
RESEARCH Open Access

Genome-wide analysis of differential
transcriptional and epigenetic variability
across human immune cell types
Simone Ecker1,2* , Lu Chen3,4, Vera Pancaldi1, Frederik O. Bagger4,5,6, José María Fernández1,

Enrique Carrillo de Santa Pau1, David Juan1, Alice L. Mann3, Stephen Watt3, Francesco Paolo Casale6,

Nikos Sidiropoulos7,8,9, Nicolas Rapin7,8,9, Angelika Merkel10, BLUEPRINT Consortium, Hendrik G. Stunnenberg11,

Oliver Stegle6, Mattia Frontini4,5,12, Kate Downes4,5, Tomi Pastinen13, Taco W. Kuijpers14,15, Daniel Rico1,16†,

Alfonso Valencia1†, Stephan Beck2†, Nicole Soranzo3,4*† and Dirk S. Paul2,17*†

Abstract

Background: A healthy immune system requires immune cells that adapt rapidly to environmental challenges.

This phenotypic plasticity can be mediated by transcriptional and epigenetic variability.

Results: We apply a novel analytical approach to measure and compare transcriptional and epigenetic variability

genome-wide across CD14+CD16− monocytes, CD66b+CD16+ neutrophils, and CD4+CD45RA+ naïve T cells from the

same 125 healthy individuals. We discover substantially increased variability in neutrophils compared to monocytes and

T cells. In neutrophils, genes with hypervariable expression are found to be implicated in key immune pathways and are

associated with cellular properties and environmental exposure. We also observe increased sex-specific gene expression

differences in neutrophils. Neutrophil-specific DNA methylation hypervariable sites are enriched at dynamic chromatin

regions and active enhancers.

Conclusions: Our data highlight the importance of transcriptional and epigenetic variability for the key role of

neutrophils as the first responders to inflammatory stimuli. We provide a resource to enable further functional studies into

the plasticity of immune cells, which can be accessed from: http://blueprint-dev.bioinfo.cnio.es/WP10/hypervariability.
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Background

Phenotypic plasticity is fundamental to human immunity,

allowing rapid cellular adaptation in response to changing

environmental conditions [1]. Plasticity of immune cells

can be influenced by the variability of cellular traits,

including gene expression and DNA methylation. The

stochastic nature inherent to cellular processes such as

gene regulation gives rise to cell-to-cell variation, en-

hancing survival under adverse conditions and stress

[2–4]. Environmental stimuli, including temperature,

hormone levels, and invading pathogens, further affect

the expression of genes in a tissue- and temporal-

dependent fashion [2, 4, 5].

Rapid and effective response to a stimulus is facilitated

and intensified if the cellular trait already exhibits large

stochastic fluctuations in the absence of the stimulus [3].

For example, while genes involved in stress response

tend to be highly variable [3, 6, 7], genes involved in
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essential cellular functions, such as protein synthesis and

metabolism, demonstrate less variable expression levels

[8, 9].

B and T cells utilize genetic recombination to gener-

ate a highly diverse repertoire of immunoglobulins and

T-cell surface receptors, respectively. In addition, immune

responses are driven by the variability of key signaling

molecules and transcription factors not controlled by gen-

etic factors [10, 11]. Epigenetic states, including DNA

methylation, also contribute to plastic gene expression

during cell fate commitment, thus enhancing fitness in re-

sponse to external cues [12, 13].

Transcriptional and epigenetic heterogeneity that is

measured across individuals emerges from different ori-

gins. While intra-individual variability can relate to differ-

ent cellular properties in response to external signals, such

as cell activation and communication [3, 7, 14], inter-

individual variability can relate to differences between the

individuals, including genetic makeup, age, sex, and life-

style. Importantly, it has also been demonstrated that

inter-individual variability can serve as an appropriate

proxy for intra-individual variability at the level of single

cells [7, 14, 15].

Both transcriptional and epigenetic variability have

been shown to strongly correlate with the develop-

ment and progression of human diseases [12, 16, 17].

For example, gene expression variability has been

linked to human immunodeficiency virus (HIV) sus-

ceptibility [18], neurological disorders [18, 19], and

cancer [20, 21]. Hypervariable DNA methylation loci

can be used as biomarkers to predict the risk of neoplastic

transformation in stages prior to neoplasia [22, 23].

The extent and functional interpretation of tran-

scriptional and epigenetic variability have not been sys-

tematically investigated genome-wide across multiple

immune cell types in the general population. Here, we

applied a novel analytical approach to measure differ-

ential variability of gene expression and DNA methyla-

tion in three major immune cell types: CD14+CD16−

classic monocytes, CD66b+CD16+ neutrophils, and

CD4+CD45RA+
“phenotypically naïve” T cells. This

matched panel of cell types was derived from the same

125 healthy individuals. We show that neutrophils ex-

hibit substantially increased variability of both gene

expression and DNA methylation patterns, compared

to monocytes and T cells, consistent with these cells’

key role as the first line of host defense. We annotated

hypervariable genes (HVGs) and CpGs (HVPs) to

known homeostatic and pathogenic immune processes

and found subsets of genes correlating with genetic

makeup, donor demographic, and lifestyle factors. Our

data further reveal potential molecular mechanisms of

immune responses to environmental stimuli and pro-

vide a resource to enable future functional studies into

the phenotypic plasticity of human immune cells in

health and disease.

Results
Deep molecular profiling of immune cells in the

BLUEPRINT Human Variation Panel

The analyses described in this study are based on the

publicly available resource provided by the BLUEPRINT

Human Variation Panel [24]. The resource contains gen-

ome-wide molecular profiles of CD14+CD16− classic

monocytes, CD66b+CD16+ neutrophils, and CD4
+CD45RA+ naïve T cells. These leukocyte types were

chosen due to their important role in mediating im-

mune cell processes, their relative abundance in periph-

eral blood, allowing for examination of multiple cellular

traits, as well as the availability of experimental proto-

cols to prepare cell populations of high purity (>95%).

Monocytes and neutrophils are myeloid cells that share

the same bone marrow-residing granulocyte-macrophage

precursor cell. Monocytes migrate to sites of infection and

differentiate into macrophages and dendritic cells to in-

duce an immune response. As part of the innate immune

system, neutrophils move within minutes to sites of infec-

tion during the acute phase of inflammation. Naïve T cells

are lymphoid cells that are part of the adaptive immune

system, representing mature helper T cells that have not

yet recognized their cognate antigen.

Across an initial cohort of 200 healthy individuals

representative of the UK population, purified prepara-

tions of these primary cells were probed for gene ex-

pression using total RNA sequencing (RNA-seq) and

DNA methylation using Illumina Infinium Human-

Methylation450 BeadChips (“450 K arrays”). Detailed

information about the experimental and analytical

strategies for quantifying these cellular traits are provided

in the “Methods” section. Additional file 1: Figures S1, S2,

and S3 give an overview of the data quality assessment of

the gene expression and DNA methylation data sets. All

individuals were further profiled for DNA sequence

variation using whole-genome sequencing to allow for

cell type-dependent, quantitative assessment of the

genetic and epigenetic determinants of transcriptional

variance [24].

In this study, we exploited this resource, selecting all

125 donors for whom matched gene expression and

DNA methylation data sets were available across the

three immune cell types. The key analytical advance of

the work presented here concerns the measurement and

interpretation of differential variability. That is, the iden-

tification of loci at which gene expression and DNA

methylation levels show significantly greater variation

within one cell type compared to the other cell types.

An overview of the study design and analytical concept

is provided in Fig. 1a.
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Genome-wide patterns of differential gene expression

variability across immune cell types

We first assessed inter-individual expression variability

of 11,980 protein-coding, autosomal genes that showed

robust expression in monocytes, neutrophils, and T

cells (“Methods”). We applied an improved analytical

approach for the assessment of differential variability

(“Methods”), taking into account the strong negative

correlation between mean gene expression levels and

expression variability (Additional file 1: Figure S4).

Figure 1b gives an overview of the number of identi-

fied HVGs that are cell type-specific, shared between

two of the studied immune cell types, or common to all

three. Neutrophils were found to have the largest num-

ber of HVGs overall (n = 1862), as well as of cell type-

specific HVGs (n = 1163). In contrast, we found only a

small number of cell type-specific HVGs in monocytes

and T cells (n = 14 and 3, respectively). In addition, we

identified 271 genes that were highly variable across all

three immune cell types using a rank-based approach

Fig. 1 Differential variability of gene expression and DNA methylation across three immune cell types. a Study design and analytical approach.

Hypervariable genes and CpGs were identified using a combined statistical approach at stringent significance thresholds, i.e., Benjamini–

Hochberg-corrected P < 0.05 and gene expression or DNA methylation variability measurement (EV or MV) difference ≥10% relative to the

observed range. b The number of statistically significant hypervariable genes (HVGs) that are cell type-specific, shared between two of the studied

immune cell types, or common to all three. c Scatter plot of the EV values of 6138 genes assessed in our data set versus the replication set. We

found good concordance between the two independent cohorts, despite the application of different analytical platforms (Pearson’s r = 0.48, P < 2.2 ×

10−16). d Ranking of all 11,980 protein-coding genes analyzed in our study according to EV values (i.e., from high to low EV values). We highlight the

100 genes that showed the highest and lowest EV values in the independent replication data set in red and blue, respectively. e The number

of hypervariable CpG positions (HVPs). Abbreviations: M monocytes, N neutrophils, T naïve T cells
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(“Methods”). Mature neutrophils (as profiled here) show

low proliferative capacity and reduced transcriptional and

translational activity [25, 26]. The latter could potentially

impede comparable assessment of differential variability if

the relationship between variability and mean expres-

sion levels was not taken into account. Thus, using our

analytical approach, we assessed and confirmed that

overall reduced gene expression levels did not technic-

ally confound the observed increased variability of gene

expression levels in neutrophils (Additional file 1:

Figure S4).

We then aimed to replicate the detected HVG levels

in an independent sample cohort. We retrieved a gene

expression data set generated using Illumina Human

HT-12 v4 Expression BeadChips consisting of CD16+

neutrophils derived from 101 healthy individuals; these

donors were, on average, 34 years of age (range 19–66

years) and 50% were male [27]. Of the 11,023 gene

probes assessed on the array platform, 6138 could be

assigned to a corresponding gene identifier in our data

set. First, we ranked all 11,980 genes analyzed in our

study according to gene expression variability (EV)

values from high to low. Then, we assessed the position

of the top 100 genes with highest and lowest EV values

from the independent validation data in this ranking to

confirm that the variability patterns are consistent be-

tween the two data sets. Neutrophil-specific HVGs mea-

sured using RNA-seq were also found to be hypervariable

using expression arrays in the independent cohort of

healthy individuals (Fig. 1c, d).

In summary, we devised and assessed a novel

method for the identification of differential gene ex-

pression variability. Overall, we found strongly in-

creased variability of gene expression in neutrophils

compared to monocytes and T cells and replicated the

detected neutrophil-specific HVG patterns in an exter-

nal cohort.

Biological significance of differentially variable genes

across immune cell types

Next, we explored the characteristics of the identified

HVGs. We performed ontology enrichment analysis of

gene sets using the GOseq algorithm [28]. This method

takes into account the effect of selection bias in RNA-

seq data that can arise due to gene length differences

[28]. Additional files 2 and 3 summarize the annotation

data of all identified HVGs and observed gene ontology

enrichment patterns, respectively.

Genes showing expression hypervariability across all

three cell types were enriched in biological processes

related to chemotaxis, migration, and exocytosis

(Additional file 3). For neutrophil-specific HVGs, we

found gene ontology enrichment in oxidoreductase activ-

ity and cellular processes related to virus response and

parasitism (Additional file 3). Notable genes among those

with hypervariable expression values were CD9 (Fig. 2a),

CAPN2 (Fig. 2b), and FYN (Fig. 2c). CD9 showed

increased variability across all three cell types. The gene

encodes the CD9 antigen, a member of the tetraspanin

family. It functions as cell surface protein that forms

complexes with integrins to modulate cell adhesion and

migration and mediate signal transduction [29, 30]. The

neutrophil-specific HVGs CAPN2 and FYN encode a

calcium-activated neutral protease involved in neutro-

phil chemotaxis [31] and a tyrosine-protein kinase

implicated in intracellular signal transduction [32],

respectively.

Taken together, functional enrichment of HVG sets

revealed that many of the identified HVGs are involved

in mediating immune-related processes. This suggests

that neutrophils exhibit specific gene loci that are highly

adaptable to external cues.

Determinants of inter-individual cell type-specific gene

expression variability

Following the discovery and characterization of genes

that present hypervariable expression levels between in-

dividuals, we next aimed to delineate potential sources

of heterogeneity that can be associated with differences

between individuals. We hypothesized that these sources

mainly relate to genetic variation, age, sex, and lifestyle

factors.

First, we determined the subset of cell type-specific

HVGs that correlated with genetic variants. We re-

trieved gene sets with a local (cis) genetic component

designated by expression quantitative trait locus (eQTL)

and variance decomposition analyses, as described in the

BLUEPRINT Human Variation Panel (Additional file 1:

Figure S5a). In neutrophils, we found that 638 of the

1163 cell-specific HVGs (55%) associate with cis genetic

variants (Additional file 2), at least partly explaining the

observed gene expression variability. These data are con-

sistent with previous reports, highlighting the role of

genetic variants in mediating transcriptional variance

[33–35].

Second, we correlated cell type-specific HVGs with vari-

ous quantitative traits measured in individual donors:

demographic information (age, body mass index, and alco-

hol consumption); cellular parameters as assessed by a

Sysmex hematology analyzer (e.g., cell count and size);

and season (i.e., minimum/maximum temperature and

daylight hours of the day on which blood was drawn). The

results of this analysis are provided in Additional files 2

and 4. In neutrophils, we identified 49 HVGs that show

significant association with at least one of the measured

traits (Fig. 2d). For example, we found NFX1, a nuclear

transcription factor that regulates HLA-DRA gene tran-

scription [36], to associate with neutrophil granularity
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(Fig. 2e). An increase in neutrophil granularity can be re-

flective of a potential infection; this parameter is routinely

monitored in a clinical setting. FYN gene levels (reported

above) were negatively correlated with neutrophil percent-

age (Fig. 2f).

Third, we investigated whether sex was an important

source of inter-individual (autosomal) gene expression

variability. We found only two of the 1163 neutrophil-

specific HVGs, SEPT4 and TMEM63C, to be differen-

tially expressed between sexes (Additional file 1: Figure

S6a), and high expression variability was observed for

both sexes in these genes. However, in neutrophils we

identified a surprisingly large number of sex-specific dif-

ferentially expressed genes of small effect size, which

corresponded to important immune cell functions. We

present a detailed analysis of these genes in the “Sex-

specific differential gene expression across immune cell

types” section.

In conclusion, we found that genetic makeup is an im-

portant determinant of transcriptional variability. Donor

demographic and lifestyle factors also contributed to-

wards transcriptional variability.

Fig. 2 Characterization of cell type-specific hypervariable genes. a–c Increased expression variability of the genes CD9, CAPN2, and FYN across

three immune cell types. For each cell type, data points represent the expression values of the indicated gene in one individual. Cell types marked

by an arrowhead were found to show significantly increased variability compared to the other two cell types. While CD9 was found to be hypervariable

in all three cell types, CAPN2 and FYN show increased variability only in neutrophils, if contrasted to monocytes and T cells. d Heatmap

of Spearman’s correlation coefficients showing neutrophil-specific HVGs that associated with various donor-specific quantitative traits.

A total of 49 genes with increased inter-individual variability showed a significant association with at least one of the measured traits

(Benjamini–Hochberg-corrected P < 0.05, Spearman’s rank correlation). e NFX1 gene expression levels versus neutrophil granularity. f FYN gene

expression levels versus neutrophil percentage. BMI body mass index
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Neutrophil-specific hypervariable genes not mediated by

cis genetic effects

Next, we studied in detail the subset of neutrophil-

specific genes that showed hypervariable expression but

did not associate with local genetic variants (n = 525).

Although some of these genes could be mediated by dis-

tal (trans) genetic factors not detected in the BLUE-

PRINT Human Variation Panel, it is conceivable that

expression heterogeneity of this gene set was primarily

due to external triggers or stochastic fluctuations.

We generated a correlation matrix of expression

levels of the 525 HVGs and identified clusters of corre-

lated genes that may act in concert or be co-regulated.

The identified co-expression network contained 259

connected genes and consisted of three distinct gene

modules (Fig. 3). We inferred biological functions corre-

sponding to the three gene modules. All modules were

highly enriched for genes with important immune-related

functions.

The first and largest gene module (n = 105 genes,

green in Fig. 3) showed enrichment for inclusion body,

receptor signaling, and immune response activation. The

second module (n = 78 genes, yellow) was enriched in

biological processes related to RNA processing and

chaperone binding. The third gene module (n = 33

genes, red), contained many genes with particularly high

variation in their expression patterns. RSAD2, an

interferon-inducible antiviral protein, showed the highest

variability among many other interferon-inducible genes

present in module three. These genes are essential in

Fig. 3 Gene network and pathway analysis of neutrophil-specific HVGs not mediated by cis genetic effects. Co-expression network of

neutrophil-specific HVGs that did not correlate with genetic variants in cis, as reported in the BLUEPRINT Human Variation Panel. We identified

three gene modules, shown in green, yellow, and red. These modules were highly enriched for important biological functions in immune cells

(Additional file 5). Nodes represent genes and edges represent correlations in these genes’ expression values. Node sizes are determined by

expression variability of the corresponding gene, with bigger nodes indicating higher EV values. Nodes colored in gray belong to several

smaller gene clusters connecting the three main clusters of the network
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innate immune response to viral infections [37]. Gene

ontology and pathway analyses of all genes in the net-

work module further showed a strong enrichment for

response to type I interferon and several viral disease

pathways, including influenza A, herpes simplex, and

hepatitis (Additional file 1: Figure S7). A detailed func-

tional annotation of all three network modules is pro-

vided in Additional file 5.

Sex-specific differential gene expression across immune

cell types

In our analysis, we only detected differences in mean gene

expression levels between male and female donors with log-

fold change ≥1, for 21 genes in neutrophils, two of which

were also found to be HVGs in neutrophils (Additional file

1: Figure S6a). Nonetheless, when no minimum log-fold

change criterion was applied, we found that sex-dependent

mean expression of autosomal genes (Additional file 1:

Figure S6b) was highly abundant in neutrophils (n = 3357

genes) compared to Tcells (n = 895) and monocytes (n = 64).

As many autoimmune diseases have a higher incidence

in females, and females show generally elevated immune

responses compared to males [38], we hypothesized that

genes with elevated gene expression levels in females

may account for the increased incidence rates. Indeed,

genes with higher mean expression levels in neutrophils

derived from females (n = 682) were enriched in immune

response and related pathways (Additional file 6). In

contrast, genes with increased mean expression in

male donors (n = 2675) were enriched in basic cellular

processes, such as RNA processing and translation

(Additional file 6). In addition, in male donors, genes

were strongly enriched in cellular compartments, such

as nuclear lumen (Additional file 6).

Genome-wide patterns of differential DNA methylation

variability across immune cell types

Following the analyses of differential gene expression vari-

ability, we then applied our improved analytical approach

to determine the inter-individual variability of DNA

methylation levels at 440,905 CpG sites (“Methods”).

Again, our method accounted for confounding effects due

to the correlation between mean and variability measure-

ments (Additional file 1: Figure S8).

Concordant with our findings for gene expression

variability (Fig. 1b), we found that neutrophils had

the largest number of hypervariable CpG positions

(HVPs) overall (n = 1053), as well as cell-specific

HVPs (n = 261). Neutrophils and monocytes shared a

considerable number of HVPs (n = 380) in contrast to

T cells (Fig. 1e). Finally, we identified 212 HVPs com-

mon to all three cell types. An overview of the num-

ber of HVPs is shown in Fig. 1e.

Following the discovery of HVPs, we examined

whether these sites were overrepresented at particular

gene elements and epigenomic features. To this end,

we focused on cell type-specific HVPs, correlating

their DNA methylation levels with distinct cellular

characteristics and molecular pathways. In Additional

file 7, we summarize the detailed annotation of all

HVPs across the three profiled immune cell types. In

neutrophils, we found that cell type-specific HVPs

were depleted at CpG islands, which typically occur

near transcription start sites (P = 6.37 × 10−19, hyper-

geometric test; Fig. 4a), and enriched at intergenic re-

gions (P = 0.03; Fig. 4b).

We hypothesized that cell type-specific HVPs

localize at distal gene regulatory elements such as en-

hancer sequences, of which many are known to be also

cell type-specific [39]. To test this hypothesis, we re-

trieved reference chromatin state maps of primary

human monocytes, neutrophils, and T cells from the

data repository provided by the BLUEPRINT Consor-

tium [40]. Chromatin states are defined as spatially co-

herent and biologically meaningful combinations of

multiple chromatin marks [41, 42]. A total of five

chromatin states were designated, which correspond

to functionally distinct genomic regions, namely active

promoters, enhancers, and regions related to tran-

scriptional elongation and polycomb-repression. In

addition, a “variable” chromatin state was defined

here, indicating frequent changes of local chromatin

structure across samples of the same cell type. Indeed,

neutrophil-specific HVPs were found to be strongly

enriched in the enhancer (P = 1.32 × 10−12, hypergeo-

metric test; Fig. 4c) and variable chromatin states (P =

3.81 × 10−8; Fig. 4c).

Biological significance of immune cell type-specific

hypervariable CpGs

To interpret the potential cellular and biological im-

plications of cell type-specific hypervariable CpGs, we

annotated the genes in close proximity to each CpG

using the Genomic Regions Enrichment of Annota-

tions Tool (GREAT) [43]. This tool is valuable in

assigning putative functions to sets of non-coding

genomic regions [43].

Overall, we found enrichment in gene ontology terms

attributed to genes close to HVPs in a cell type-

dependent context (Additional file 8). For example,

genes located near neutrophil-specific HVPs were

enriched in gene signatures related to acute Streptococ-

cus pneumoniae infection and cysteine synthase activity;

the latter molecular process is important to hold off in-

fections [44]. Consistent with established neutrophil

function, this suggests that the identified HVPs play a

Ecker et al. Genome Biology  (2017) 18:18 Page 7 of 17



role in regulating the expression of neutrophil-specific

genes in response to infection.

In Fig. 4d, we provide an example of a neutrophil-

specific HVP at the promoter of the ITGB1BP1 gene, en-

coding the integrin beta 1 binding protein 1. Integrins are

essential cell adhesion proteins that induce intracellular

signaling pathways upon activation by matrix binding

[45, 46]. They function as signal transducers allowing

for rapid responses to cell surface signals [46]. Notably,

the highlighted HVP mapped to a variable chromatin

state at this locus, indicating that it influences local

chromatin dynamics upon an internal or external trig-

ger (Fig. 4d).

In conclusion, we show that cell type-specific HVPs

clustered in enhancer and dynamic chromatin states at

intergenic regions, suggesting they play a role in the

Fig. 4 Functional annotation of neutrophil-specific hypervariable CpG positions. a Enrichment of neutrophil-specific HVPs (n = 261) at genomic

features. We found neutrophil-specific HVPs to be depleted at CpG islands (P = 6.37 × 10−19, hypergeometric test). b Enrichment of neutrophil-

specific HVPs at gene elements. Neutrophil-specific HVPs were enriched at intergenic regions (P = 0.03). c Enrichment of neutrophil-specific HVPs

at distinct reference chromatin states in neutrophils. The HVPs were enriched at enhancer (P = 1.32 × 10−12) and “variable” (P = 3.81 × 10−8)

chromatin states. A variable chromatin state denotes a state that was observed in less than 80% of the biological replicates (n ≥ 5) within a

given cell type and indicates dynamic changes of local chromatin structure. d Regional plot of an exemplar neutrophil-specific HVP mapping

to the promoter of the ITGB1BP1 gene, encoding the integrin beta 1 binding protein 1. The statistically significant HVP is indicated with an

arrowhead. For each cell type, data points represent the DNA methylation β values (y-axis) at the indicated CpGs (x-axis) in one individual. For

each CpG site, we calculated the mean DNA methylation value (indicated with a larger data point). Every CpG site is annotated with regards

to genomic feature, gene element, and chromatin state. Abbreviations: M monocytes, N neutrophils, T naïve T cells, TSS transcription start site,

CGI CpG island, UTR untranslated region, prom promoter
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regulation of cell type-specific gene expression pro-

grams in response to environmental changes. Genes in

proximity to HVPs were enriched in gene sets relevant

to important immunological functions.

Determinants of inter-individual cell type-specific DNA

methylation variability

Subsequent to the identification and annotation of CpGs

with hypervariable DNA methylation levels, we explored

potential reasons for the discovered inter-individual

DNA methylation heterogeneity.

In agreement with our findings for gene expression

variability, we determined that a large proportion of cell

type-specific HVPs correlated with cis genetic variants

reported in the BLUEPRINT Human Variation Panel

(Additional file 1: Figure S5b). In neutrophils, we found

that 167 of the 261 cell type-specific HVPs (64%) asso-

ciated with DNA methylation quantitative trait loci

(Additional file 7). Our data further revealed that none

of the cell type-specific HVPs were differentially meth-

ylated between male and female donors. The complete

numerical results of all correlation analyses are pro-

vided in Additional file 9.

HVPs specific to monocytes showed frequent associ-

ation with seasonal effects, such as temperature and day-

light (n = 12/117 HVPs; Additional file 1: Figure S9).

This finding is consistent with recent analyses reporting

fluctuations of gene expression levels in monocytes de-

pending on the season and circadian rhythm [47]. Many

CD4+ T cell-specific HVPs particularly correlated with

donor age (n = 14/46 HVPs; Additional file 1: Figure S9),

in line with previous findings on age-related DNA

methylation changes in T cells [48, 49]. These alterations

are especially interesting in the context of immunose-

nescence, for which dysregulation in T-cell function is

thought to play a crucial role [50, 51]. Naïve CD4+ T

cells have further been reported to become progressively

longer-lived with increasing age [52], which possibly also

impacts their DNA methylation patterns.

Correlation of DNA methylation variability with

transcriptional output

DNA methylation at active gene elements can directly

control the regulation of gene expression. While meth-

ylated gene promoters usually lead to transcriptional

silencing, methylated gene bodies typically lead to tran-

scriptional activation [53]. We next aimed to probe this

paradigm in the context of gene expression and DNA

methylation variability.

We measured the correlation of DNA methylation

variability with transcriptional output at the level of sin-

gle genes. Specifically, we studied cell type-specific HVPs

that map to gene promoters and bodies, correlating their

DNA methylation level with the gene expression level in

the same individuals. At promoters, 30.1% (range 23.5–

33.3%) of HVPs showed a negative correlation with gene

expression (Fig. 5a), in support of the conventional role

of DNA methylation in gene repression. At gene bodies,

a small subset of HVPs (5.0%; range 0.0–10.8%) showed

a positive correlation with gene expression (Fig. 5b).

Additional file 10 gives a full account of these genes and

numeric results.

An example is provided in Fig. 5c, showing a monocyte-

specific HVP at the gene promoter of MSR1. At this CpG

site, DNA methylation levels were significantly correlated

with gene repression (Benjamini–Hochberg (BH)-cor-

rected P < 2.2 × 10−16, Spearman’s rank correlation).

MSR1, encoding the CD204 antigen, is involved in

endocytosis of modified low-density lipoproteins.

Relationship between DNA methylation variability and

gene expression variability

Finally, we examined global patterns of DNA methyla-

tion variability in relation to transcriptional variability.

In neutrophils, highly variable gene expression levels

were observed at promoters exhibiting highly variable

DNA methylation levels, and also at promoters showing

very stable DNA methylation levels (Fig. 5d). For DNA

methylation variability at gene bodies, this relationship

was weaker and showed a linear tendency (Fig. 5e). Im-

portantly, these global patterns were consistent across all

three immune cell types (Additional file 1: Figure S10).

To characterize these promoter regions further, we

counted the number of transcription factor binding mo-

tifs at these regions (“Methods”). We found an accumu-

lation of binding motifs at promoters presenting either

highly variable or very stable DNA methylation levels

(Fig. 5f; Additional file 1: Figure S8). Next, we explored

the properties of the 100 genes that showed both the

highest expression variability and the highest DNA

methylation variability at their promoters. We found

that of the 100 genes in each cell type, 66 were common

to all three cell types; in turn, ten of these 66 genes en-

code transcription factors. For example, in neutrophils

this included ELF1, a transcriptional regulator of genes

involved in immune response signaling pathways [54].

Neutrophil-specific HVGs were also enriched at genes

with promoter sequences that contain the consensus

binding motif of ELF1 (BH-corrected P = 1.2 × 10−5;

MSigDB analysis).

Taken together, these results provide evidence that

DNA methylation variability and gene expression vari-

ability could be mediated by the sequence-specific bind-

ing of transcription factors, such as ELF1 in neutrophils.

Future studies will be required to further investigate the

functional relevance of the observed correlation.
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Discussion

In this study, we investigated the transcriptional and epi-

genetic variability that enables immune cells to rapidly

adapt to environmental changes. To this end, we devised

a novel analytical strategy to assess the inter-individual

variability of gene expression and DNA methylation as a

measure of functional plasticity across three immune cell

types.

Our integrative analyses revealed two key insights.

Firstly, neutrophils exhibit substantially increased vari-

ability of both gene expression and DNA methylation

when directly compared to monocytes and T cells

(Additional files 2 and 7). Gene expression variability in

monocytes and T cells is either shared with neutrophils

or does not reach statistical significance in comparison

to neutrophils and/or the other cell type (Fig. 1b). We

hypothesized that neutrophils require higher gene ex-

pression variability in order to perform their unique

biological functions as first responders of the immune

system. Neutrophils have to readily react to changing

conditions, which is facilitated by highly variable gene

expression patterns. Functional enrichment and net-

work analyses characterizing the neutrophil-specific

hypervariability supported this hypothesis (Fig. 3;

Additional files 3, 5, 8; Additional file 1: Figure S7).

For example, genes with important functions in intra-

cellular signaling, cell adhesion, and motility showed

increased variability (Additional files 3 and 8). Such

variability is likely mediated or additionally influenced

by epigenetic mechanisms. Indeed, a subset of these

genes was found to be under sole epigenetic control,

such as RSAD2, a gene involved in interferon-

mediated immune response (Fig. 3). Notably, cell type-

specific differential DNA methylation variability was

also highest for neutrophils compared to the other cell

types (Fig. 1e).

Secondly, neutrophils display an increased number of

sex-specific gene expression differences compared to

Fig. 5 Relationship between DNA methylation and gene expression. a The proportion of cell type-specific HVPs that map to gene promoters and

are positively (red), negatively (blue), or not (white) associated with gene expression levels at Benjamini–Hochberg-corrected P < 0.05 (Spearman’s

rank correlation). We found that around one-third of these HVPs (30.1%; range 23.5–33.3%) are negatively correlated with gene expression. b

Same as panel a but for HVPs that map to gene bodies. c The negative correlation of MSR1 promoter DNA methylation with gene expression in

monocytes (r = −0.70, P < 2.2 × 10−16; Spearman’s rank correlation). d Correlation between DNA methylation variability (MV) and gene expression

variability at gene promoters in neutrophils. First, gene-wise MV values were calculated. Then, the values were ordered from low to high MV value,

grouped together in bins of 100 genes, and plotted against the EV values, maintaining the ordering by MV values. This binning strategy was

applied to reduce the complexity of the data. HVPs at gene promoters were defined as CpG sites annotated to TSS1500, TSS200, 5′ UTR, and first

exon, according to the Illumina 450 K array annotation manifest. Darker data points indicate the subset of bins that is further discussed in the

“Results” section. e Same as panel d but for HVPs that map to gene bodies. HVPs at gene bodies were defined as CpGs annotated to body and

3′ UTR, according to the 450 K array annotation manifest. f The number of consensus transcription factor (TF) binding motifs at promoter

regions versus MV values in neutrophils. Promoter regions were defined as ±500 bp around the transcription start site. Darker data points

indicate the subset of bins that is further discussed in the “Results” section
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monocytes and T cells (Additional file 1: Figure S6b).

Genes with elevated expression levels in neutrophils de-

rived from females were associated with immune-related

processes (Additional file 6). These results suggest a po-

tential mechanistic basis for the higher incidence rates

of many autoimmune diseases in females, such as mul-

tiple sclerosis, rheumatoid arthritis, and autoimmune

hepatitis.

We acknowledge that our study has limitations: The

data underlying the BLUEPRINT Human Variation

Panel was generated in different laboratories. While the

study design using systematic, paired analyses across cell

types and individuals, and stringent quality control and

statistical approaches reduced possible batch effects

(Additional file 1: Figure S1), residual technical effects

may still be present. Heterogeneity may also be partly

explained by differing stages and rates of cell activation

and cell death during experimental processing, as well as

unaccounted environmental effects such as circadian

rhythm, diet, physical activity, and psychological stress,

which could affect one cell type more than the other(s).

Differences in the proportions of cellular subpopula-

tions may contribute to overall elevated variability

between individuals. We have thus assessed the expres-

sion profiles of a number of genes that identify distinct

cellular subpopulations of neutrophils [55]: CXCR4,

CD63, CD62L (also known as SELL), and CD49 (also

known as ITGA4). We did not observe inter-individual

gene expression differences of surface markers corre-

sponding to known neutrophil subpopulations, with the

exception of CD49 (Additional file 1: Figure S11). We

note that CD49 gene expression levels did not correlate

with neutrophil granularity (BH-corrected P = 0.89,

Spearman’s rank correlation). These data suggest that

variation in neutrophil subpopulations is unlikely to be

a main determinant of increased inter-individual vari-

ability. Future studies are required to corroborate these

results and to determine whether uncharacterized cel-

lular subpopulations may contribute to the observed

heterogeneity.

Novel transcriptome and epigenome profiling (e.g.,

scM&T-seq [56] and scWGBS [57]) and computational

tools (e.g., single-cell latent variable models (scLVM)

[58]) are now available to allow for measurements of

gene expression and DNA methylation at the level of

single cells. Such approaches have already been success-

fully used to quantify cell-to-cell expression variation

and to identify otherwise undetected subpopulations of

primary human immune cells [59–61]. Multi-omics sin-

gle cell assays that capture not only transcriptomes and

epigenomes but also proteomes and metabolomes will

be used for the comprehensive functional annotation of

single cells [62]. The application of these approaches will

facilitate the dissection of cellular subpopulations and

reveal valuable additional information about the func-

tional heterogeneity of neutrophils.

In summary, we provide a novel analytical strategy and

comprehensive resource for future research into the

plasticity of immune cells. For our analyses, we exploited

the unique resource provided by the BLUEPRINT

Human Variation Panel, enabling us to conduct the most

comprehensive study of differential variability in primary

cell types to date. We have prepared all data sets gener-

ated in this study as an easily accessible and freely avail-

able online resource, comprising all results that showed

statistical significance (n = 3378) [63]. The portal enables

the research community to further characterize the hy-

pervariable gene–phenotype associations (Additional

files 4 and 9) using experimental approaches. For ex-

ample, gene expression and DNA methylation hyper-

variability could be correlated to pathophysiological

triggers of immune responses, such as interferon-γ and

lipopolysaccharide [64]. These future studies will help

elucidate how increased variability of gene expression and

DNA methylation relate to functional diversity and effect-

ive adaptability during homeostatic and potentially patho-

genic immune processes.

Conclusions
We found that neutrophils show increased variability in

both their gene expression and DNA methylation pat-

terns compared to monocytes and T cells. Our data

suggest that increased variability in neutrophils may

lead to cellular plasticity, enabling rapid adaptation to

new or changing environments such as inflammation

and pathogen intrusion. A detailed molecular under-

standing of the role of cellular heterogeneity in the hu-

man immune system is crucial to specifically target a

pathogenic cellular subset without compromising im-

munity, ultimately advancing therapeutic design and

treatment strategies in hematopoietic and immuno-

logical diseases.

Methods
Sample collection and isolation of cell subsets

As part of the BLUEPRINT Human Variation Panel, a

total of 200 healthy blood donors were recruited from

the NIHR Cambridge BioResource [65]. Donors were

on average 55 years of age (range 20–75 years) and 46%

of donors were male. For all donors, a unit of whole

blood (475 ml) was collected in 3.2% sodium citrate, of

which an aliquot was collected in EDTA for genomic

DNA purification and a full blood count using a Sys-

mex hematology analyzer. Blood was processed within

4 h of collection. We purified CD14+CD16− monocytes,

CD66b+CD16+ neutrophils, and naïve CD4+CD45RA+

T cells using a multi-step purification strategy. In brief,

whole blood was diluted 1:1 in a buffer of Dulbecco’s
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phosphate-buffered saline (PBS, Sigma) containing

13 mM of sodium citrate tribasic dehydrate (Sigma)

and 0.2% human serum albumin (HSA, PAA), and then

separated using an isotonic Percoll gradient of 1.078 g/

ml (Fisher Scientific). Peripheral blood mononuclear

cells were collected, washed twice with buffer, diluted

to 25 million cells/ml, and separated into a monocyte-

rich layer and a lymphocyte-rich layer using a Percoll

gradient of 1.066 g/ml. Cells from each layer were

washed with PBS containing 13 mM of sodium citrate

and 0.2% HSA, and subsets purified using a strategy

based on magnetic beads conjugated to highly specific

antibodies. First, CD16+ cells were depleted from the

monocyte-rich layer using CD16 MicroBeads (Miltenyi)

according to the manufacturer’s instructions. Cells were

washed in PBS (13 mM of sodium citrate and 0.2% HSA)

and CD14+ cells were positively selected using CD14

MicroBeads (Miltenyi). Next, CD4+ naïve T cells were

negatively selected using an EasySep Human Naive CD4+

T Cell Enrichment Kit (StemCell) according to the manu-

facturer’s instructions. Finally, the dense layer of cells from

the 1.078 g/ml Percoll separation was lysed twice using an

ammonium chloride buffer to remove erythrocytes. The

resulting cells (including neutrophils and eosinophils)

were washed, and neutrophils positively selected using

CD16 MicroBeads (Miltenyi) following the manufacturer’s

instructions. The purity of each cell preparation was

assessed by multi-color fluorescence-activated cell sort-

ing (FACS). The following antibodies were used: CD14

(M4P9, BD Biosciences) and CD16 (B73.1/Leu-11c, BD

Biosciences) for monocytes; CD16 (VEP13, MACS,

Miltenyi) and CD66b (BIRMA 17C, IBGRL-NHS) for

neutrophils; and CD4 (RPA-T4, BD) and CD45RA

(HI100, BD) for T cells. Purity was on average 95% for

monocytes, 98% for neutrophils, and 93% for T cells.

Purified cell aliquots were pelleted, stored at −80 °C,

and transported to the processing institutes. Further

details about the experimental protocols and quality

control assessments are provided by the BLUEPRINT

Human Variation Panel.

RNA-sequencing assay and data preprocessing

RNA-seq sample preparation and library creation were

performed for monocytes and neutrophils at the Max

Planck Institute for Molecular Genetics (Germany), and

for T cells at McGill University (Quebec, Canada). Puri-

fied cell aliquots were lysed and RNA extracted using

TRIZOL reagent (Life Technologies) following the man-

ufacturer’s protocol. Sequencing libraries were prepared

using a TruSeq Stranded Total RNA Kit with Ribo-Zero

Gold (Illumina). Adapter-ligated libraries were amplified

and indexed via PCR. Libraries were sequenced using

100-bp single-end reads for monocytes and neutrophils

and paired-end reads for T cells. Reads from each

RNA-seq library were assessed for duplication rate and

gene coverage using FastQC [66]. Then, PCR and se-

quencing adapters were trimmed using Trim Galore.

Trimmed reads were aligned to the GRCh37 reference

genome using STAR [67]. We used GENCODE v15 to

define the annotated transcriptome. Read counts of

genes and exons were scaled to adjust for differences in

total library size using DESeq2 [68]. We adjusted for

batch effects related to sequencing center using an em-

pirical Bayesian method, ComBat [69]. Batch effects

were assessed using cross-over samples, i.e., identical

samples of each cell type per sample batch that were

sent to the reciprocal center not processing the cell

type. Visual inspection of the results by multidimen-

sional scaling showed a successful reduction of batch

effects following the application of ComBat (Additional

file 1: Figure S1a). In addition, we calculated the correl-

ation coefficients of all cross-over samples after batch

effect correction. We obtained a mean correlation coef-

ficient of r = 0.96 (n = 15 cross-over samples), indicating

data consistency across the processing centers. An

overview of the RNA-seq data quality assessment is

provided in Additional file 1: Figure S2.

Quantification of gene expression

Analyses on RNA-seq data were performed on exon-

based read counts per gene. We omitted all genes not

expressed in at least 50% of all samples in each of the

three cell types, leaving only genes that were robustly

expressed in all three cell types. In addition, we in-

cluded only protein-coding genes, resulting in a final

set of 11,980 genes. RNA-seq read counts were con-

verted into expression log counts by applying the for-

mula log2(x + 1).

Illumina Infinium HumanMethylation450 assay and data

preprocessing

For monocytes and neutrophils, cell lysis and DNA ex-

traction were performed at the University of Cambridge

(UK), followed by bisulfite conversion and DNA methy-

lation profiling at University College London (UK). T

cells were processed at McGill University (Quebec,

Canada). DNA methylation levels were measured using

Infinium HumanMethylation450 assays (Illumina) ac-

cording to the manufacturer’s protocol. All 450 K array

data preprocessing steps were carried out using estab-

lished analytical methods incorporated in the R package

minfi [70]. First, we performed background correction

and dye-bias normalization using NOOB (normal-expo-

nential convolution using out-of-band probes). The

method estimates the background mean intensity using

the over 135,000 out-of-band control probes, which pro-

vide signals in the opposite fluorescent channel from the

probe design. NOOB effectively adjusts for differences in
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background distribution and average intensities in the

fluorescent channels between samples run on different

arrays [71]. Then, we applied SWAN (subset-quantile

within array normalization), a within array normalization

method that reduces the differences in β-value distribu-

tion between Infinium I and II probe types [72]. Next,

we filtered out probes based on the following criteria:

(1) low detection P value (P ≥ 0.01) in at least one sam-

ple; (2) bead count of less than three in at least 5% of

samples; (3) mapping to sex chromosomes; (4) ambigu-

ous genomic locations [73]; (5) non-CG probes; and (6)

containing SNPs (MAF ≥ 0.05) within 2 bp of the probed

CG. Finally, we adjusted for batch effects due to process-

ing center and analysis date using an empirical Bayesian

framework [69], as implemented in the ComBat function

of the R package SVA [74]. Multidimensional scaling

analyses following the application of ComBat revealed

no apparent batch effects (Additional file 1: Figure S1b).

After batch effect correction, the mean correlation coef-

ficient across cross-over samples was r = 0.99 (n = 9 sam-

ples), confirming data consistency across processing

centers. An assessment of the DNA methylation data

quality is shown in Additional file 1: Figure S3. In paral-

lel, we performed singular value decomposition (SVD) of

the DNA methylation data, which determined the com-

ponents of variation (Additional file 1: Figure S3c).

Quantification of DNA methylation

The final data set that passed quality control consisted

of 440,905 CpG sites. DNA methylation values were rep-

resented as either M values or β values. The methylation

M value is the log2 ratio of the intensities of the methyl-

ated probe versus the unmethylated probe on the 450 K

array, while the β value is the ratio of the methylated

probe intensity and the overall intensity. All analyses of

DNA methylation data were performed using M values.

Due to their easier interpretability (i.e., 0–100% DNA

methylation), β values were used for the visualization of

DNA methylation data in most figures.

Analysis of differential variability

To assess differential variability across the three cell

types, we applied a combined statistical approach based

on DiffVar [75], which is embedded in the framework of

limma [76, 77]. DiffVar calculates the median absolute

deviation (MAD) from the group mean of expression

levels of a particular gene, or DNA methylation at a

given CpG site, across all individuals for two conditions,

e.g., two distinct cell types. Then, a moderated t-test is

used to test for a significant increase or decrease in

MAD value between the two conditions. However, we

found that the MAD variability measurement employed

by DiffVar is correlated with mean levels (Additional file

1: Figures S4 and S8), which could potentially confound

the assessment of variability. Therefore, we included an

additional measurement of variability that corrects for

the dependency of variability measurements on the

mean [8], here referred to as EV (gene expression vari-

ability value) and MV (DNA methylation variability

value). The corresponding algorithm models variance as

a function of the mean and then calculates the ratio of

the observed variance to expected variance in order to

get a variability measurement independent of the mean.

Differential variability was tested in three group-wise

comparisons. Statistical significance was defined as BH-

corrected [78] P < 0.05 and EV/MV difference ≥10% rela-

tive to the observed range of EV/MV values. For each

cell type, both contrasts in which the cell type is in-

volved were considered to define statistically significant

differential variability. For example, for a gene to be a

neutrophil-specific HVG, it must show significantly in-

creased variability in both the comparison versus mono-

cytes and versus T cells. For a gene to be classified as

hypervariable across two cell types (shared hypervariabil-

ity), it must exhibit significantly increased variability in

the two corresponding cell types but low variability in

the third. Thus, no gene can appear in more than one

list. The statistical tests were performed in a paired fash-

ion, taking into account that all three cell types were de-

rived from the same individuals. This procedure corrects

for potential differences related to individuals and sam-

ple processing.

Analysis of variability common to all three cell types

To identify HVGs common to all three cell types, we ap-

plied a rank-based approach. We ordered both MAD

and EV values of all genes in the three cell types from

high to low variability and then took the top n genes

with the highest variability across all three cell types,

where n corresponds to the mean number of results ob-

tained for the gene lists of differential variability. Specif-

ically, n = 271 for gene expression variability and n = 212

for DNA methylation variability.

Gene set enrichment analyses

For HVGs, we applied GOseq using the default parameters

and set ‘use_genes_without_cat’ = FALSE, thus ignoring

genes without an annotated category for the calculation of

P values [28]. With regards to HVPs, we analyzed the bio-

logical functions of flanking genes with GREAT [43] using

the standard parameters: association rule = basal + exten-

sion (constitutive 5 kb upstream, 1 kb downstream, up to

1 Mb extension); curated regulatory domains = included.

In both analyses, we used the set of analyzed features as

background, and the cutoff for statistical significance was

set at BH-corrected P < 0.25.
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Gene co-expression network and pathway analysis

For neutrophil-specific HVGs not associated with cis

genetic variants in the BLUEPRINT Human Variation

Panel, we first constructed a co-regulation network by

calculating gene expression correlations. The threshold

of gene correlations was set at Pearson’s r > 0.6. Uncon-

nected genes were removed. The resulting correlation

network was then further analyzed using Cytoscape [79].

Clusters were identified by the agglomerative clustering

method FAG-EC [80] of the ClusterViz plugin. Enrich-

ment analyses of resulting gene clusters were performed

using clueGO [81], setting the Kappa score to 0.4 and

the cutoff for statistical significance at BH-corrected

P < 0.05. All networks were visualized using Gephi [82].

Correlation analyses

Associations between both gene expression and DNA

methylation levels with donor-specific quantitative traits,

cellular parameters, as well as weather and seasonal ef-

fects were assessed by calculating Spearman’s rank cor-

relation coefficients (rho) and their corresponding P

values. Results were considered statistically significant at

BH-corrected P < 0.05. This threshold was also used for

the correlation analyses between DNA methylation and

gene expression data.

Analyses of seasonal effects

We downloaded historical raw weather data for the

minimum and maximum daily temperature in London

Heathrow (UK) for the period of data collection from

the National Climatic Data Centre (USA) [83]. We ap-

plied linear interpolation to account for missing values.

Additionally, we downloaded daylight hours for London

[84]. The obtained data were then correlated with gene

expression and DNA methylation values corresponding

to the date of blood donation using Spearman’s rank

correlation coefficient (see details above).

Analyses of sex-specific differential gene expression

In each cell type, mean gene expression and DNA

methylation differences between male and female donors

were identified using limma [76, 77]. A moderated t-test

was performed and statistical significance defined as

BH-corrected P < 0.05 and log-fold change ≥1. Results

could be driven by differences in menopause status be-

tween female donors. Therefore, we performed the same

analysis on only the subset of donors who are younger

than 50 years and obtained very similar results com-

pared to the complete donor group.

Functional annotation of hypervariable CpGs

For the enrichment analyses with regards to gene ele-

ments and epigenomic features, we used the annota-

tion provided by the Illumina 450 K array manifest.

Enrichment was assessed by repeated random sam-

pling (n = 1000) using all probes that passed quality

control (n = 440,905), as previously described [85].

Transcription factor motifs analysis at gene promoter

regions

Consensus transcription factor binding motifs were re-

trieved from the database “JASPAR_CORE_2016_vertebra-

tes.meme” [86]. Using FIMO [87], we scanned for

transcription factor binding motifs (P < 1 × 10−5) at pro-

moter regions, defined as ±500 bp around the transcription

start site of genes listed in the reference gene set

“UCSC.hg19.knownGene”.

Programming language

If not indicated otherwise, analyses were performed

using R v3 (R Development Core Team, 2008) and Bio-

conductor [88].

Additional files

Additional file 1: Supplementary figures. Supplementary document

(.pdf) containing all Supplementary figures. (PDF 1165 kb)

Additional file 2: Annotation of genes showing hypervariable gene

expression. For cell type-specific hypervariable genes, we provide the

results of the correlation analyses of gene expression levels with genetic

variation, donor-specific information, cell counts in peripheral blood, as

well as seasonal data (corresponding to the date of blood donation).

Only correlations with BH-corrected P < 0.05 are reported (indicated by

“TRUE”). For all traits other than genetic variation the results presented are

based on Spearman correlation tests (see Additional file 4 for correlation

coefficients and P values). More detailed information, such as the corresponding

SNP IDs for expression QTLs (obtained by the BLUEPRINT Human Variation

Panel), can be found in our data portal available online at: http://blueprint-dev.-

bioinfo.cnio.es/WP10/hypervariability. (XLSX 467 kb)

Additional file 3: Gene ontology enrichment of genes showing

hypervariable expression. Ontology enrichment analysis of genes

showing hypervariable expression using GOseq. (XLSX 83 kb)

Additional file 4: Correlation of cell type-specific hypervariable

gene expression with donor information. Correlation of cell type-specific

hypervariable gene expression with donor information. (XLSX 358 kb)

Additional file 5: Neutrophil network gene ontology enrichment.

Ontology enrichment analyses of three modules of a correlation network

of neutrophil-specific hypervariable genes not mediated by cis genetic

effects using ClueGO. (XLSX 68 kb)

Additional file 6: Gene ontology enrichment of sex-specific differentially

expressed genes in neutrophils. Ontology enrichment analysis of differen-

tially expressed genes between males and females in neutrophils using

GOseq. (XLSX 57 kb)

Additional file 7: Annotation of CpGs showing hypervariable DNA

methylation. See also description of Additional file 2 for further details

about the information provided. Correlation coefficients and P values can

be found in Additional file 9. Corresponding SNP IDs for methylation

QTLs can be retrieved from our data portal available online at: http://

blueprint-dev.bioinfo.cnio.es/WP10/hypervariability. (XLSX 211 kb)

Additional file 8: Gene ontology enrichment of genes showing

hypervariable DNA methylation. Ontology enrichment analysis of genes

in proximity to CpGs showing hypervariable DNA methylation using

GREAT. (XLSX 60 kb)
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Additional file 9: Correlation of cell type-specific hypervariable DNA

methylation with donor information. Correlation of cell type-specific

hypervariable DNA methylation with donor information. (XLSX 118 kb)

Additional file 10: Relationship between DNA methylation and gene

expression. Relationship between DNA methylation and gene expression

among genes showing cell type-specific DNA methylation hypervariability.

(XLSX 29 kb)
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