly enriched in introns,

exons and intergenic regions. Gene ontology analyses indicated that DhMR-associated genes are highly enriched in

multiple signaling pathways involving neuronal development/differentiation and neuronal function/survival.

Conclusions: 5hmC-mediated epigenetic regulation could potentially be involved in the pathogenesis of AD.
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Background

Alzheimer’s disease (AD) is a progressive neurodegenera-

tive disease involving multiple pathologic processes and is

characterized by the deposition of amyloid beta (Aβ) pep-

tide, neurofibrillary tangles (NFTs) composed of hyperpho-

sphorylated protein tau, and neuronal cell death [1, 2].

Recent studies indicate that epigenetic pathways could be

involved in the pathogenesis of AD [3, 4]. DNA methyla-

tion (5-methylcytosine, 5mC) plays important roles in

regulating gene expression and is involved in multiple neu-

rodevelopmental and neurodegenerative disorders [5–7].

Changes in 5mC at the global level or at specific loci are

seen in the brain tissues of AD model mice, as well as AD

patients [4, 8–12]. Although some regions and loci show

hypermethylation [13], global DNA hypomethylation has

been observed in the entorhinal cortex of some AD patients

[14], suggesting DNA methylation is differentially affected

in a region- and loci-specific manner. Previous studies also

found that the promoter regions of amyloid precursor

protein (APP) and presenilin 1 (PSEN1) displayed age-

dependent hypomethylation [10, 15–17]. Furthermore, in

vitro hypomethylation of PSEN1 increased the cleavage of

APP and the production of Aβ in a neuroblastoma cell line

[18]. Recently, two large-scale epigenome-wide association

studies uncovered the alteration of site-specific methylation
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in the brains of AD patients [11, 12]. These results imply

DNA methylation could play important roles in the patho-

genesis of AD.

Recently, another cytosine modification, 5-hydroxy

methylcytosine (5hmC), was identified and found to be

highly abundant in the neuronal system [19–21]. Ten-

eleven translocation (Tet) family proteins, including

Tet1, Tet2, and Tet3, are known to catalyze the hydrox-

ylation of 5mC to 5hmC [19, 22–24]. Recent studies

strongly indicate that 5hmC not only serves as an inter-

mediate of DNA demethylation, but can also perform

as a stable epigenetic marker. 5hmC is ~10-fold more

enriched in neurons than other cell types, and it is ac-

quired globally and exhibits dynamic features and

region-specific patterns during postnatal development

and aging of the neuronal system [20, 25, 26]. Genome-

wide studies reveal that 5hmC can be enriched in dis-

tinct genomic regions, such as gene bodies, promoters,

and distal regulatory regions [27–29], and the enrich-

ment of 5hmC ate gene bodies could be positively

correlated with transcriptional level, which might be

achieved via interaction with histone modifications

[30–34]. The alteration of global 5hmC and differen-

tially hydroxymethylated regions (DhMRs) are seen in

several neurodevelopmental diseases, including Rett

syndrome, autism, and neurodegenerative diseases like

Huntington’s disease and fragile X-associated tremor/

ataxia syndrome (FXTAS), suggesting 5hmC could play

important roles in neurological diseases [20, 25, 35–37].

Despite the clear alteration of DNA methylation ob-

served in AD, whether and how 5hmC is involved in AD

pathogenesis still remain largely unknown. Using an im-

munostaining method, Condliffe et al. found a significant

decrease of global 5hmC in the cortex and cerebellum of

AD patients [38]. In contrast, using the same technique,

other studies reported an increase of global 5hmC in both

AD mouse model and patients samples [39–41]. To study

the alteration of 5hmC in AD and explore the potential

role(s) of 5hmC-mediated epigenetic regulation in the

pathogenesis of AD, here we investigated the effect of Aβ

on 5hmC in vitro and found Aβ treatment could signifi-

cantly decrease the level of 5hmC in a dose-dependent

pattern. Furthermore, we found that 5hmC levels dis-

played an age-dependent decrease in the hippocampus,

but not in the cortex and cerebellum, of APP-PSEN1

double-transgenic (DTg) mice. Using a chemical-labeling

5hmC enrichment approach, we performed genome-wide

profiling of 5hmC. We found that, although AD pathogen-

esis did not change the overall distribution of 5hmC, there

were differentially hydroxymethylated regions (DhMRs)

in DTg mice. The DhMRs identified are involved in a

number of neuronal signaling pathways, indicating a

5hmC-mediated epigenetic pathway could potentially

play important roles in the pathogenesis of AD.

Results
Aβ reduces the global level of 5-hydroxymethylcytosine

in vitro

Aβ deposition is one of the hallmarks of AD pathogen-

esis, and is known to induce neuronal cell death and

other neuronal pathogenic outcomes. To study the roles

of 5-hydroxymethylcytosine (5hmC)-mediated epigenetic

modification in AD pathogenesis, we first studied the ef-

fect of Aβ(1–42), a toxic form of peptide associated with

AD, on the level of 5hmC with cultured cells. After be-

ing treated with Aβ peptide for 48 h, the overall level of

5hmC in HEK293ft cells decreased, and Aβ peptide at a

1-μM concentration was the most effective dose

(Fig. 1a-b). To ensure equal spotting of total DNA on

the membrane, the same blot was then stained with

0.02 % methylene blue (Additional file 1: Figure S1).

Considering cognitive function is severely impaired

and the roles of adult neurogenesis in learning and

memory, we further tested the effect of Aβ peptide on

5hmC levels in adult neural stem cells (aNSCs). ANSCs

harbors in specific regions, subventricular zone of lateral

ventricle and subgranular zone of dentate gyrus of adult

mammalian brain, and is involved in neurological disor-

ders including AD. The isolated aNSCs were positive for

neural stem cell markers Nestin and Sox2 (Fig. 1c-f).

After treated with Aβ peptide at a 1-μM concentration

for 48 h, the level of 5hmC was also significantly de-

creased in the cultured aNSCs (Fig. 1g-h). We also com-

pared the overall level of 5hmC in HEK293ft cells,

aNSCs and neuronal tissues. We found that 5hmC level

was significantly higher in neuronal tissues than in

HEK293ft and aNSCs cells, which both are capable of

proliferation (Fig. i-j). Taken together, these results indi-

cate that Aβ peptide could significantly affect the level

of 5hmC in multiple cultured cells.

5-hydroxymethylcytosine level decreases during aging in

an AD mouse model

Previous studies have indicated that 5hmC could be ac-

quired in the brain during postnatal development and

aging [20, 25]. To examine whether the level of 5hmC is

affected during AD pathogenesis, we dissected multiple

brain regions, including cortex, cerebellum, and hippo-

campus from 12-week-old (adult) and 67-week-old

(aged) wild-type (WT) and APP-PSEN1 double trans-

genic (DTg) mice. Consistent with our previous study

[20], from 12 weeks to 67 weeks, 5hmC exhibits no or

slight acquisition in the cortex and cerebellum of both

WT and DTg mice (Fig. 2b, e, h). Quantification results

showed no significant difference of these brain two re-

gions between WT and DTg mice (Fig. 2a, b, d, e, g, h).

In hippocampus, there is no significant change in 5hmC

in WT mice during aging; however, at the 67-week time

point, the 5hmC level of DTg mice hippocampus
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decreased significantly compared to age-matched WT

control (Fig. 2c, f, i). Collectively, these results indicate

that the global level of 5hmC is affected in specific brain

regions during AD pathogenesis.

Acquisition of 5hmC on gene bodies is altered in aged

AD mice

To explore whether the distribution features of 5hmC in

the genome are altered during AD pathogenesis, we

employed a previously established 5hmC chemical label-

ing and affinity purification method [26] and performed

5hmC genome-wide profiling. Based on dot-blot results,

our subsequent study focused on hippocampus. To per-

form genome-wide sequencing of 5hmC, hippocampus

tissues were dissected from three adult (12-week) DTg

mice and three littermate WT mice; at the 67-week time

point (aged), hippocampus tissues were dissected from

two DTg mice and two WT littermate mice. Through

deep-sequencing, 11–23 million total reads and around

9–18 million monoclonal reads were generated from

each sample (Additional file 2: Table S1). Sequence data

were analyzed using our established pipeline [20], and

Fig. 1 The effects of Aβ(1–42) peptide on 5hmC level in vitro. a-b Dot-blot assay shows Aβ treatment significantly decreased total 5hmC levels in

a dose-dependent manner in HEK293ft cells. Aβ at 1-μM concentration is the most effective at decreasing 5hmC levels (*p < 0.05;** p < 0.01,

unpaired t-test). c-f The cultured aNSCs are positive for neural stem cell markers Nestin (d) and SOX2 (e). g The representative images of dot-blot

assay of Aβ treatment on 5hmC level in aNSCs. h The quantification result indicates Aβ at 1-μM concentration significantly decreases 5hmC level

in aNSCs (*p < 0.05;** p < 0.01, unpaired t-test). i-j Dot-blot assay indicates that the global level of 5hmC in cortex is significantly higher than in

HEK293ft cells and aNSCs (*p < 0.05;** p < 0.01, unpaired t-test)
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peaks were identified by MACS software [42]. 6115 and

8335 5hmC peaks were called from adult WT and DTg

mice, respectively (Fig. 3a, b). At the 67-week time point,

39,606 and 19,977 peaks were identified from WT and

DTg mice, respectively (Fig. 3a, b). Although during the

aging process, AD pathogenesis did not significantly

affect the shared peaks between adult and aged mice of

each genotype: 5518 peaks were shared between adult

and aged WT mice, and 5289 peaks were shared be-

tween adult and aged DTg mice, the number of total

peaks decreased remarkably in aged DTg mice compared

to WT littermates. (Fig. 3a, b). At the chromosome level,

there was no visible difference between WT and DTg

mice (Additional file 1: Figure S2). Consistent with our

previous work [20], depletion of 5hmC on the X

chromosome was also observed in both WT and DTg

mice (Additional file 1: Figure S2).

We next determined the distribution of 5hmC on dis-

tinct genomic regions. Genome-wide 5hmC read density

was detected in the DTg mouse model (Fig. 3c, d). At the

12-week point, we saw no significant difference between

WT and DTg mice (Fig. 3c). However, until the 67-week

point, the shifted entire plot pattern suggested that WT

bins had more 5hmC reads (Fig. 3d). Furthermore, the

distribution of 5hmC was studied at 2.5 kb up- and down-

stream of transcription end sites (TESs), transcription

starting sites (TSSs), gene bodies, and CpG islands by ngs-

plot software (Fig. 3e-h). We found that the distribution of

5hmC showed no observable differences on TESs and

CpG islands between WT and DTg mice (Fig. 3e, h),

whereas it was slightly increased on TSSs in WT mice

compared to age-matched DTg mice (Fig. 3f). From the

12-week to 67-week time point, 5hmC was acquired on

gene bodies in both WT and DTg mice (Fig. 3g), however,

at 12- and 67-week time points, the enrichment of 5hmC

in gene bodies showed a significant decrease in DTg mice

compared to age-matched WT mice (t-test, p < 0.0001),

suggesting the acquisition of 5hmC in gene bodies was

inhibited during AD pathogenesis.

Differential hydroxymethylated regions (DhMRs)

associated with AD

The partial overlapping of 5hmC peaks in WT and

transgenic mice suggested differential hydroxymethyla-

tion. We next sought to identify differential hydroxy-

methylation regions (DhMRs) in the genome. Compared

to age-matched WT mice, 5324 and 4975 specific

DhMRs were identified in adult and aged DTg mice,

Fig. 2 Reduced 5hmC level at specific brain regions in a mouse model of AD. a-f Representative images of 5hmC dot-blot assay of 12- and 67-

week-old WT and DTg mice cortex (a, d. n = 3), cerebellum (b, e. n = 3), and hippocampus (c, f. n = 3). g-i The quantitative results indicated that

the global levels of 5hmC did not show significant difference in cortex and cerebellum of WT and DTg mice (g, h). In hippocampus, the overall

abundance of 5hmC was significantly decreased in DTg mice compared to WT mice at 67-week stage while it did not show observable difference

between WT and DTg mice at 12-week stage (i). (ANOVA post Bonferroni’s Multiple Comparison Test, mean ± s.e.m. *p < 0.05, **p < 0.01)
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Fig. 3 (See legend on next page.)
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respectively (Fig. 4a). Among them, 244 specific DhMRs

were shared between adult and aged DTg mice, which

did not appear in either adult or aged WT mice (Fig. 4a).

The DhMRs identified in adult and aged DTg mice dis-

played similar distribution trend: abundantly enriching

in intron, exon and intergenic regions (Fig. 4b), suggest-

ing a high conservation during AD progress.

To further reveal the biological function of identified

DhMRs in both adult and aged DTg mice, the genes associ-

ated with these DhMRs were extracted for enrichment ana-

lysis. We found 167 genes associating with the identified

DTg-specific DhMRs (Additional file 3: Table S2). DhMR-

associated genes were highly enriched in multiple signaling

pathways, such as the Wnt and ErbB pathways, which play

important roles in the neuronal system (Fig. 4c). Further-

more, we generated 4557 aged DTg mice-specific peaks,

and extracted 2424 genes, which associated with those

peaks (Additional file 4: Table S3). Gene Ontology assay

showed that those genes significantly enriched in some

pathways, such as Alzheimer’s disease pathway, Wnt signal-

ling, etc. (Fig. 4d). Taken together, these results suggest that

the specific enrichment of 5hmC could play some role(s) in

(See figure on previous page.)

Fig. 3 Genomic features of 5hmC peaks in hippocampus between WT and DTg mice. a-b 6115, 39,606, 8335, and 19,977 of 5hmC peaks were

called from 12- and 67-week-old WT and age-matched DTg mice biological replicates, respectively. 5518 peaks overlapped between 12- and 67-

week-old WT mice. 5289 peaks overlapped between 12- and 67-week-old DTg mice. 3011 peaks overlapped between 12-week-old WT and DTg

mice. 15,002 peaks overlapped between 67-week-old WT and DTg mice. c Genome-wide 5hmC reads were counted within each 10-kb bin in WT_12

WK and DTg_12WK mice genome. 5hmC levels were not significantly different between adult WT and DTg mice. d Genome-wide 5hmC reads

densities were higher in WT mice than in DTg mice. e, f, g and h Normalized 5hmC read densities on transcription end sites (TESs), transcription start

sites (TSSs), gene bodies, and CpG islands. The enrichment of 5hmC significantly decreased in adult and aged DTg mice compared to age matched

WT mice, but no significant difference was observed at TSS, TES, and CpG islands. t-test, p < 0.01

Fig. 4 Identification and characterization of DhMRs in AD mouse model. a Compared to age-matched WT mice, 5324 and 4975 DhMRs were identified

from adult and aged DTg-specific mice, respectively. 244 specific DhMRs were shared between adult and aged DTg mice, which did not exist either in

adult or aged WT mice. b The distribution features of DhMRs identified in adult and aged DTg mice, respectively. DhMRs highly enrich in introns, exons

and intergenic regions. Pearson’s Chi-squared test with Yates’ continuity correction was performed using their absolute mapped reads inside and outside

of each genomic feature. P-values for these tests were significant (<2.2e-16). c KEGG assay shows DhMR-associated genes are significantly enriched in

multiple neuronal signaling pathways. d KEGG assay indicates aged mice specific DhMRs-associated genes are also significantly enriched in multiple

pathways, including Alzheimer’s disease
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regulating the expression of genes related neuronal func-

tion, and involve in the pathogenesis of Alzheimer’s disease.

Two recent large-scale studies identified alterations of

DNA methylation in some loci of AD patients [11, 12],

suggesting DNA demethylation might be involved in this

process. An IGV image showed the overall reduction of

5hmC peaks in aged DTg mice compared to age

matched WT mice (Fig. 5a). Interestingly, in DTg mice

specific and aged DTg mice specific peaks associated

genes identified in our current study, two genes are also

found in the two EWAS AD studies: Ank1, Cdh23

(Fig. 5b, c). We next examined the 5hmC distribution

profile of the genes identified in those two EWAS stud-

ies, and we found the enrichment of 5hmC peaks in

some regions of those genes decreased (Additional file 1:

Figure S3). These data suggest DNA methylation is al-

tered in AD associated loci, and the potential roles of

DNA demethylation in the pathogenesis of AD.

Previous studies also noted that the enrichment of

5hmC in gene bodies might be positively correlated with

gene expression [37]. In our AD model mice, two AD-

associated genes, APP and PSEN1, were over-expressed.

We found 5hmC peaks highly enriched in APP gene bod-

ies, especially in exons, in both adult and aged DTg mice

compared to WT mice (Fig. 5d, over two-fold difference,

p < 1x10−5). It is of interest to note that we did not see sig-

nificant difference of 5hmC distribution in PSEN1. These

data indicated that 5hmC enrichment could be one of the

mechanisms promoting gene expression.

Discussion
In the present study, we performed in vitro and in vivo

studies to characterize the alterations of 5hmC-mediated

DNA demethylation in a mouse model of AD. We found

the overall level of 5hmC is significantly higher in brain

tissues than in cell lines and adult neural stem cells. AD

pathogenic protein amyloid peptide led to a decrease of

global 5hmC in cultured cells. Our in vivo study also

found the level of 5hmC decreased in one specific brain

region, i.e., the hippocampus, but not other studied

brain regions of AD mice during the pathogenesis of

AD. Genome-wide profiling results indicated that the

distribution of 5hmC altered in distinct genomic regions,

especially in gene bodies. The differentially hydroxy-

methylated regions (DhMRs) identified in hippocampus

of aged D-Tg mice displayed high enrichment of mul-

tiple signaling pathways that are related to neuronal de-

velopment and neuronal function. Some AD-associated

genes showed altered hydroxymethylation. Our study

therefore uncovered new roles for 5hmC-mediated

epigenetic modification in neurologic disorders and re-

vealed a new layer of the pathogenic mechanism of AD.

Global and site-specific alterations of DNA methyla-

tion had been identified in AD [10, 14, 15, 43–45].

Epigenome-wide association with AD revealed the rela-

tionship between differential methylation of CpGs and

the expression of nearby genes, some of which are con-

nected to a known AD susceptibility network [11, 12].

Previous studies had inconsistently reported about the

Fig. 5 Identification and characterization of DhMRs in AD mouse model. a A representative IGV image shows the reduction of overall 5hmC in

aged DTg mice compared to WT mice and adult DTg mice. b-c Representative IGV images show the decrease of 5hmC in some genomic regions

of Ank1 and Cdh23. d 5hmC highly enriched in the gene body of APP gene in adult and aged DTg mice compared to WT mice. MACS software

default statistic test, p-value cutoff: 1X10−5
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alteration of DNA demethylation [38–41]. In our present

study, Aβ treatment led to a significant decrease in glo-

bal 5hmC level of different types of cells in vitro. The

significant alteration of demethyaltion was only observed

in hippocampus but not in cortex and cerebellum during

the ageing of AD model mice, suggesting the alteration

of demethylation is region specific, which might explain

the data contradiction between different studies. Consid-

ering the acquired Aβ deposition during the ageing of

AD model mice, these results indicated the increased Aβ

deposition decreased overall 5hmC level. Together with

previous studies, it supports the idea that dysregulation

of DNA demethylation is age- and region/loci specific,

indicating an interaction between amyloid accumulation

and DNA modification.

Previous studies have found 5hmC is highly enriched

in the neuronal system [19, 26], and the enrichment is

enhanced and displays dynamic features during postnatal

development and aging of the brain [20, 46], indicating

5hmC could be important for brain function. Subse-

quent studies did find that 5hmC-mediated epigenetic

modification is involved in multiple neurological disor-

ders, including autism spectrum disorders, Huntington’s

disease, and FXTAS [20, 25, 36, 37]. Moreover, the Rett

syndrome protein MeCP2 could bind to 5hmC, and its

dosage is negatively correlated with 5hmC level [20, 35].

Our present results revealed that the overall distribution

features of 5hmC in TSSs, TESs, and CpG islands did

not change, but the enrichment of 5hmC in gene bodies

was significantly decreased compared with age-matched

WT mice. Previous research found that the 5hmC level

in gene bodies is positively correlated with gene expres-

sion [20, 47]. Our results that the highly enrichment of

5hmC in the gene body of APP further supports this

concept. Considering no observable difference of 5hmC

in another overexpressed gene PSEN1, it suggests that

5hmC enrichment in gene body is one but all of mecha-

nisms to modulate gene expression. Further, our present

studies identified some DhMR-associated genes enriched

in multiple signaling pathways that are related to neur-

onal function and neurological disorders [20, 25, 36, 37].

These results suggest a potential mechanism to explain

how 5hmC-mediated epigenetic modification functions.

Our present studies also uncovered altered demethyla-

tion in some specific loci in aged D-Tg mice, and some

loci were related with the onset and progress of AD.

Interestingly, the loci with altered DNA demethylation

identified in our study were also found displaying altered

DNA methylation profile by two large-scale studies in

human [11, 12]. Although our present and these two

studies mainly provided the relevant evidence, all these

results suggest DNA methylation and demethylation

changes are involved in AD. Further experimental work

needs to be conducted to address the mechanism how

altered DNA methylation and demethylation affect the

onset and pathogenesis of AD.

Conclusion
Overall, our results indicate that not only is the global

level but also the distribution features of 5hmC altered

in AD model mice. Aβ treatment decreased 5hmC both

in vitro and in vivo. The acquisition of 5hmC in gene

bodies during postnatal development was significantly

inhibited in the hippocampus of AD model mice, al-

though the overall features in TSSs, TESs, and CpG

islands were unaffected. The DhMR-associated genes

identified in AD mice are specifically related to some

signaling pathways that play a role in neuronal function

and neurological disorders. Taken together, our present

results argue that 5hmC-mediated epigenetic modifica-

tion could have an important function in AD.

Methods
Animals

Twelve- and 67-week-old wild-type (WT) and APP/PS1

double transgenic littermate mice were used in this study

[48]. Mice were maintained at ambient temperature (22-

24 °C) on a 12:12 light/dark cycle with free access to food

and water. All animal procedures were performed accord-

ing to protocols approved by Emory University Institu-

tional Animal Care and Use Committee.

Genomic DNA isolation and 5hmC dot-blot

Genomic DNA was extracted as described previously [25].

Briefly, the dissected brain samples or cells were homoge-

nized in lysis buffer (5 mM EDTA, 0.2 % SDS, 200 mM

NaCl in 100 mM Tris–HCl, pH 8.5) supplemented with

proteinase K, and samples were kept at 56 °C overnight.

The second day, an equal volume of phenol:chloroform:i-

soamyl alcohol (25:24:1, P-3803, Sigma) was added, mixed

completely, and centrifuged at 14,000 rpm for 10 min. An

equal volume of isopropanol was added to the supernatant

to precipitate DNA, which was dissolved with 10 mM

Tris–HCl (pH 8.0).

5hmC dot-blot was performed as before [20]. In brief,

genomic DNA was spotted on an Amersham Hybond-N+

membrane (GE Healthcare), followed by baking at 80 °C

for 30 min. The membrane was incubated with polyclonal

5hmC antibody (Active Motif, #39769) overnight at 4 °C.

The second day, a horseradish-peroxidase-conjugated sec-

ondary antibody against rabbit was used to probe.

Cell culture and Aβ treatment

HEK293 cells were maintained in DMEM supplemented

with 10 % fetal bovine serum, 2 mM glutamine, and 100

U penicillin–streptomycin at 37 °C in a humidified incu-

bator containing 5 % CO2. Cells were treated with Aβ

peptide (Sigma, A9810) at a concentration of 0.5, 0.75,
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or 1 μM for 48 h, respectively. The isolation, culture and

determination of adult neural stem cells were performed

as described previously [49].

Immunocytochemistry

The cultured aNSCs were fixed with 4 % parafromalde-

hyde for 30 min at room temperature, followed by wash-

ing with cold PBS for 15 min. The cells were blocked with

3 % goat serum and 0.1 % TritonX-100 in PBS for 1 h at

room temperature, followed by the incubation with pri-

mary antibodies at 4 °C overnight. The second day, the

cells were incubated with secondary antibodies after

washed with PBS for 30 min. The images were taken with

a Zeiss confocal microscope. Primary antibodies: Rabbit

SOX2 (Millipore, Ab5603), Mouse Nestin (BD, #556309).

Secondary antibodies: goat anti Rabbit 488 (Invitrogen,

A11008), goat anti Mouse 568 (Invitrogen, A11004).

5hmC-specific enrichment and high-throughput

sequencing

Chemical labeling-based 5hmC enrichment was described

previously [26]. Briefly, DNA was sonicated to 100–500 bp,

and then mixed with 100 μl solution containing 50 mM

HEPES buffer (pH 7.9), 25 mM MgCl2, 250 μM UDP-6-

N3-Glu, and 2.25 μM β-glucosyltransferase for 1 h at 37 °C.

DNA substrates were purified via Qiagen DNA purification

kit. 150 μM dibenzocyclooctyne modified biotin was then

added to the purified DNA, and the labeling reaction was

performed for 2 h at 37 °C. The biotin-labeled DNA was

enriched by Streptavidin-coupled Dynabeads (Dynabeads®

MyOne™ Streptavidin T1, Life Technologies) and purified.

5hmC libraries were generated with 25 ng input or

5hmC-captured DNA according to the manufacturer’s

protocol (NEBNext ChIP-Seq Library Prep Reagent

Set for Illumina). DNA fragments between 150 and

300 bp were gel-purified after the adapter ligation

step. An Agilent 2100 BioAnalyzer was used to quan-

tify the amplified DNA. 20 pM diluted libraries were

eventually used for sequencing.

Sequence alignment and mapped reads annotation

FASTQ sequence files were aligned to mouse NCBI37v1/

mm9 references using Bowtie 0.12.9. Each unique mapped

read with no more than two mismatches in the first 25 bp

was concatenated to achieve combined wild-type and

APP/PS1 mice 5hmC sequence. Association of mapped

reads with genomic features was performed by overlapping

reads files with known genomic features obtained from

UCSC Tables for NCBI37v1/mm9. Unique 5hmC mapped

reads were plotted to various genomic regions using an R

program package termed ngsplot (https://code.google.-

com/p/ngsplot/).

DhMR identification, annotation, and motif analysis

Model-based Analysis of ChIP-Seq (MACS) software [42]

was adopted to identify DhMRs between WT and DTg

mice by directly comparing one to the other, rather than

comparing to the input. The effective genome size =

1.87 × 109, tag size = 38, bandwidth = 200, P-value

cutoff = 1.00 × 10−5. Identified WT and DTg-specific

DhMRs were annotated to various genomic regions and

associated genes by HOMER software [50]. DhMR-

associated genes were extracted, and enrichment

analysis was performed with WebGestalt (http://bioin-

fo.vanderbilt.edu/webgestalt/) [51].

Statistics

Data are expressed as the mean ± standard error of the

mean (s. e. m.), and statistical significance of differences

between different groups was assessed using the t-test or

ANOVA assay.

Additional files

Additional file 1: Figure S1. A representative image of methylene blue

staining showing the equal spotting of DNA in the membrane. Figure S2

5hmC chromosome-wide densities showing the distribution profiling on

chromosomes. A depletion is observed on chr-X relative to autosomes.

Figure S3 Representative IGV images show the decrease of 5hmC in some

genomic regions of genes identified in two AD EWAS datasets.

(PPTX 2495 kb)

Additional file 2: Table S1. Reads info. (XLSX 10 kb)

Additional file 3: Table S2. DhMR_DTg unique_annotated genes.

(XLSX 10 kb)

Additional file 4: Table S3. Aged DTg unique_annotated genes.

(XLSX 39 kb)
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