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Abstract

Bioactive peptides (i.e., neuropeptides or peptide hormones) represent the largest class of cell-cell signaling molecules in
metazoans and are potent regulators of neural and physiological function. In vertebrates, peptide hormones play an integral
role in endocrine signaling between the brain and the gonads that controls reproductive development, yet few of these
molecules have been shown to influence reproductive development in invertebrates. Here, we define a role for peptide
hormones in controlling reproductive physiology of the model flatworm, the planarian Schmidtea mediterranea. Based on
our observation that defective neuropeptide processing results in defects in reproductive system development, we
employed peptidomic and functional genomic approaches to characterize the planarian peptide hormone complement,
identifying 51 prohormone genes and validating 142 peptides biochemically. Comprehensive in situ hybridization analyses
of prohormone gene expression revealed the unanticipated complexity of the flatworm nervous system and identified a
prohormone specifically expressed in the nervous system of sexually reproducing planarians. We show that this member of
the neuropeptide Y superfamily is required for the maintenance of mature reproductive organs and differentiated germ
cells in the testes. Additionally, comparative analyses of our biochemically validated prohormones with the genomes of the
parasitic flatworms Schistosoma mansoni and Schistosoma japonicum identified new schistosome prohormones and
validated half of all predicted peptide-encoding genes in these parasites. These studies describe the peptide hormone
complement of a flatworm on a genome-wide scale and reveal a previously uncharacterized role for peptide hormones in
flatworm reproduction. Furthermore, they suggest new opportunities for using planarians as free-living models for
understanding the reproductive biology of flatworm parasites.
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Introduction

Platyhelminthes (flatworms) inhabit a variety of aquatic and

terrestrial environments and members of the phylum are thought

to parasitize most vertebrate species [1]. The remarkable ability of

flatworms to maintain plasticity in their reproductive cycles is a

key to their success. As an example, free-living planarian flatworms

are capable of reproducing sexually as cross-fertilizing hermaph-

rodites or asexually by transverse fission [2]. Some planarian

species even maintain the ability to switch between modes of

sexual and asexual reproduction, resorbing and regenerating their

reproductive organs, depending on the environmental context [3].

This dynamic regulation of reproductive development is not

limited to free-living platyhelminths; parasitic flatworms can also

undergo dramatic changes in their reproductive development in

response to external stimuli. In dioecious parasites of the genus

Schistosoma, female reproductive development requires pairing with

a male worm [4–8]. Thus, female schistosomes derived from

single-sex infections have underdeveloped ovaries and accessory

reproductive organs when compared to females from mixed sex

infections. Interestingly, the reproductive organs of mature females

deprived of their male counterpart regress and are capable of

regrowing once male-female pairing is reestablished [9]. Because

flatworms, including schistosomes, are responsible for causing

important neglected tropical diseases, understanding the mecha-

nisms that coordinate the reproduction of both free-living and

parasitic members of the phylum is of fundamental importance.

Peptide hormones (i.e. neuropeptides) are among the most

structurally and functionally diverse class of metazoan signaling

molecules [10]. In vertebrates, a neuroendocrine axis involv-

ing peptide hormone signaling between the brain and the

gonads controls the maturation and long-term maintenance of
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reproductive development and function [10–13]. A similar role for

neuroendocrine signals in controlling flatworm reproduction is

suggested by studies exploiting the well-known regeneration

abilities of planarians. Head amputation (i.e. removal of the

brain/cephalic ganglia) of sexually reproducing planarians results

in regression of the testes [14,15] to their germ cell primordia [16],

which re-grow only when cephalic ganglia regeneration is

complete. These observations suggest that neural signals control

the dynamics of planarian reproduction. Thus, flatworms may

employ peptide-based mechanisms, similar to vertebrates, to

synchronize their reproductive development.

To date only limited data exist to support a ‘‘vertebrate-like’’

role for peptide hormones in invertebrate reproductive matura-

tion. Insulin-like peptides influence germline stem cell proliferation

in Drosophila [17,18] and C. elegans [19] and promote oocyte

maturation in the starfish Asterina pectinifera [20] and the mosquito

Aedes aegypti [21]. In locusts, treatment with the peptide hormones

ovary maturing parsin (OVP) [22] or short Neuropeptide F (sNPF)

[23,24] can stimulate ovarian development and vitellogenesis.

Because of this paucity of data linking neuroendocrine function to

invertebrate reproductive development, additional studies are

required to determine how invertebrates modulate their repro-

ductive output in response to external and metabolic cues.

Peptide hormones are processed proteolytically from longer

secretory prohormone precursors and often require covalent

modifications before becoming biologically active [10,25]. As a

result of this extensive processing, and because the biologically

relevant signaling units are encoded by short stretches of amino

acid sequence (usually 3–40 amino acids), predicting genes

encoding these molecules represents a major challenge for

bioinformatics-driven genome annotation. The recent application

of bioinformatic approaches coupled to mass spectrometry-based

peptide characterization techniques (an approach called peptido-

mics [26–28]) has revolutionized discovery efforts, uncovering

hundreds of new genes encoding metazoan bioactive peptides.

Among invertebrates, however, much of this recent progress has

been focused on genome-wide studies of nematodes [29–31],

arthropods [32–36], and mollusks [37,38]. Thus, little is known of

the peptide hormones present in phyla such as Platyhelminthes.

Despite recent bioinformatic efforts to characterize flatworm

peptide-encoding genes [39,40], only three distinct peptides have

been characterized extensively at the biochemical level in all

flatworms [41].

Owing to a wealth of functional genomic tools [42] and a

sequenced genome [43], the planarian S. mediterranea represents an

ideal model to characterize flatworm neuropeptides. Furthermore,

this species exists as two distinct strains: an asexual strain that lacks

reproductive organs and propagates exclusively by fission and a

sexual strain that reproduces as cross-fertilizing hermaphrodites

[44]. This dichotomy presents a unique opportunity to explore the

extent to which peptide hormones are associated with distinct

reproductive states. To address the possibility that peptide signals

influence planarian reproductive development, we began by

disrupting a gene encoding a prohormone processing enzyme,

Smed-prohormone convertase 2 (Smed-pc2, GB: BK007043), in sexual

planarians. Consistent with a role for peptide hormones in

controlling planarian reproduction, knockdown of Smed-pc2 led

to a depletion of differentiated germ cells in the planarian testes.

To identify potential peptide mediators of this effect, we used

peptidomic approaches to characterize the peptide hormone

complement of S. mediterranea. This analysis identified 51 genes

predicted to encode more than 200 peptides, 142 of which we

characterized biochemically by mass spectrometry. Global analysis

of the expression of these genes by whole mount in situ

hybridization revealed a distinct distribution of some peptide

prohormones between sexual and asexual strains of S. mediterranea.

We find one prohormone gene, npy-8, to be enriched in the

nervous system of sexual planarians and show that this gene is

required for the proper development and maintenance of

reproductive tissues. These results demonstrate the utility of S.

mediterranea as a model to characterize metazoan peptides and

suggest that flatworm reproductive development is controlled by

neuroendocrine signals.

Results

A Peptide Hormone-Processing Enzyme Is Required for
the Maintenance of Differentiated Germ Cells
To explore potential roles for peptide signaling in regulating

planarian reproductive physiology, we characterized Smed-pc2

(Figure S1), whose orthologues are required in both vertebrate and

invertebrate models for the proteolytic processing of prohormones

to mature neuropeptides (in the interest of brevity, we will drop the

prefix ‘‘Smed’’ from the remainder of the genes described below)

[30,45,46]. A large-scale RNA interference (RNAi) screen

determined that this gene was essential for coordinated movement

and normal regeneration in asexual planarians [47]. Whole-mount

in situ hybridization in sexual planarians revealed expression of pc2

in the central nervous system [48], the pharynx, sub-muscular

cells, the photoreceptors, the copulatory apparatus, and the testes

(Figure 1A–C).

To determine if peptide signals are likely to play a functional

role in coordinating reproductive development, we monitored the

effects of pc2 RNAi on the dynamics of germ cells within the

planarian testes. Individual testis lobes consist of an outer

spermatogonial layer in which cells divide to form cysts of eight

spermatocytes that, after meiosis, give rise to spermatids and,

ultimately, sperm [44,49]. After 17 d of RNAi treatment,

pc2(RNAi) animals displayed a decrease in both testis size

(Figure 1E) and the number of animals producing mature sperm

(28/29 for controls versus 2/36 for pc2 RNAi; p,0.0001, Student’s

t test). To establish which cell types are affected by pc2 RNAi, we

performed fluorescence in situ hybridization (FISH) to detect

Author Summary

Flatworms cause diseases affecting hundreds of millions of
people, so understanding what influences their reproduc-
tive activity is of fundamental importance. Neurally derived
signals have been suggested to coordinate sexual
reproduction in free-living flatworms, yet the neuroendo-
crine signaling repertoire has not been characterized
comprehensively for any flatworm. Neuropeptides are a
large diverse group of cell-cell signaling molecules and
play many roles in vertebrate reproductive development;
however, little is known about their function in reproduc-
tive development among invertebrates. Here we use
biochemical and bioinformatic techniques to identify
bioactive peptides in the genome of the planarian
flatworm Schmidtea mediterranea and identify 51 genes
encoding .200 peptides. Analysis of these genes in both
sexual and asexual strains of S. mediterranea identified a
neuropeptide Y superfamily member as important for the
normal development and maintenance of the planarian
reproductive system. We suggest that understanding
peptide hormone function in planarian reproduction could
have practical implications in the treatment of parasitic
flatworms.

Global Analysis of Planarian Neuropeptides
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germinal histone H4 (gH4) (GB: DN306099) and nanos (GB:

EF035555) mRNAs, which are expressed in spermatogonia and

germline stem cells (GSCs), respectively [16,50,51]. In developed

testes of control animals, relatively few cells within the outer

spermatogonial layer are identifiable as nanos-positive GSCs

(Figure 1F). However in pc2(RNAi) animals, regressed testes

clusters almost always co-expressed both gH4 and nanos

(Figure 1G) (n=16/17 animals). These results suggest that pc2 is

Figure 1. pc2 is essential for the maintenance of the planarian testes. (A–C) Whole-mount in situ hybridization to detect pc2mRNA in sexual
animals. (A) Ventral view, expression in CNS, pharynx, and copulatory apparatus. (B and C) Dorsal view, expression in testes. (D, E) DAPI staining
showing the distribution of testes in (D) control and (E) pc2(RNAi) animals fixed 17 d after the initiation of RNAi treatment. (F and G) Single confocal
sections showing expression of nanos (magenta) and gH4 (green) in testes of (F) control and (G) pc2(RNAi) animals. DAPI staining is shown in grey.
Orange and yellow arrows indicate spermatids and mature sperm, respectively. White arrows indicate germ line stem cells expressing both gH4 and
nanos. Scale bars: (A–C) 300 mm; (D and E) 500 mm; (F and G) 50 mm. Abbreviations: CG, Cephalic Ganglia; VNC, ventral nerve cord; PH, pharynx; CA,
copulatory apparatus.
doi:10.1371/journal.pbio.1000509.g001
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required for proper germ cell differentiation and/or for the

maintenance of differentiated germ cells in the testes.

Genomic Identification of Peptide Hormones and Their
Encoded Peptides
Since our analysis of pc2 implicated peptide signaling in

regulating planarian reproductive development, we characterized

the peptide hormone complement of S. mediterranea. We employed

bioinformatic and mass spectrometry (MS)-based methodologies to

identify peptide prohormone genes from the S. mediterranea genome

[43] and predict their processing into bioactive peptides (Figure 2A)

[52]. With these approaches, we identified 51 prohormone genes

in S. mediterranea, with peptides from 40 prohormones detected by

MS (Tables S1–S5, gene names and abbreviations are shown in

Table 1). In most cases, MS confirmed multiple distinct peptides

from a single prohormone, and in five prohormones we detected

every predicted peptide by MS (Figure 2B). In total, we

characterized 142 peptides biochemically, corresponding to

,45% of the distinct peptides predicted from our collection of

51 prohormone genes (Table S5). This analysis identified genes

encoding relatives of all previously characterized flatworm

neuropeptides (YIRFamide [53], spp-11; FRFamide [54], npp-4;

and neuropeptide Y-like [55], npy-1 to npy-11) and provided

biochemical validation for 10 prohormones previously predicted

from the S. mediterranea genome [39].

The neuropeptide Y (NPY)-superfamily represents a large

family of neuropeptides that influence diverse processes in both

vertebrate and invertebrate taxa [10,41,56]. This family is

considered to consist of two types of peptides: the NPY-like

peptides that possess a C-terminal amidated tyrosine (Y) residue

and the NPF peptides that possess a C-terminal amidated

phenylalanine (F) residue [55]. Vertebrate genomes typically

encode NPY-like peptides [57], whereas invertebrate genomes

encode NPF peptides [55,58,59]. Our studies found that the

planarian genome possesses an expanded family of npy genes

predicted to encode both NPY-like and NPF-like peptides

(Figure 2C). Prohormones NPY-5, -7, -9, and -10 possess a C-

terminal tyrosine residue, similar to vertebrate NPY peptides, and

prohormones SMED-NPY-1, -2, -3, -4, -6, and -8 contain a C-

terminal phenylalanine residue, similar to invertebrate NPF

peptides. Three of these planarian npy genes (npy-1, -4, and -9)

have been described previously [39,60]. Additionally, our studies,

and those of others [39,61], find evidence of conservation in the

genomic organization of flatworm NPY genes. NPY genes from

vertebrates possess an intron that separates the exon encoding the

RXR motif from the penultimate amidated amino acid residue

(Figure 2D) [62]. We found an identical architecture for S.
mediterranea genes npy-1, -2, -3, -4, -5, -6, -8, -9, -10, and -11,

indicating a close evolutionary relationship between chordate and

platyhelminth npy genes (Figure 2C,D).

The planarian genome also encodes peptides with sequence

similarities to those from other invertebrate taxa, including

mollusks (ppp-1, GB:BK007041; ppp-2, GB:BK007018; mpl-1,

GB: BK007017; mpl-2, GB: BK007016; and, cpp-1, GB:

BK007012) and arthropods (ppl-1, GB: BK007007). Furthermore,

our analysis found that previously characterized, novel planarian

genes encode peptide prohormones. Homologues of prohormones

eye53-1,2 (GB: BK007033 and GB: BK007024, respectively) and

1020-1,2 (GB: GU295180 and GB:BK007025, respectively) from

the planarian Dugesia japonica are required for proper visual system

function following amputation; knockdown animals show no

morphological defects after injury yet are unable to respond

properly to light [63]. These previous observations, together with

our findings that these genes encode neuropeptides, suggest a role

for peptide signaling in the functional recovery of the planarian

nervous system following injury.

pc2 Is Required for Proper Prohormone Processing
To examine if pc2 is required for prohormone processing in

planarians, we disrupted pc2 expression using RNAi and

performed MS to analyze the peptide complement of pc2(RNAi)

animals. Consistent with pc2 encoding a genuine prohormone

convertase, analysis of peptide profiles in planarian tissue extracts

by MALDI-TOF MS analysis demonstrated that pc2 RNAi

resulted in a significant decrease in the signal intensity of a

specific set of peptides in sexual animals (Figure 2E,F and Table

S6). Interestingly, the levels of some peptides were increased

following pc2(RNAi); whether this alteration reflects a compensa-

tory mechanism for regulating peptide levels or an altered

threshold of detection for certain peptides caused by a global

reduction in neuropeptide levels remains to be determined.

However, these data parallel studies of pc2 knockout mice, in

which the abundance of some peptides was either increased or

decreased [45]. Given that the S. mediterranea genome is predicted

to encode at least three additional proteins with similarity to

prohormone convertases (Figure S2), it is possible that compen-

satory mechanisms are responsible for the observed elevation in

the levels of some peptides. This redundancy among prohormone

convertases is also likely to explain why we only observed changes

in a subset of peptides following pc2 RNAi. These data suggest that

the reproductive defects observed in pc2(RNAi) animals may be

due to altered levels of specific peptides.

In Situ Hybridization Analyses Reveal the Complexity of
the Flatworm Nervous System
To determine the extent to which peptides may regulate

flatworm reproduction, we took advantage of the fact that S.
mediterranea exists as both sexually and asexually reproducing

strains. By comparing prohormone gene expression between these

strains we sought to uncover expression patterns specific to

sexually or asexually reproducing animals. Thus, we began by

performing comprehensive whole-mount in situ hybridization

analyses of prohormone genes in asexual planarians (Figure 3).

Our studies indicate that in asexual planarians,85% (44/51) of

prohormone genes are expressed in the central nervous system

(CNS) (Table S5), which consists of bi-lobed cephalic ganglia and

two ventral nerve cords (VNCs) that run the length of the body

[64]. Of the prohormones expressed in the CNS, 20% (10/51)

were detected only in the cephalic ganglia. Notably, the expression

of individual prohormones was often enriched in specific cell types

or regions within the CNS. For example, the expression of some

prohormones was enriched in either lateral (e.g. npp-4, GB:

BK007037; npp-8, GB: GU295189; spp-4, GB: GU295179; and

1020HH-2), medial (e.g. spp-2, GB: BK007032; and spp-6, GB:

GU295177) or posterior (e.g. npy-1, GB: GU295175) regions of the

cephalic ganglia (Figure 3). Strikingly, a large fraction of

prohormone mRNAs were detected in restricted cell populations

within the CNS (e.g. npy-1; npy-2, GB: BK007019; cpp-1; spp-6; spp-

9, GB: BK007026; spp-10, GB: BK007028; grh-1, GB: GU295185;

and ilp-1, GB: BK007034) (Figure 3).

Consistent with peptide signaling having a role in processes

outside the CNS, we also detected prohormone expression in: the

pharynx (e.g. npp-1, GB: BK007036; npp-22, GB: BK007038; npy-
11, BK007021; and ppp-1); photoreceptors (e.g. eye53-1,-2; npp-12,

GB: GU295182; and mpl-2); sub-epidermal marginal adhesive

glands (e.g. mpl-2); an anterior domain between the VNCs (e.g.

spp-6; spp-7, GB: GU295178; spp-8, GB: GU295181; spp-9; cpp-1;

and spp-10, GB: BK007028); cells surrounding the ventral midline

Global Analysis of Planarian Neuropeptides
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Figure 2. Overview of the peptidomic approach to characterize peptide-encoding genes from S. mediterranea. (A) Schematic
representation of the methodology used for the identification and confirmation of planarian prohormones and their respective peptides. We
performed homology and pattern searches for preliminary annotation of peptide prohormone genes and subsequently verified these predictions
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(e.g. npp-5, BK007015); the intestine (e.g. npp-8, GB: GU295189;

and npy-10, GB: BK007011); and various sub-epidermal cell types

(e.g. npp-18, GB: BK007027; spp-4; spp-16, GB: BK007042; and

npy-4, BK007039) (Figure 3).

To investigate the extent to which prohormones are expressed

in overlapping or distinct cell types in the CNS, we compared the

expression of prohormone genes using triple FISH. Prohormone

genes spp-1 (GB: GU295176), npp-2 (GB: BK007035), and ppp-1
encode unrelated peptides (Tables S1 and S5) that appear to be

expressed ubiquitously in the CNS (Figure 3). Comparison of the

expression domains of these prohormone genes revealed that spp-

1, npp-2, and ppp-1 are expressed in largely non-overlapping

populations of cells of the cephalic ganglia and VNCs (Figure 4A–

C). We also analyzed the expression of a family of paralogous

prohormone genes (spp-6; spp-7; spp-8; spp-9; and spp-17, GB:

GU295183) that encode similar neuropeptides (Figure S3).

Because this gene family has been expanded in the S. mediterranea

genome, we refer to these prohormones as the Planarins.

Examination of Planarins spp-6, -7, and -9 expression by FISH

demonstrated that these genes are expressed in a common set of

cells distributed between the VNCs and surrounding the pharynx

(Figure 4D). Despite being co-expressed in cells outside the CNS,

spp-6 and spp-9 transcripts were detected in distinct groups of cells

within the cephalic ganglia (Figure 4E,F). These findings, with

earlier observations [48,64], suggest a level of complexity not

previously appreciated for the patterning of the flatworm nervous

system (see Figure S4).

Prohormone Expression Identifies Anterior-Posterior and
Dorsal-Ventral Compartments Within the Planarian
Photoreceptors
We also examined four prohormone genes (eye53-1,-2; npp-12,

and mpl-2) expressed within the photoreceptors. The planarian

Table 1. Abbreviations of gene names for S. mediterranea neuropeptide prohormones.

Gene Name Abbreviation Gene Subfamily

cerebral peptide prohormone-1 cpp-1 —

gonadotropin releasing hormone like-1 grh-1 —

insulin-like peptide-1 Ilp-1 —

myomodulin prohormone-like-1,2 mpl-1*,2 —

neuropeptide precursor-1-5,8,12,18,22 npp-1-5*,8*, 12*,18*,22* —

neuropeptide y superfamily-1-11 npy-1* neuropeptide F

npy-2 neuropeptide F

npy-3 neuropeptide F

npy-4* neuropeptide F

npy-5 neuropeptide Y

npy-6 neuropeptide F

npy-7 neuropeptide Y

npy-8 neuropeptide F

npy-9* neuropeptide Y

npy-10 neuropeptide Y

npy-11 atypical neuropeptide Y

pyrokinin prohormone like-1 ppl-1 —

pedal peptide prohormone like-1,2 ppp-1,2 —

secreted peptide prohormone-1-19 spp-1-19 —

*Genes previously predicted from the S. mediterranea genome [39].
doi:10.1371/journal.pbio.1000509.t001

with molecular techniques. The post-translational processing of verified prohormones to bioactive peptides was then predicted in silico using
Neuropred [52] and the sequences of mature peptides were then confirmed in whole animal tissue extracts from sexual and asexual planarians by LC-
MS/MS and/or MALDI-TOF MS. This approach is depicted in blue ovals. To complement the bioinformatics-driven discovery, de novo sequencing of
unassigned MS peaks was used to characterize novel neuropeptides (red ovals). The sequences of such peptides were then mapped to the S.
mediterranea genome and new prohormone genes were annotated. These prohormone genes were then analyzed further, leading to the
characterization of additional peptides. (B) Full sequence coverage of prohormones SPP-1B, SPP-3, SPP-4, NPP-18, and PPP-1 by mass spectrometry.
Underlined sequences indicate peptides identified by MS/MS sequencing and the shaded sequence indicates a peptide detected by MS mass match.
Signal peptides for each prohormone are italicized. (C and D) S. mediterranea possesses an expanded NPY family. (C) ClustalW alignment of two
vertebrate NPY-family peptides, Pancreatic Polypeptide (PP), with a variety of invertebrate NPY family members. Matching residues are shown in
yellow and a conserved a-amidation site is shown in green. C-terminal tyrosine and phenylalanine are highlighted in magenta and blue, respectively.
(D) Gene structure of vertebrate and S. mediterranea npy genes. These prohormone genes have an intron within the arginine codon preceding the
aromatic amino acid residue (blue), the a-amidation site (green), and the dibasic cleavage site (magenta). npy-11 lacks a C-terminal aromatic residue
but also shares this gene organization. (E and F) MALDI-MS analysis of pc2 RNAi in sexual animals. (E) Comparison of peptide profiles for control and
pc2(RNAi)-treated sexual animals 16 d after the initiation of RNAi treatment. MALDI-TOF MS spectra (limited to m/z 1150–1450) comparing control
and pc2(RNAi) groups (n=7 for each group); stars indicate peaks that were significantly different (p,0.05). (F) Characterized peptides and their
respective prohormones that were detected at significantly different levels (p,0.05) following pc2 RNAi. The pc2 RNAi/control column reports the
ratio of peak intensities of pc2 RNAi relative to control.
doi:10.1371/journal.pbio.1000509.g002
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photoreceptors are comprised of two distinct cell types: neuronal

photoreceptive cells and pigment cells that envelop the rhabdo-

meric projections of the photoreceptor neurons [2,65,66]. Analysis

of prohormone gene expression within the photoreceptors

revealed that the planarian photoreceptor neurons are patterned

along the anterior-posterior axis. Specifically, prohormone genes

npp-12 and eye53-1 were expressed exclusively in the anterior

photoreceptor neurons, whereas mpl-2 and eye53-2 were expressed

exclusively in posterior neurons (Figure 5A). These findings are

consistent with dye-tracing studies demonstrating that anterior and

posterior photoreceptor neurons project to distinct anatomical

regions [67]. In addition, we detected mpl-2 expression in a ventral

population of cells that was separate from the expression of eye53-2

(Figure 5B); this result suggests that the photoreceptors are also

patterned along the dorsal-ventral axis. Together, these data

indicate that at least three chemically and anatomically distinct

sets of neurons are present in the planarian photoreceptors.

Peptide Hormones Are Expressed Differentially in Sexual
Planarians
To determine if peptide expression is correlated with reproduc-

tive state, we next analyzed the expression of a subset of

prohormones in the sexual strain of S. mediterranea. The

reproductive system of this animal is comprised of a pair of

ovaries located posterior to the cephalic ganglia, numerous

dorsolateral testes lobes, as well as a variety of accessory

reproductive organs (i.e. oviducts, sperm ducts, copulatory

apparatus, and accessory glands) (Figure 6A). We found several

prohormones expressed in sexual reproductive organs, including

the oviducts (Figure 6B,C), the copulatory apparatus (Figure 6B,C,

and D), gland cells surrounding the copulatory apparatus

(Figure 6E,F), and the testes (Figure 6G,H). These expression

patterns implicate peptide signaling in reproductive processes such

as copulation, fertilization, egg-laying, and gonadal function.

Our expression analyses also found evidence of differential

prohormone expression within the nervous system of sexual S.

mediterranea. ppl-1 encodes peptides related to the pyrokinin

peptides originally isolated from arthropods [68,69]. In contrast

to asexual planarians in which ppl-1 expression was detected

almost exclusively in the cephalic ganglia and the distal region of

the pharynx (Figure 3), ppl-1 was expressed widely in the VNCs

and surrounding the copulatory apparatus of mature sexual

animals (Figure 7A). To explore if ppl-1 expression was linked to

sexual maturation, we determined the distribution of ppl-1 in

immature sexual animals. In sexual animals analyzed within one

week of hatching from the egg capsule, ppl-1 was expressed in a

pattern similar to that of asexual animals (Figure 7A); thus, ppl-1

expression undergoes a change in spatial distribution during the

process of maturation.

The prohormone gene npy-8 (GB: BK007010) is predicted to

encode a 29 AA NPF-like peptide (NPY-8A) and a novel C-

terminal peptide (NPY-8B) (Figure 8A). By in situ hybridization we

failed to detect npy-8 expression in asexual animals (Figures 3 and

7B). In mature sexual animals, however, npy-8 RNA was detected

in a variety of cells within the central and peripheral nervous

systems including the cephalic ganglia, the VNCs, the sub-

muscular plexus, and the pharyngeal nervous system (Figure 7B).

Additionally, in a majority of animals (13/18) we detected npy-8

RNA in a dorsal population of cells (Figure 6C). Analysis of this

dorsal cell population by FISH localized npy-8 expression to cells

often, but not exclusively, found in association with testes lobes

(Figure 7D). To determine if npy-8 levels changed with sexual

Figure 3. Whole-mount in situ hybridization to detect neuropeptide prohormone gene expression in asexual planarians.
Prohormone genes are displayed alphabetically. Full gene names are provided in Table 1. No expression was detected for npy-8 in asexual animals.
Arrow for npy-11 indicates expression at the distal region of the pharynx. Gene names in bold indicate prohormones with at least one peptide
confirmed by MS analysis. Ventral views, anterior towards top. Scale bars (to right of images), 300 mm.
doi:10.1371/journal.pbio.1000509.g003
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maturation we examined npy-8 expression in sexual hatchlings. In

recently hatched animals npy-8 was detected in tissues similar to

those of mature sexual animals including the cephalic ganglia, the

VNCs, the sub-muscular plexus, and the pharyngeal nervous

system (Figure 7B). Furthermore, we observed dorsal cells

expressing npy-8 in a majority of animals (8/13) (Figure 7C).

The lack of observable expression of npy-8 in asexual animals by

in situ hybridization suggested a relationship between npy-8

expression and the ability to reproduce sexually. Because we

initially cloned the npy-8 gene by 39 RACE with cDNA derived

from asexual animals (Table S5), we wished to confirm our in situ

hybridization results using an alternative approach. Therefore, we

performed northern blot analyses to detect npy-8 transcript in

asexual, recently hatched sexual, juvenile sexual, and mature

sexual animals (Figure 7E). Consistent with our in situ hybridiza-

tion results, we detected high levels of npy-8 in sexual animals of all

developmental stages but not in asexual animals, suggesting that

npy-8 is expressed at negligible levels in asexual planarians.

npy-8 Is Required for the Maintenance of Reproductive
Tissues
Because npy-8 was expressed at high levels only in sexually

reproducing planarians, we reasoned that peptides encoded from

this gene may be important for reproduction. Therefore, we

determined the knockdown phenotype of npy-8 using RNAi. For

this analysis we employed two distinct RNAi feeding regimens.

First, we measured the effect of npy-8 depletion on the

maintenance of the reproductive system by feeding mature sexual

animals bacterially expressed npy-8 dsRNA and observing the

structure of the reproductive system at 4- and 7-wk time points. As

a complementary approach, we fed juvenile sexual planarians in

vitro synthesized dsRNA and observed the development of the

reproductive system after 1 mo of feeding. Mature sexual animals

fed npy-8 dsRNA over the course of 4–7 wk displayed a range of

phenotypes consistent with loss of sexual maturity (data are

summarized in Table 2). Specifically, in comparison to controls, a

majority of npy-8(RNAi) animals had regressed testes and failed to

produce mature sperm (1/18 for controls versus 14/21 for npy-8
RNAi) (Figure 8B). In addition to testes defects, npy-8(RNAi)

treatment resulted in regression of the copulatory organs (0/18 for

controls versus 13/20 for npy-8 RNAi) (Figure 8B,C) and a

decrease in the size (or complete disappearance) of the gonopore

(unpublished data). Similar to mature sexual animals, juvenile

planarians fed npy-8 dsRNA for 1 mo displayed stunted testes

growth, failed to produce mature sperm (0/8 for controls and 6/8

for npy-8(RNAi)), and had shrunken or absent gonopores (0/20 for

controls and 16/20 for npy-8(RNAi), Figure 8D). Importantly, these

effects on reproductive maturation were not due to an overall

defect in growth since npy-8(RNAi) and control animals grew to

similar sizes over this time period (Figure S5A).

Since npy-8 is a member of an expanded family of NPY-like genes

in S. mediterranea (Figure 2C), we examined both the effectiveness

and the specificity of our npy-8 knockdowns. We fed juvenile

planarians dsRNA specific to npy-8 and monitored the transcript

levels of npy-8 and its closest relative, npy-1, by quantitative RT-

PCR. This analysis found that npy-8 RNAi treatment resulted in a

statistically significant decrease in npy-8 transcript levels while

having no effect on npy-1 mRNA levels (Figure S5B). To further

explore the specificity of the npy-8(RNAi) phenotype, we performed

Figure 4. Prohormone gene expression reveals morphological complexity of the planarian nervous system. (A) Three-color FISH for
ppp-1, npp-2, and spp-1. (B and C) Merged images, colors indicated in panel A. Prohormone genes ppp-1, npp-2, and spp-1 are not predicted to
encode any related peptides and do not appear to have overlapping distributions within the CNS. (D) Three-color FISH for prohormone genes spp-6,
spp-7, and spp-9. (E and F) Merged images, colors indicated in panel D. Prohormones genes spp-6, spp-7, and spp-9 encode related prohormones that
are co-expressed in cells between the VNCs; the expression of these genes is not co-localized in the CNS. Images from (A–F) are confocal projections;
whole animal views in (A) and (D) are derived from tiled stacks. Ventral views, anterior towards left. Scale bars, 100 mm.
doi:10.1371/journal.pbio.1000509.g004
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Figure 5. Prohormone gene expression reveals distinct photoreceptor neuron domains. (A) Double FISH showing expression of
prohormone genes in anterior and posterior photoreceptor neurons. Top left, DAPI staining (magenta) and immunofluorescence with VC-1 antibody
that recognizes arrestin (green) [63] to show the photoreceptor cell bodies (magenta surrounded by green) and their projections (green); image also
indicates orientation for the other images in the panel. Remaining images are a matrix showing FISH for each prohormone gene expressed in the
photoreceptors in comparison to the other three genes. All panels are shown overlaid with differential interference contrast optics. Dorsal view,
anterior towards top. (B) Prohormonesmpl-2 and eye53-2 are expressed differentially along the dorsal-ventral (D-V) axis of the photoreceptors. Shown
is a maximum projection of a confocal XZ-series through the photoreceptors. Left, staining with the VC-1 antibody showing the photoreceptor cell
bodies (pseudocolored red) and their rhabdomeric projections (pseudocolored yellow). Lateral (L) and medial (M) domains are indicated. Middle three
panels, FISH with mpl-2 and eye53-2; colors are indicated at bottom. Right, FISH and immunofluorescence with the VC-1 antibody (grey). Posterior
view, dorsal towards top, medial towards right. Scale bars, 25 mm.
doi:10.1371/journal.pbio.1000509.g005
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a long-term feeding experiment in which we fed juvenile animals

dsRNA specific to npy-8 or either of its two closest relatives, npy-1

or npy-2. In contrast to npy-8 RNAi, neither npy-1 nor npy-2 RNAi

treatments produced observable defects in the maturation of the

planarian reproductive organs (Figure S5C). Collectively, these

studies suggest that the effects of npy-8(RNAi) on reproductive

development are due to specific disruption of npy-8 function and

suggest that off-target effects are unlikely.

To examine the regressed testes of npy-8(RNAi) animals, we

performed FISH to detect nanos and gH4 expression. This analysis

uncovered a range of phenotypes associated with npy-8 RNAi

(Figure 8E). Some npy-8(RNAi) animals had clusters of gH4-positive
cells that were also nanos-positive; these testes clusters are similar to

those observed in pc2(RNAi) animals (Figure 1G). In other animals

we found gH4-positive clusters in which a subset of cells expressed

nanos. We interpret the former to represent a ‘‘severe’’ npy-8
knockdown phenotype, whereas we suggest that the latter

represents an ‘‘intermediate’’ phenotype resulting from incomplete

npy-8 knockdown and/or perdurance of the peptide.

In the most severe cases, the testes regression phenotypes seen in

pc2(RNAi) or npy-8(RNAi) animals were similar. One model to

explain this observation is that PC2 is required for proteolytic

processing of the NPY-8 prohormone, and loss of a mature peptide

(or peptides) encoded by npy-8 results in loss of the ability to

achieve or maintain sexual maturity. Since our MS analysis did

not identify any peptides encoded by npy-8 in extracts from either

asexual or sexual animals (Tables S1–S3), we used FISH to

determine if npy-8 and pc2 transcripts are localized to similar cell

types in the planarian nervous system. We found that npy-8-

expressing cells within the cephalic ganglia, the VNCs, the

pharynx, and the sub-muscular plexus also express high levels of

pc2 (Figure 8F; and unpublished data). This observation is

consistent with PC2 being required for the processing of peptides

encoded by the npy-8 gene.

Comparative Genomics Identifies Novel Peptide
Hormones Encoded in the Genomes of Parasitic
Flatworms
Related flatworms of the genus Schistosoma currently infect over

200 million people worldwide [70]. Because of their complicated

life cycles, schistosomes are not readily amenable to the types of

Figure 6. Several prohormone genes are expressed differentially in sexually reproducing planarians. (A) Diagram depicting the location of
various organs in sexual S. mediterranea. Right, enlarged view of the copulatory apparatus. Abbreviations: SV, Seminal vesicles; CB, copulatory bursa; BC,
bursa canal; PP, penis papilla; GP, gonopore; G, cement glands. (B–H) Genes are listed with their sexual-specific expression pattern; (B–F) expression in
asexual (As) and sexual (S) animals is shown. (B) cpp-1; oviducts and penis papilla. (C) npp-22; oviducts and penis papilla. (D) npp-2; penis papilla. (E) npy-9;
penis papilla and cement glands. (F) npp-18; gland cells surrounding copulatory apparatus. (G) spp-10; testes, (H) ilp-1; testes. Scale bars, 300 mm.
doi:10.1371/journal.pbio.1000509.g006
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large-scale biochemical analyses that we have employed to

characterize the planarian peptidome. As an indirect means of

biochemically validating peptide sequences from these animals, we

compared our MS-validated prohormones with predicted proteins

from the genomes of the trematodes Schistosoma mansoni [40] and

Schistosoma japonicum [71]. With this approach we validated the

sequences of peptides from eight previously characterized

schistosome prohormone genes (Tables 3 and S7) [39,40].

Furthermore, we identified eight additional Schistosoma genes not

previously annotated as peptide prohormones (Tables 3 and S7).

Among these newly annotated prohormones are schistosome genes

that encode the peptide YIRFamide, a well-conserved flatworm

peptide that has potent stimulatory effects on schistosome muscle

fibers [41] that was not identified in previous bioinformatic efforts

[39,40]. Together, these data provide biochemical validation for

roughly half of the predicted prohormones in Schistosoma and

demonstrate the utility of using planarians to understand flatworm

parasites.

Discussion

Traditional studies of neuropeptides have relied on the

biochemical purification of individual peptides possessing interest-

ing biological activities [72]. However, with the application of

genomic and peptidomic technologies, a major bottleneck has

been the characterization of this expanded collection of neuro-

peptide-encoding genes (and their encoded peptides) in vivo. Here

we characterized peptide hormones in S. mediterranea using

genomic, molecular, and biochemical approaches and determined

the tissue-specific expression patterns for the entire collection of

prohormone genes. Comparing the distribution of prohormone

expression between asexual and sexual planarians, we identified a

Figure 7. Some prohormone genes are expressed differentially in the CNS of sexual and asexual planarians. Comparison of the ventral
expression of (A) ppl-1 or (B) npy-8 between asexual, immature sexual hatchlings, and mature sexual animals. (C) Dorsal expression of npy-8 in
immature sexual hatchlings (left) and mature sexual animals (right). (D) Transparency rendering showing expression of npy-8 in a cell in close
proximity to testes lobes. Inset shows higher magnification of npy-8-expressing cell. (E) Northern blot comparing expression of npy-8 in asexual ‘‘As,’’
immature sexual hatchlings ‘‘H,’’ juvenile sexual animals ‘‘J,’’ and mature sexual animals ‘‘M.’’ grb-2 (GB: DN305385) is expressed at similar levels in
asexual and sexual animals (J. Stary and P. Newmark, unpublished observations) and is shown as a loading control. Scale bars: (A–C) 300 mm; (D)
10 mm.
doi:10.1371/journal.pbio.1000509.g007
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Figure 8. npy-8 is required to maintain features of sexually mature planarians. (A) Sequence of the prohormone and predicted peptides
encoded by npy-8. Following removal of the signal peptide (italics) the NPY-8 prohormone is predicted to be processed at two consensus
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single prohormone gene, npy-8, as important for the maintenance

of reproductive function. While our main focus was to understand

the role of peptide hormones in planarian reproductive develop-

ment, these studies lay the groundwork for using S. mediterranea as

an experimental model for studies aimed at understanding the

diverse functions of metazoan bioactive peptides.

Diverse Prohormone Gene Expression Patterns Reveal
Novel Biological Insights About Planarian Biology
Although previous studies have characterized the expression of

subsets of prohormones or their corresponding peptides [73–76], a

comprehensive accounting of the expression of these genes at the

level of the whole animal has not yet been performed. Here we

describe the distribution of all known neuropeptide-encoding

genes in the planarian S. mediterranea by whole mount in situ

hybridization. One surprising finding from these studies was the

complexity of prohormone expression within the planarian CNS,

which is considered to be among the most primitive centralized

nervous systems in the animal kingdom [77]. We find that

prohormone gene expression is localized to distinct regions of the

cephalic ganglia and that many individual prohormones are

expressed in unique CNS cell types. These results parallel

observations in the planarian D. japonica in which small molecule

neurotransmitters (e.g. serotonin and dopamine) are found in sepa-

rate CNS cell populations [64]. The expression of prohormone

genes in distinct regions/cell-types in the CNS suggests that

processing centers for different neural functions (e.g. sensory,

motor, and neuroendocrine) may be localized to chemically and

spatially distinct domains of the flatworm CNS. In support of this

idea, a ‘‘visual center’’ has been proposed to exist at the medial

regions of the cephalic ganglia to which visual axons send their

projections [78]. Elucidation of the functions of peptides expressed

in these discrete CNS foci may help relate specific anatomical

positions to distinct neural functionalities and allow for the

dissection of planarian neural circuits.

Our analysis of prohormone expression also revealed that many

prohormone genes are expressed in tissues of the reproductive

tract. Expression of peptide prohormones has also been observed

in the somatic reproductive organs of C. elegans [73]. Interestingly,

the expression pattern of some planarian prohormones parallels

the immunohistochemical localization of similar gene products in

other invertebrates. The NPY family member Smed-npy-9 was

expressed in the cement glands (or shell glands) surrounding the

copulatory apparatus that are thought to be involved in egg

capsule synthesis and deposition [2,79]. Studies of S. mansoni

observed NPY-like immunoreactivity in the region of Mehlis’

gland [80], which is morphologically, and likely functionally [79],

similar to the glands labeled by npy-9. cpp-1 encodes VPGWamide

and TPGWamide, peptides that are related to the APGWamide

peptides first described in molluscs [81]. We found cpp-1 to be

prohormone convertase cleavage sites (red). This cleavage would result in two peptides: the C-terminally amidated peptide NPY-8A (potential
amidation site is shown in purple) and the 15–16 AA peptide NPY-8B. (B) DAPI staining showing distribution of testes in control and npy-8(RNAi)
animals at 4 wk after the first RNAi treatment. Arrows show region of the copulatory organs. (C) Penis papilla of control and npy-8(RNAi) animals
visualized by DAPI staining (red) and differential interference contrast microscopy. Anterior towards top. (D) Ventral view of live control and npy-
8(RNAi) animals showing the pharyngeal opening (PH) and the gonopore (GP). Anterior towards left. (E) Single confocal sections showing expression
of nanos (magenta) and gH4 (green) RNAs in testes of control (top) and npy-8(RNAi) animals that display either an intermediate or severe level of
testes regression. DAPI staining is shown in gray. Animals were fixed ,7 wk after the initiation of RNAi treatment. (F) Maximum confocal projection
showing the localization of the npy-8 and pc2 transcripts surrounding the nucleus (gray) of a neuron at the level of the ventral sub-muscular neural
plexus in a mature sexual animal. Similar co-localization was seen in other parts of the central and peripheral nervous systems (unpublished data).
Scale bars: (B) 500 mm; (C–D) 300 mm; (E) 20 mm; (F) 10 mm.
doi:10.1371/journal.pbio.1000509.g008

Table 2. Summary of npy-8(RNAi) experiments with mature sexual animals.

Treatment

Days Since First

RNAi Treatment

Animals With Testes

Producing Sperm

Animals With a Complete

Set of Copulatory Organsa
Distribution of nanos+

and gH4+ Cellsb

control 28 7/7 7/7 Not determined

npy-8(RNAi) 28 4/12 4/11 Not determined

control 52 7/7 7/7 7/7 normal

npy-8(RNAi) 52 2/5 1/5 1/5 normal

2/5 intermediate

2/5 severe

control 54 3/4 4/4 4/4 normal

npy-8(RNAi) 54 1/4 2/4 1/4 normal

1/4 intermediate

2/4 severe

Control (Cumulative) — 17/18 18/18 10/11 normal

npy-8(RNAi) (Cumulative) — 7/21 7/20 2/9 normal

3/9 intermediate

4/9 severe

aAnimals were considered to have a full set of copulatory organs if a copulatory bursa, bursa canal, and penis papilla could be detected by DAPI staining.
b‘‘Normal’’ describes animals in which nanos expression was detected in a subset of gH4-expressing cells in the spermatogonial layer of mature testes lobes.
‘‘Intermediate’’ describes animals with regressed testes that label almost exclusively with gH4; a subset of these gH4-positive cells express nanos. ‘‘Severe’’ describes
animals with regressed testes that label almost exclusively with both gH4 and nanos.
doi:10.1371/journal.pbio.1000509.t002
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expressed around the penis papillia and the oviducts of sexual

planarians, which mirrors APGWamide localization in the

molluscan oviducts and male copulatory organs [82,83]. While

specific functions for any of these peptides in planarian

reproductive function remain to be elucidated, these results

suggest evolutionarily conserved roles for peptides in several

reproductive organs.

Two prohormone genes (ppl-1 and npy-8) were expressed

differentially in the nervous systems of mature sexual versus

asexual planarians. The expression of ppl-1 was similar in asexual

and immature sexual animals but underwent a dramatic change in

distribution during sexual maturation. Conversely, npy-8 expres-

sion was detected at similar levels and distribution in sexual

animals yet was not detected in asexual animals. Interestingly, our

biochemical analyses detected a number of peptides uniquely in

either mature sexual or asexual planarians (Tables S1–S3). Taken

together, these results indicate that sexually mature planarians

possess unique signatures in both the composition and spatial

distribution of peptide hormones relative to asexual and immature

sexual animals.

Peptide Hormone Signals Promote Planarian Sexual
Maturation and Germ Cell Development
To address the role of peptide signaling in planarian

reproductive physiology we first examined the planarian prohormone

convertase 2 orthologue, pc2. This analysis suggested that prohor-

mone processing is required for regulating the dynamics of germ

cell differentiation. A similar requirement for prohormone

processing in germ cell development has not been described in

other animal models. Loss-of-function mutations in the C. elegans

pc2 orthologue egl-3 result in a range of neuromuscular defects

[84,85], but mutant animals are capable of germ cell development

since they produce viable progeny. The role of the Drosophila pc2

orthologue Amontillado has not been assessed in adult reproductive

development due to a requirement for this gene at multiple points

during embryonic and larval development [86,87]. Despite the

fact that peptide hormones are known to regulate vertebrate germ

cells [11,12], extensive studies of prohormone convertase knockout

mice have also not revealed roles for prohormone processing in

germ cell development [46]. Therefore, it is likely that functional

redundancies exist among the enzymes responsible for processing

hormones involved in vertebrate reproduction. Given this

possibility of genetic redundancy in vertebrates, we suggest

systematic characterization of prohormone processing in other

invertebrate models (e.g. C. elegans and Drosophila) may help address

the extent to which peptide signaling regulates reproductive

development in other animals.

Our studies suggest that NPY-8 may be among the prohor-

mones processed by PC2 that are required for normal sexual

development. At present it is not known which of the two

predicted peptides encoded by NPY-8 influence planarian

reproductive physiology. Prohormones that encode NPY-like

peptides, including NPY-8, often also encode a C-terminal peptide

or CPON (C-flanking peptide of NPY) [39,58,88,89]. Because the

Table 3. Peptides detected in S. mediterranea that are conserved in Schistosoma.

Schistosoma Gene(s)a S. mediterranea Gene Predicted Schistosoma Peptidec MS-Confirmed S. mediterranea Peptidec

Sma-npp-23/Sja-npp-23 spp-11 YIRFG YIRFG

Sma-npp-26 spp-15 EHFDPIIY FDPIMFa

SYFDPILF FDPIQFa

SYFDPIIY FDPIQFG

TLFNPILF

NFDPILF

Sja-npp-26 spp-15 SYFDPIAF FDPIMFa

TYFDPIAF FDPIQFa

NFDRILF FDPIQFG

NFDPILF

SYFDPIAF

EYFDPIIY

Sma-npp-27/Sja-npp-27 1020HH-2 VPPYITGGIRY QSYLTGGIRY

YLTGGIRY

Sma-npp-28/Sja-npp-28 spp-18, -19 AYHFFRL GYHFFRL

Sj-npp-1b/Sm-npp-1b npp-1 AFVRLa ASFVRLa

GFVRLa

GFVRIa

Sm-npp-5b/Sj-npp-5b npp-5 AAYMDLPWa PNWKDMPWa

AAYIDLPWa SAWRDMPWa

Sm-npp-6b/Sj-npp-6b mpl-1, -2 AVRLMRLa AVRLMRLa

Sj-npp-14b/Sm-npp-14b spp-4 GLRNMRMa GLRLMRLa

aPrefixes Sma and Sja are for genes from S. mansoni and S. japonicum, respectively.
bProhormone genes described previously [39].
cIdentical residues are shown in bold; similar residues are underlined. Lower case ‘‘a’’ indicates C-terminal amidation. All peptides except YIRFG were confirmed by
tandem MS sequencing.
doi:10.1371/journal.pbio.1000509.t003
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functions of both vertebrate and invertebrate CPON peptides

remain elusive, we speculate that the NPY-related peptide NPY-

8A is the functional unit of this prohormone. In vertebrates, NPY

signaling is thought to elicit diverse effects on the neuroendocrine

axis regulating reproduction. Depending on the hormonal milieu,

NPY administration can either promote or inhibit surges of

luteinizing hormone [90], a gonadotropin that regulates multiple

functions in the male and female reproductive systems [10,11,13].

The hypothalamic gonadotropin-releasing hormone, which pro-

motes luteinizing hormone release from the pituitary, can also be

influenced by NPY [91,92]. Additionally, NPY may influence the

timing of sexual maturation in mammals since it has been

suggested to either induce or inhibit the onset of puberty [93].

Since NPY is a well-known regulator of energy homeostasis, NPY

has been suggested to coordinate reproductive function with

nutrient status [94]. Studies of Drosophila and Aplysia indicate

similar roles for NPY-like peptides in processes related to nutrient

homeostasis, such as feeding behavior [56,95]. However, func-

tional analyses in vertebrate [96] and invertebrate models [56]

have not described obvious reproductive deficits in animals

deficient for NPY-like peptides. Given the fact that S. mediterranea

possesses an expanded collection of NPY-like peptides relative to

other animals, additional work will be required to determine

whether the function of NPY-8 represents an ancestral or derived

function for NPY-like peptides.

Coordinated signaling between the hypothalamus, the pituitary,

and the gonads controls vertebrate reproduction. Although our

initial observation with pc2 RNAi implicated prohormone

processing in planarian germ cell development, the site of action

of this effect was difficult to interpret since pc2 expression was

detected in both the nervous system and the testes. Our studies of

npy-8 have clarified the role of the nervous system in planarian

reproduction. npy-8 is expressed in both the central and peripheral

nervous systems, and its transcripts are not detected in tissues

affected by npy-8 RNAi, such as the testes. Therefore, peptides

from NPY-8 are likely to act in a neuroendocrine fashion to

influence reproductive development. Since amputation studies

suggest that signals from the cephalic ganglia are essential for the

maintenance of mature gonads in planarians [14,15], one possible

source of NPY-8 is from the cephalic ganglia.

The function of pc2 within the testes is presently not known, but

testes are likely to be a site of prohormone processing since we

detect the expression of multiple peptide prohormones (ilp-1 and

spp-10) in this organ. Because peptide hormones can act as

endocrine and paracrine signaling molecules in the vertebrate

testes [12], it is possible that peptides play similar roles in

planarians. Therefore, we propose that peptides (e.g. NPY-8

peptides) from the nervous system promote events associated with

reproductive maturation (i.e. the production of differentiated germ

cells) and peptides produced in the testes may provide feedback to

the CNS and other organ systems about the physiological state of

the gonads. Additionally, peptides expressed within the testes may

serve as paracrine factors that regulate germ cell maturation. This

possibility of coordinated signaling between CNS and the gonads

may explain why the effects of pc2 RNAi on the reproductive

system are more severe than those of npy-8 RNAi. Due to a lack of

sufficient markers our studies have not examined the effects of

neuropeptide signaling on ovarian development; future efforts will

be directed at examining this question.

Although a chromosomal translocation distinguishes sexual and

asexual S. mediterranea [42,97], the strain-specific differences that

account for their divergent modes of reproduction remain

uncharacterized. With the exception of genes expressed in the

reproductive system [98], little is known about the transcriptional

differences between these strains. Here we identify npy-8 as

enriched in sexual animals and show an important role for this

gene in sexual development. Interestingly, the regressed testes of

mature sexual animals treated with either pc2 RNAi or npy-8 RNAi

resemble the primordial germ cell clusters of asexual planarians

that also label exclusively with gH4 and nanos [44]. These

observations, together with the loss of somatic reproductive

structures in npy-8(RNAi) animals, suggest that lack of NPY-8

expression in asexual planarians may, in part, account for their

inability to promote germ cell differentiation and initiate sexual

maturation. However, because the phenotypes observed with

pc2(RNAi) were more severe than those observed with npy-8(RNAi),

we anticipate future studies may uncover additional factors that

act in concert with npy-8 to influence planarian reproductive

maturation.

Studies of Planarians Will Help Us Inform the Biology of
Parasitic Flatworms
According to one estimate, schistosomiasis (infection by Schisto-

soma) can be directly attributed to as many as 280,000 deaths per

year in sub-Saharan Africa alone [99]. Despite the medical and

economic impact of schistosomiasis, only a single chemotherapeutic

agent (praziquantel) is currently used in treatment of this disease

[100]. Therefore, identifying novel anthelmintic agents is an

important goal of flatworm research. Schistosome eggs can become

lodged in host tissues, such as the liver and bladder, forming

granulomas that are the major cause of the pathology associated

with schistosomiasis [100]. Thus, targeting reproductive function in

adult animals represents a promising means by which to treat and

control schistosome infection. The S. mansoni genome is predicted to

encode two NPY-like prohormone genes: Sm-npp-20a and Sm-npp-
20b [39,101]. Comparison of the predicted peptides from these

prohormones with NPY-like peptides from S. mediterranea found that

the NPY-like peptide encoded from Sm-npp-20a shares its closest

similarity to NPY-8A (,48% identity, ClustalW) (Figure 2C). Given

this observation, and the similarities in the reproductive anatomy

between planarians and trematodes [2], it is possible that these

animals employ similar mechanisms to control their reproductive

output. Therefore, our results justify efforts aimed at understanding

the role of peptide hormones in flatworm reproductive physiology

and suggest that neuropeptide signaling may represent a viable

target for the treatment and eradication of flatworm parasites.

Materials and Methods

Animal Culture
Sexual and asexual S. mediterranea were maintained at 20uC in

0.756 and 1.06Montjuı̈c salts, respectively [102]. To minimize

non-specific background from gut contents after feeding, animals

were starved at least 1 wk prior to use. For all experiments with

sexual S. mediterranea, sexually mature animals (,1 cm in length,

unless otherwise specified) with a well-developed gonopore were

used, unless otherwise specified.

Chemicals
All chemicals were obtained from Sigma-Aldrich (St. Louis,

MO) unless otherwise stated. The peptide standards for Matrix-

assisted laser desorption/ionization time-of-flight mass spectrom-

etry (MALDI-TOF MS) calibration were purchased from Bruker

Daltonics (Billerica, MA).

Extraction of Peptides
For LC/MS analysis, peptide extracts were prepared from 80–

100 sexual or asexual planarians. Whole animals were mechanically
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homogenized in 8–10 mL of acidified acetone (40:6:1 acetone/

water/HCl) or acidified methanol (90:9:1 methanol/acetic acid/

water). After sonication, vortexing, and centrifugation of the

homogenate, the supernatant was collected and the organic solvent

was removed by evaporation in a SpeedVac concentrator (Thermo

Scientific, San Jose, CA). The supernatant was then filtered through

a Microcon centrifugal filter with a 10 kDa cutoff (Millipore,

Billerica, MA), evaluated for peptide content by MALDI-TOF MS

sampling of 0.5 mL and subjected to sequential separations by

HPLC prior to tandem MS for peptide identification.

Peptide Separation and Measurement
Peptide extracts were fractionated using a microbore HPLC

system Magic 2000 (Michrom BioResources, Inc., Aubum, CA)

with a C18 reverse phase column (Dionex, 1,000 mm i.d., particle

size 3 mm, and pore size 100 Å) at a 20 mL/min flow rate over a

70 min run. A four-step linear solvent gradient was generated by

mixing mobile phases A (95% water and 5% acetonitrile (ACN),

0.1% formic acid (FA) and 0.01% trifluoroacetic acid (TFA), and B

(95% ACN, 5% water, 0.1% FA, and 0.01% TFA) as follows: 5%–

10% B in 20 min, 10%–50% B in next 30 min, 50%–80% B in next

10 min, isocratic 80% B for 5 min, 80%–5% B in 4 min. Fractions

were manually collected, evaluated for peptide content by MALDI-

TOFMS, and subjected to 2nd stage separation using a Micromass

HPLC system (Manchester, U.K.) equipped with a C18 reverse

phase column (Dionex, 300 mm i.d., particle size 3 mm, and pore

size 100 Å) and coupled to a HCTUltra ion-trap mass spectrometer

via an electrospray ionization source (ESI) (Bruker Daltonics,

Bremen, Germany). Second stage separation parameters were

optimized individually for each fraction using either the same

water/ACN solvent system or water/methanol with 0.1% FA as a

counter-ion. Mass spectrometric detection of eluting peptides was

controlled by the Esquire software (Bruker Daltonics, Bremen,

Germany) in a data-dependent manner. TandemMS ion precursor

selection was limited to 3 ions per min sorted by signal intensity,

preferred charge state was set to +2, and the active dynamic

exclusion of previously fragmented precursor ions limited to 2

spectra per minute. The scan m/z ranges for MS andMS/MS were

300–1,800 and 50–3,000, respectively.

Peptide Identification
For peptide identification, tandem mass spectra were converted

to the .mgf file format (Mascot generic file) and processed for

sequencing automatically using the PEAKS Studio 4.5 software

(Bioinformatics Solutions, Inc., Waterloo, CA). PEAKS generated

data were manually inspected and verified. Automatic sequencing

was performed against an in-house planarian prohormone

database using the following search parameters: cleavage sites,

variable Post-Translational Modifications (PTMs) (including N-

terminal pyro-Glu and pyro-Gln, C-terminal amidation, and

disulfide bond; the maximum number of PTMs on a single peptide

was set to four), mass tolerance equal 0.3 Da for the precursor ion,

and 0.5 Da for fragments.

Criteria for peptide assignments and prohormone confirmation

were based on confidence scores generated by PEAKS for each

sequenced peptide and detection mass error. A PEAKS confidence

score is given as a percentage value from 1% to 99% and

represents the statistical likelihood that an amino acid sequence

matches a given MS fragmentation spectrum. The PEAKS

statistical algorithm considers factors such as signal to noise, total

intensity, and spectrum tagging (PEAKS Studio Manual 4.5

http://www.bioinformaticssolutions.com/products/peaks/support/

PEAKSStudioManual4.5.pdf). Our results are based on the current

database of 51 prohormones. Our criteria for the validation of a

prohormone include the identification of at least one peptide from

the prohormone with a PEAKS score .80% and a mass accuracy

#300 ppm, or with a score of .50% and a mass accuracy within

150 ppm. In addition, we manually verified automatic sequencing

results, examined prohormone cleavage sites, and evaluated the

possible PTMs of the identified peptides. A match of at least three

consecutive fragments in an ion series from manual sequencing to

an automatically generated peptide sequence was considered

sufficient to validate the peptide assignment. As prohormone

identification increases with the number of detected encoded

peptides, we employed high identification criteria for the first

peptide but allowed lower standards for assignment of additional

peptides from the same prohormone (PEAKS score .20%, mass

accuracy#500 ppm) provided the fragmentation spectrum satisfied

manual verification.

In cases in which a prohormone had already been confirmed by

tandem MS, occasionally we assigned peptides by mass match

with MALDI-TOF-MS data. Such assignments were based on a

mass-match within 200 ppm to protonated molecular ions of

peptides predicted by NeuroPred (http://neuroproteomics.scs.

uiuc.edu/neuropred.html) [52]. These assignments are tentative

since they are not accompanied by sequencing data.

Gene Prediction and Annotation
Two distinct bioinformatic approaches were used to identify

prohormone genes in the S. mediterranea genome. First, similarity

searches were performed with collections of peptides or prohor-

mones from invertebrate species such as Drosophila melanogaster,

Aplysia californica, Apis mellifera [32], Caenorhabditis elegans [73], and

various Platyhelminthes [39] with stand-alone BLAST (BLOS-

SUM62 or PAM30 matrices and Expect values $10). Peptides

and prohormones were obtained from genome databases (i.e.

Wormbase, http://www.wormbase.org), from NCBI, or from an

online catalog of bioactive peptides (http://www.peptides.be,

[103]). Additionally, sequence tags generated by de novo MS

sequencing of unassigned peptides were also used as queries for

genomic BLAST searches (BLOSSUM62 or PAM30 matrices and

Expect values $10). As an alternative to similarity searching we

analyzed translated S. mediterranea EST [98,104] and 454 (Roche,

Mannheim, Germany) sequence data (Y. Wang and P.A. New-

mark, unpublished) for sequences that possessed characteristics of

prohormone genes including multiple dibasic cleavage sites and a

signal sequence (www.cbs.dtu.dk/services/SignalP). Translations

of nucleotide sequences were performed with longorf.pl, a script

that translates the longest open reading frame in a nucleotide

sequence (www.bioperl.org/wiki/Bioperl_scripts). Putative pro-

hormone genes identified using these two approaches were used as

queries to search the S. mediterranea genome to determine if

additional related prohormones existed in the genome. The full-

length coding sequences of prohormone genes were predicted

using a variety of gene and splice-site prediction tools, including

NetGene2 (http://www.cbs.dtu.dk/services/NetGene2), FSPLICE

(http://www.softberry.com), GENSCAN (http://genes.mit.edu/

GENESCAN.html), and GeneQuest (v8.0.2, DNASTAR, Madi-

son, WI). Where full-length sequences could not be predicted in

silico, 59 and 39 Rapid Amplification of cDNA Ends (RACE)

(FirstChoice RLM-Race Kit, Ambion, Austin, TX) analyses were

performed following the manufacturer’s protocol. The predictions

of all genes reported here were independently verified by cDNA

analysis (see below). Once verified, genes were considered to be

genuine prohormone genes if they (1) possessed a signal sequence,

(2) possessed basic cleavage sites that flanked predicted or MS-

confirmed peptides, and (3) were less than 200 amino acids in

length. Sequences were excluded if they shared similarity with genes
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previously annotated to be other than neuropeptide prohormones.

All genes were named according to the S. mediterranea genome

nomenclature guidelines [105].

Comparison of Prohormones from S. mediterranea and
Schistosoma
Translated nucleotide sequences were downloaded either from

the Schistosoma mansoni FTP server (ftp.sanger.ac.ik/pub/patho-

gens/Schistosoma/mansoni) or from the NCBI taxonomy browser

(http://www.ncbi.nlm.nih.gov/Taxonomy/). These sequences

were then compared to the sequences of MS-confirmed S.

mediterranea prohormones using BLASTP. NPY-family members

were not included in this analysis, although three NPY-like

proteins have been previously described in Schistosoma [39,101].

Additionally we analyzed EST sequences in the NCBI database to

identify schistosome prohormone genes. Newly annotated schisto-

some prohormones were analyzed further with SignalP and

Neuropred to predict final gene products. These genes were

named as described previously [39].

Molecular Analyses
To facilitate efficient analyses of prohormone genes, we

constructed a plasmid vector that permits TA-mediated cloning

of PCR-amplified cDNAs. To generate a suitable vector

backbone, oligonucleotide primers 59-GATCACGCGTCGATT-

TCGGCCTATTGGTTA-39 and 59-GATCACGCGTGCTT-

CCTCGCTCACTGACTC-39 were used to amplify the kanamy-

cin and ampicillin resistance markers and the origin of replication

of plasmid pCRII (Invitrogen, Carlsbad, CA); this PCR product

was digested with MluI and ligated to generate a circular plasmid.

Following circularization, an Eam1105I restriction site was

removed from the b-lactamase gene of this plasmid by introduction

of a silent mutation using site-directed mutagenesis (Quickchange

II, Statagene, La Jolla, CA). For the functional elements of the

vector, two mini genes were synthesized (Integrated DNA

Technologies, Coralville, IA): T7TermSP6 and T7TermT3.

T7TermSP6 included (59 to 39) KpnI, MluI, T7-terminator, AscI,

T7 Promoter, SP6 promoter, GACCTTAGGCT (an Eam1105I
site), and XhoI. T7TermT3 included (59 to 39) SacI, MluI, T7

terminator, T7 promoter, T3 promoter, GACCTTAGGCT (an

Eam1105I site), and NotI. T7TermSP6 and T7TermT3 were

shuttled to pBluescript SK II+ using the KpnI and XhoI sites from
T7TermSP6 or the SacI and NotI sites from T7TermT3. These

plasmids were digested with MluI and EcoRI and ligated with the

MluI site of the vector backbone. A XhoI and NotI-digested PCR

fragment including the ccdB and camR genes from plasmid pPR244

[47] were inserted to generate the final plasmid-pJC53.2.

Eam1105I (Fermentas, Burlington, Ontario) restriction digest of

this plasmid generates 39 T overhangs that can be ligated to an A-

tailed Taq polymerase-amplified PCR product [106]. The ccdB
gene prevents any undigested plasmid from giving rise to viable

clones [107]. Once cDNAs have been inserted into pJC53.2,

riboprobes for in situ hybridization analysis can be generated by in

vitro transcription with SP6 or T3 RNA polymerases and dsRNA

for RNAi knockdowns can be generated by in vitro transcription

with T7 RNA polymerase, or by transformation of E. coli
(HT115[DE3]) [108].

To generate riboprobes for in situ hybridization, prohormone

genes not represented by EST clones [98] were PCR amplified

(Platinum Taq, Invitrogen, Carlsbad, CA) from cDNA generated

from total RNA (iScript cDNA Synthesis Kit, Bio-Rad, Hercules,

CA) or 39 RACE cDNA (RLM-RACE Kit, Ambion, Austin, TX)

generated from either total or poly-(A)+ RNA (Poly-A Purist,

Ambion, Austin, TX). For cDNA preparations, RNA was

extracted using Trizol Reagent (Invitrogen, Carlsbad, CA). For

cloning, 2–3 mL of PCR product was ligated with 70 ng of

Eam1105I-digested pJC53.2 (Rapid DNA Ligation Kit, Roche,

Mannheim, Germany) and used to transform DH5a. In vitro

transcriptions with the appropriate RNA polymerase were

performed using standard approaches with the addition of

Digoxigenin-12-UTP (Roche, Mannheim, Germany), Fluoresce-

in-12-UTP (Roche, Mannheim, Germany), or Dinitrophenol-11-

UTP (Perkin Elmer, Waltham, MA).

In situ hybridizations were performed using the formaldehyde-

based fixation procedure essentially as described previously [109].

However, due to their large size, sexual animals were killed in 10%

N-Acetyl Cysteine, fixed for 20–30 min in 4% Formaldehyde in

PBSTx (PBS+0.3% Triton X-100), permeabilized with 1% SDS

(10 min at RT) prior to reduction (10 min at RT), and treated with

10 mg/mL Proteinase K (10–20 min at RT) after bleaching. Some

samples were processed in either a BioLane HTI (Hölle & Hüttner,

Tübingen, Germany) [98] or an Insitu Pro (Intavis, Koeln,

Germany) hybridization robot [102]. Sexual animals were imaged

with either a Microfire digital camera (Optronics, Goleta, CA)

mounted on a Leica MZ12.5 stereomicroscope or a Leica DFC420

camera mounted on a Leica M205A stereomicroscope (Leica,

Wetzlar, Germany). Both microscopes were equipped with a Leica

TL RC base. Asexual animals were imaged over a piece of white

filter paper and illuminated from above with an LED light source.

For FISH, following post-hybridization washes and blocking,

animals were incubated in a-Digoxigenin-POD (1:1000, Roche,

Mannheim, Germany), a-Fluorescein-POD (1:1000, Roche,

Mannheim, Germany), or a-Dinitrophenol-HRP (1:100, Perkin

Elmer, Waltham, MA) overnight at 4uC, washed in MABT,

equilibrated in TNT (100 mM Tris pH 7.5, 150 mM NaCl, and

0.05% Tween-20), and developed in Amplification Diluent

containing a fluorescent-tyramide conjugate (Cy3-tyramide, Cy5-

tyramide, or Fluorescein-tyramide; TSA-Plus, Perkin Elmer,

Waltham, MA). Following development, animals were washed in

TNT and HRP activity was quenched by a 1 h incubation in

1.5%–2.0% H2O2 dissolved in TNT. Following HRP inactivation,

animals were washed in MABT, incubated in a different a-hapten-

HRP antibody, and the process was repeated with a different

fluorescent-tyramide conjugate. Samples were mounted in Vecta-

shield (Vector Laboratories, Burlingame, CA) and imaged on a

Zeiss LSM 710 confocal microscope (Carl Zeiss, Germany) (Plan-

Apochromat 206/0.8, C-Apochromat 406/1.2 W korr UV-VIS-

IR, or Plan-Apochromat 636/1.4 Oil DIC objectives). Fluores-

cein, Cy3, and Cy5 were excited with 488 nm, 561 nm, and

633 nm lasers, respectively. Images were processed using either

Zen 2008 (Carl Zeiss, Germany) or ImageJ [110].

Northern blot procedures were performed essentially as

previously described [111] and hybridization signals were detected

using an anti-digoxigenin alkaline phosphatase-conjugated anti-

body and chemiluminescence (CDP-STAR, Roche, Mannheim,

Germany). Chemiluminescent signals were detected using a

FluorChem Q (Alpha Innotech, San Leandro, CA).

Sequences of EST clones corresponding to pc2 [43,98] were

assembled with one another and the S. mediterranea genome

(Sequencher 4.7, Gene Codes, Ann Arbor, MI) to determine the

full-length sequence and genomic structure of the pc2 gene.

RNAi Analysis
For RNAi analysis of pc2, EST clone PL05006A1C09 [98],

which corresponds to pc2, was shuttled to plasmid pPR244 using a

Gateway reaction (Invitrogen, Carlsbad, CA) [47]. For npy-8

RNAi, a 39 RACE product specific to npy-8 was cloned in

pJC53.2. RNAi feedings were performed essentially as described
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previously [112], with some modifications. In pc2 RNAi

experiments, ,6.25 mL of IPTG-induced culture was pelleted,

frozen at 280uC, and resupended in 30 mL of a mixture of

homogenized beef liver and water. ,5 mature sexual animals

(.1 cm in length) received 1–2 feedings over the course of ,48 h.

npy-8 RNAi experiments were performed similarly to pc2 RNAi

except feedings included 50% less bacteria and animals were fed

every 5–7 d over the indicated time course; for some feedings,

bacteria were omitted. On occasion, because of either refusal to

feed or improper nutrition, some animals (both controls and

treatment groups) decreased in size over the long time courses of

the npy-8 RNAi experiments. Therefore, only animals .1 cm in

length at the time of fixation were included in our analyses at time

points greater than 4 wk. For all RNAi experiments with

bacterially expressed dsRNA, control feedings were performed

with bacteria containing empty plasmid pPR242.

For RNAi experiments conducted with juvenile planarians,

dsRNA was generated by in vitro transcription [113,114]. To

generate dsRNA, templates cloned in pJC53.2 were amplified with

a modified T7 oligonucleotide (GGATCCTAATACGACTCAC-

TATAGGG), cleaned up using the DNA Clean & Concentrator kit

(Zymo Research, Orange, CA, D4003), and eluted in 10 mL of

water. 4 mL of each PCR product was used as template for in vitro

transcription in a reaction containing 5.5 mL DEPC-treated water,

5 mL 100 mM mix of rNTPs (Promega, E6000), 2 mL high-yield

transcription buffer (0.4 M Tris pH 8.0, 0.1 M MgCl2, 20 mM

spermidine, 0.1 M DTT), 1 mL thermostable inorganic pyrophos-

phatase (New England Biolabs, Madison, WI, M0296S), 0.5 mL

Optizyme recombinant ribonuclease inhibitor (Fisher Scientific,

Pittsburg, PA, BP3222-5), and 2 mL HIS-Tagged T7 RNA

polymerase [115]. Samples were incubated at 37uC for 4–5 h and

then treated with RNase-free DNase (Fisher Scientific, Pittsburg,

PA, FP2231). Synthesized RNA was then melted by heating at

75uC, 50uC, and 37uC each for 3 min. 2.5–10 mg of each dsRNA

solution was mixed with 45 mL of 3:1 liver to water mix and used to

feed up to 8 worms. For these experiments, animals without visible

gonopores (juveniles) were fed every 4–5 d for the indicated time

period and starved 1 wk before fixation. Unless otherwise specified,

as a negative control, animals were fed dsRNA synthesized from the

ccdB and camR-containing insert of pJC53.2.

To analyze the structure of the testes, animals were killed in 2%

HCl for 3 min, fixed in either Methacarn (6 MeOH:3 Chloro-

form: 1 Glacial Acetic Acid) or 4% formaldehyde for 1–2 h,

dehydrated in MeOH, bleached in 6% H2O2 in MeOH, and

stained with 49,6-diamidino-2-phenylindole (DAPI) (Sigma-Al-

drich, St. Louis, MO). Alternatively, samples were processed for in

situ hybridization, as described above. Following staining, animals

were mounted in Vectashield, flattened, and imaged on either a

Zeiss SteREO Lumar (Carl Zeiss, Germany) or a Zeiss LSM 710

confocal microscope (DAPI was excited with a 405 nm laser).

Animal Size Measurements
To examine if npy-8(RNAi) affected overall growth, animals were

immobilized on ice and imaged on a Leica M205A stereomicro-

scope. The area of each animal was determined using ImageJ.

Quantitative PCR
To examine transcript levels in npy-8 knockdowns, juvenile

animals were fed either liver homogenate or 45 mL of liver

homogenate mixed with 2.5 mg of in vitro synthesized npy-8
dsRNA. 7 d later RNA was extracted from individual planarians

using Trizol Reagent (Invitrogen, Carlsbad, CA). Following

DNase treatment (DNA-free RNA Kit, Zymo Research, Orange,

CA), reverse transcription was performed (iScript cDNA Synthesis

Kit, Bio-Rad, Hercules, CA) and quantitative PCR was conducted

using Power SYBR Green PCR Master Mix (Applied Biosystems,

Warrington, UK) and a 7900HT real-time PCR system (Applied

Biosystems). Standard curves were generated from serial dilutions

of either plasmid DNA containing the gene of interest (npy-8 and

npy-1) or from genomic DNA (b-tubulin GB: DN305397). All

samples were measured in triplicate to account for pipetting error.

Absolute quantities of each transcript were determined from the

standard curves and the levels of npy-8 or npy-1 were normalized to

the level of b-tubulin in each sample. The mean value (i.e. npy-8/b-

tubulin or npy-1/b-tubulin) for each treatment (i.e. control or

npy-8(RNAi)) was then compared using a Student’s t test. The

primers used for these studies were npy-8 Forward AATCA-

GAAAAGGCCGATGTTTG, Reverse CAAATAGTTCC-

GAAAGGCATCAG; npy-1 Forward GTCGACCAAGATTCGG-

TAAACG, Reverse CATTCTTTTATGAAAATCCCCTGT; b-tubulin

F TGGCTGCTTGTGATCCAAGA R AAATTGCCGCAACAGT-

CAAATA.

Analysis of Prohormone Processing Following pc2 RNAi
To investigate the effect of pc2 RNAi on the proteolytic

processing of prohormones, peptide profiles were measured by

MALDI-TOF MS and compared by principal component analysis

followed by a t test in tissue extracts prepared from 7 individual

control and 7 individual RNAi-treated animals. Extracts were

prepared by homogenizing each specimen in 100 mL of acidified

acetone (see above). Following centrifugation at 14,0006 g for

15 min, supernatant was collected, dried in SpeedVac concentra-

tor (Thermo Scientific, San Jose, CA), and reconstituted in 30 mL

of 0.01% TFA. For MALDI-TOF MS analysis, 0.7 mL of each

extract was spotted on a stainless steel sample holder and co-

crystallized with 0.7 mL of freshly prepared concentrated DHB

matrix (DHB: 2,5-dihydroxybenzoic acid, 50 mg/mL 50%

acetone). Three technical replicates were sampled for each

biological sample, 42 spots total. Positive ion mass spectra were

acquired manually in 600–6,000 m/z region using a Bruker

Ultraflex II mass spectrometer in linear mode with external

calibration. For each spot 700 laser shots in 7 acquisitions were

accumulated into a sum spectrum representative of a replicate.

For comparison of peptide profiles in control and pc2(RNAi)

animals, raw MALDI-TOF MS data were loaded into an

evaluation version of ClinProTools software (Bruker Daltonics,

Bremen, Germany) using the following processing parameters:

convex hull baseline subtraction, baseline flatness 0.2, mass range

1,000–6,000 m/z, Savizky-Golay smoothing over 1 m/z width

with 11 cycles, data reduction factor of 10, null spectra exclusion

enabled, recalibration with maximum peak shift of 200 ppm. All

spectra were normalized to the total ion count (TIC) prior to PCA

calculations. Sum spectra from technical replicates were grouped

into a representative sample spectrum in ClinProTools, thus

representing a biological replicate for statistical calculations. From

representative sample spectra a mean spectrum was generated by

ClinProTools to reveal general peptide features for control and

pc2(RNAi) groups. Standard deviation of signal intensities among

biological replicates was derived for each peak in the group profile.

Unlimited peak picking on the base of maximal peak intensity and

minimal signal-to-noise ratio of 6 was done on the mean spectrum

representative of each sample group in order to take advantage of

noise reduction effect due to spectra addition. Peptide profiles of

mean spectra representative of biological replicates were com-

pared by principal component analysis followed by Anderson-

Darling (AD) normality test and paired Student’s t test for peaks

showing normal distribution. Peaks not showing a normal

distribution (pAD#0.05) were evaluated by the Wilcoxon or
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Kruskal-Wallis tests, respectively [116–118]. To decrease the

number of false positives while computing individual peak statistics

on highly complex spectra, the Benjamini-Hochberg procedure

incorporated into ClinProTool was automatically applied for p
value adjustment during analysis [119].

Supporting Information

Figure S1 The Smed-pc2 gene. (A) Predicted structure of the

2435 bp Smed-pc2 transcript: 59 untranslated region (UTR)

(Purple, nucleotides 1–295), Coding region (Red, nucleotides

296–2243), and 39 UTR (Yellow, nucleotides 2244–2435). An

additional putative transcriptional start site was also detected 12

nucleotides upstream of the initiator methionine (unpublished

data). The Smed-pc2 locus occupies ,20 kB on supercontig 98 of

the S. mediterranea genome. (B) The Smed-pc2 gene encodes a

predicted 649 amino acid (AA) protein that shares significant

identity with Proprotein Convertase Substilisin/Kexin Type 2

proteins from H. sapiens (60% identities, 72% positives;

NP_002585.2), D. melanogaster (60% identities, 72% positives;

NP_477318.1), and S. mansoni (69% identities, 81% positives;

CAY17138.1). SMED-PC2 domains and functional regions are

color coded as follows: secretory signal sequence (Purple; AA 1–

16), autocatalytic cleavage site (Gray; AA 98–101), Peptidase-S8

domain (Pink; AA 158–465; PFAM domain PF00082, E-value

4.26102108), and Proprotein Convertase P-Domain (Yellow; AA

525–613; PFAM domain PF01483, e-value 1.9610231). Asterisks

shown above bolded residues indicate amino acids comprising the

putative catalytic core of SMED-PC2.

Found at: doi:10.1371/journal.pbio.1000509.s001 (0.30 MB TIF)

Figure S2 The S. mediterranea genome is predicted to
encode multiple prohormone convertase proteins. Shown
is a ClustalW alignment of a region of the Peptidase-S8 domain

from PC2 with three related proteins predicted from the S.
mediterranea genome [43]. Although these are the only predicted

proteins with similarity to this region of the Peptidase-S8 domain,

additional sequences in the S. mediterranea genome show similarity

to other regions of PC2.

Found at: doi:10.1371/journal.pbio.1000509.s002 (4.34 MB TIF)

Figure S3 The Planarin family of prohormones. (A) A

ClustalW alignment of prohormones SMED-SPP-6, -7, -8, -9, and

-17. Matching residues are highlighted in yellow, basic cleavage

sites are highlighted in green, and the signal sequence is

highlighted in magenta. (B) The genomic organization of

prohormone genes Smed-spp-6, 7. These genes are located in close

proximity to one another and are transcribed in opposite

orientations. Given their sequence similarity and genomic

organization, it is likely that the Planarin family of genes was

expanded by a series of recent gene duplication events.

Found at: doi:10.1371/journal.pbio.1000509.s003 (0.20 MB TIF)

Figure S4 Schematic representation of the distribution
of prohormone gene expression in the planarian cephal-
ic ganglia. Cartoon depicting the distribution of some prohor-

mone genes expressed in distinct regions of the cephalic ganglia

(gray) and photoreceptors. Although npp-12, eye53-1, mpl-2, and
eye53-2 are all expressed in the cephalic ganglia, their expression is

only depicted in the photoreceptors. Abbreviations: LB, Lateral

branches; PR, photoreceptors; PC, pigment cups; OC, optic

chiasma; and VNC, ventral nerve cords.

Found at: doi:10.1371/journal.pbio.1000509.s004 (1.45 MB TIF)

Figure S5 npy-8(RNAi) does not affect animal growth or

the activity of other npy genes. (A) Area measurements of

animals after 1 mo of being fed either control or npy-8 dsRNA. p

value from Student’s t test is given above and error bars represent

95% confidence intervals. n=19 for controls and npy-8(RNAi). (B)

Levels of either npy-8 (left) or npy-1 (right) transcripts normalized to

b-tubulin mRNAs. n=3 animals for controls and n=5 animals for

npy-8(RNAi). p value from Student’s t test is given above and error

bars represent 95% confidence intervals. (C) DAPI staining

showing distribution of testes in npy-8(RNAi), npy-1(RNAi), and

npy-2(RNAi) animals ,2 mo after the first RNAi treatment. n=4

animals for each treatment. Scale bars: 1 mm.

Found at: doi:10.1371/journal.pbio.1000509.s005 (9.06 MB TIF)

Table S1 Summary of MS analysis from sexual and

asexual S. mediterranea.

Found at: doi:10.1371/journal.pbio.1000509.s006 (0.08 MB PDF)

Table S2 Peptides characterized by MS from sexual S.

mediterranea.

Found at: doi:10.1371/journal.pbio.1000509.s007 (0.12 MB PDF)

Table S3 Peptides characterized by MS from asexual S.

mediterranea.

Found at: doi:10.1371/journal.pbio.1000509.s008 (0.13 MB PDF)

Table S4 Peptide families encoded from S. mediterra-

nea prohormone genes.

Found at: doi:10.1371/journal.pbio.1000509.s009 (0.07 MB PDF)

Table S5 Sequence information for S. mediterranea

prohormone genes.

Found at: doi:10.1371/journal.pbio.1000509.s010 (0.25 MB PDF)

Table S6 Changes in characterized and uncharacter-

ized peptides following pc2(RNAi) treatment.

Found at: doi:10.1371/journal.pbio.1000509.s011 (0.09 MB PDF)

Table S7 Prohormone genes from Schistosoma that

encode peptides related to peptides from S. mediterra-

nea.

Found at: doi:10.1371/journal.pbio.1000509.s012 (0.10 MB PDF)
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102. Cebrià F, Newmark PA (2005) Planarian homologs of netrin and netrin receptor are
required for proper regeneration of the central nervous system and the

maintenance of nervous system architecture. Development 132: 3691–3703.

103. Liu F, Baggerman G, Schoofs L, Wets G (2008) The construction of a bioactive

peptide database in Metazoa. J Proteome Res 7: 4119–4131.

104. Sánchez Alvarado A, Newmark PA, Robb SM, Juste R (2002) The Schmidtea
mediterranea database as a molecular resource for studying platyhelminthes, stem

cells and regeneration. Development 129: 5659–5665.

105. Reddien PW, Newmark PA, Sánchez Alvarado A (2008) Gene nomenclature

guidelines for the planarian Schmidtea mediterranea. Dev Dyn 237: 3099–3101.

106. Ichihara Y, Kurosawa Y (1993) Construction of new T vectors for direct

cloning of PCR products. Gene 130: 153–154.

107. Bernard P, Gabant P, Bahassi EM, Couturier M (1994) Positive-selection

vectors using the F plasmid ccdB killer gene. Gene 148: 71–74.

108. Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed

dsRNAs can produce specific and potent genetic interference in Caenorhabditis
elegans. Gene 263: 103–112.

109. Pearson BJ, Eisenhoffer GT, Gurley KA, Rink JC, Miller DE, et al. (2009)

Formaldehyde-based whole-mount in situ hybridization method for planarians.

Dev Dyn 238: 443–450.

110. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image Processing with ImageJ.

Biophotonics International 11: 36–42.

111. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual

Irwin N, Janssen KA, eds. Cold Spring Harbor: Cold Spring Harbor

Laboratory Press.

112. Gurley KA, Rink JC, Sánchez Alvarado A (2008) Beta-catenin defines head

versus tail identity during planarian regeneration and homeostasis. Science 319:

323–327.

113. Rouhana L, Shibata N, Nishimura O, Agata K (2010) Different requirements

for conserved post-transcriptional regulators in planarian regeneration and

stem cell maintenance. Dev Biol 341: 429–443.

114. Pellettieri J, Fitzgerald P, Watanabe S, Mancuso J, Green DR, et al. (2010) Cell

death and tissue remodeling in planarian regeneration. Dev Biol 338: 76–85.

115. He B, Rong M, Lyakhov D, Gartenstein H, Diaz G, et al. (1997) Rapid

mutagenesis and purification of phage RNA polymerases. Protein Expr Purif 9:

142–151.

116. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:

80–83.

117. Kruskal W, Wallis W (1952) Use of ranks in one-criterion variance analysis.

Journal of American Statistical Association 47: 588–621.

118. Stephens M (1974) EDF for goodness of fit and some comparisons. Journal of

American Statistical Association 69: 730–737.

119. Dudoit S, Shaffer J (2003) Multiple hypothesis testing in microarray

experiments. Statistical Science 18: 71–103.

Global Analysis of Planarian Neuropeptides

PLoS Biology | www.plosbiology.org 21 October 2010 | Volume 8 | Issue 10 | e1000509


