
VU Research Portal

Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and
functional pathways

The 23andMe Research Team

published in
Nature Genetics

2019

DOI (link to publisher)
10.1038/s41588-018-0333-3

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
The 23andMe Research Team (2019). Genome-wide analysis of insomnia in 1,331,010 individuals identifies
new risk loci and functional pathways. Nature Genetics, 51(3), 394-403. https://doi.org/10.1038/s41588-018-
0333-3

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 27. Aug. 2022

https://doi.org/10.1038/s41588-018-0333-3
https://research.vu.nl/en/publications/08af5d9e-8621-41f1-97c5-e77a1063495f
https://doi.org/10.1038/s41588-018-0333-3
https://doi.org/10.1038/s41588-018-0333-3


ARTICLES
https://doi.org/10.1038/s41588-018-0333-3

1Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, 
Amsterdam, the Netherlands. 2Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands. 
3Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. 4UCL Institute of 
Neurology, Queen Square, London, UK. 5Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. 6Department of 
Social, Health and Organisational Psychology, Utrecht University, Utrecht, the Netherlands. 7Department of Experimental Psychology, Helmholtz Institute, 
Utrecht University, Utrecht, the Netherlands. 8Department of Clinical Genetics, Section of Complex Trait Genetics, Amsterdam Neuroscience,  
VU University Medical Center, Amsterdam, The Netherlands. 9Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands.  
10A list of members and affiliations appears at the end of the paper.1123andMe, Inc., Mountain View, CA, USA. 12Department of Genetics, University of 
North Carolina, Chapel Hill, NC, USA. 13Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA. 14Department of Molecular and 
Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The 
Netherlands. 15Department of Sleep and Cognition, Netherlands Institute for Neuroscience (an institute of the Royal Netherlands Academy of Arts 
and Sciences), Amsterdam, The Netherlands. 16Departments of Psychiatry and Integrative Neurophysiology, Center for Neurogenomics and Cognitive 
Research, Amsterdam Neuroscience, VU University, Amsterdam University Medical Center, Amsterdam, The Netherlands. 17These authors contributed 
equally: Eus J.W. Van Someren, Danielle Posthuma. *e-mail: d.posthuma@vu.nl

I
nsomnia is the second most prevalent mental disorder1. One-third 
of the general population reports insomnia complaints. The diag-
nostic criteria for insomnia disorder2 (that is, difficulties with ini-

tiating or maintaining sleep with accompanying daytime complaints 
at least three times a week for at least three months, which cannot be 
attributed to inadequate circumstances for sleep3) are met by 10% of 
individuals, and up to one-third of older age individuals4. Insomnia 
contributes significantly to the risk and severity of cardiovascular, 
metabolic, mood, and neurodegenerative disorders2. Despite evi-
dence of a considerable genetic component (heritability 38–59%5), 
only a small number of genetic loci moderating the risk of insom-
nia have been identified thus far. Recent genome-wide association 
studies (GWAS)6,7 for insomnia complaints (n =  113,006) demon-
strated its polygenic architecture and implicated three genome-
wide significant (GWS) loci and seven genes. A prominent role was 

reported for MEIS1, which is associated with insomnia complaints6,7 
and restless legs syndrome (RLS)8 through pleiotropy and pheno-
typic overlap; yet, the role of other genes was not unambiguously 
shown. We set out to substantially increase the sample size to allow 
the detection of more genetic risk variants for insomnia complaints, 
which may aid in understanding its neurobiological mechanisms. 
By combining data collected in the UK Biobank (UKB) version 29 
(n =  386,533) and 23andMe, a privately held personal genomics and 
biotechnology company10,11 (n =  944,477), we obtained an unprec-
edented sample size of 1,331,010 individuals. Insomnia complaints 
were measured using questionnaire data; an independent sample 
(the Netherlands Sleep Register)12, which gives access to similar 
question data, as well as clinical interviews assessing insomnia dis-
order (see Supplementary Note), was used to validate the specific 
questions so that they were good proxies of insomnia disorder. 
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Insomnia is the second most prevalent mental disorder, with no sufficient treatment available. Despite substantial heritability, 
insight into the associated genes and neurobiological pathways remains limited. Here, we use a large genetic association sam-
ple (n = 1,331,010) to detect novel loci and gain insight into the pathways, tissue and cell types involved in insomnia complaints. 
We identify 202 loci implicating 956 genes through positional, expression quantitative trait loci, and chromatin mapping. The 
meta-analysis explained 2.6% of the variance. We show gene set enrichments for the axonal part of neurons, cortical and sub-
cortical tissues, and specific cell types, including striatal, hypothalamic, and claustrum neurons. We found considerable genetic 
correlations with psychiatric traits and sleep duration, and modest correlations with other sleep-related traits. Mendelian ran-
domization identified the causal effects of insomnia on depression, diabetes, and cardiovascular disease, and the protective 
effects of educational attainment and intracranial volume. Our findings highlight key brain areas and cell types implicated in 
insomnia, and provide new treatment targets.
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We found 202 risk loci for insomnia; extensive functional in silico 
analyses showed the involvement of specific tissue and cell types. 
Mendelian randomization identified causal effects of insomnia on 
metabolic and psychiatric traits.

Results
Meta-analysis yields 202 risk loci. The UKB assessed insomnia 
complaints (hereafter referred to as ‘insomnia’) with a touchscreen 
device, whereas 23andMe research participants completed online 
surveys (Supplementary Tables 1 and 2). The assessment of insom-
nia in both samples shows high accuracy for insomnia disorder in 
the UKB and somewhat lower accuracy in 23andMe (sensitivity/
specificity: UKB =  98/96%; 23andMe =  84/80%) (see Supplementary 
Note). The prevalence of insomnia was 28.3% in the UKB version 2 
sample, 30.5% in the 23andMe sample, and 29.9% in the combined 
sample, which is in keeping with previous estimates for people of 
advanced age in the UK4 and elsewhere13,14. Older people dominate 
the UKB (mean age =  56.7, s.d. =  8.0) and 23andMe (two-thirds of 
the sample older than 45, one-third older than 60 years of age) sam-
ples. Prevalence was higher in females (34.6%) than males (24.5%), 
yielding an odds ratio (OR) of 1.6, which is close to the 1.4 OR 
reported in a meta-analysis15.

Quality control was conducted separately per sample, following 
standardized, stringent protocols (see Methods). The GWAS was run 
separately per sample (UKB: n =  386,533; 23andMe: n =  944,477) 
(Supplementary Fig. 1), and then meta-analyzed with METAL16 
by weighing the single nucleotide polymorphism (SNP) effect by 
sample size (see Methods). We first analyzed males and females 
separately (Supplementary Fig. 2) and observed a high genetic cor-
relation between the sexes (rg = 0.92, s.e.m. =  0.02; Supplementary 
Table 3), indicating strong overlap of genetic effects. Owing to the 
large sample size, the rg of 0.92 was significantly different from 1 
(one-sided Wald test, P = 2.54 ×  10−6), suggesting a small role for 
sex-specific genetic risk factors, consistent with our previous study6. 
However, since sex-specific effects were relatively small, we focused 
on identifying genetic effects important in both sexes and contin-
ued with the combined sample. (Supplementary Tables 4 and 5 and 
the Supplementary Note provide sex-specific results.) The genetic 
correlation of insomnia between the full UKB and 23andMe results 
was rg =  0.69 (s.e.m. =  0.02).

We observed a significant polygenic signal in the GWAS (lambda 
inflation factor =  1.808), which could not be ascribed to spuri-
ous association (linkage disequilibrium score intercept =  1.075)17 
(Supplementary Fig. 3a). Meta-analysis identified 11,990 GWS SNPs 
(P < 5 ×  10−8), represented by 248 independent lead SNPs (r2 <  0.1), 
located in 202 genomic risk loci (Fig. 1a, Supplementary Data Set 1,  
and Supplementary Tables 6 and 7). All lead SNPs showed concor-
dant signs of effect in both samples (Supplementary Fig. 3b). We 
confirmed two (chr2:66,785,180 and chr5:135,393,752) out of six 
previously reported loci for insomnia6,7 (Supplementary Table 8). 
Polygenic score (PGS) prediction in three randomly selected hold-
out samples (n =  3 ×  3,000) estimated the current results to explain 
up to 2.6% of the variance in insomnia (Fig. 1b, Supplementary Fig. 4,  
and Supplementary Table 9).

The SNP-based heritability (h2
SNP) was estimated at 7.0% 

(s.e.m. =  0.002). Partitioning the heritability by functional catego-
ries of SNPs (see Methods) showed the strongest enrichment of h2

SNP 
in conserved regions (enrichment =  15.8, P = 1.57 ×  10−14). In addi-
tion, h2

SNP was enriched in common SNPs (minor allele frequency 
(MAF) >  0.3) and depleted in rarer SNPs (MAF <  0.01; Fig. 1c and 
Supplementary Table 10).

We used FUMA18 to functionally annotate all SNPs in the risk 
loci that were in linkage disequilibrium (r2 ≥ 0.6) with one of the 
independent significant SNPs (see Methods). The majority of the 
22,068 annotated SNPs (76.8%) were in open chromatin regions19 
as indicated by a minimum chromatin state of 1–7 (Fig. 1d and 

Supplementary Table 11). In line with findings for other traits6,20, 
about half of these SNPs were in intergenic (35.5%) or non-cod-
ing RNA (13.0%) regions (Fig. 1e); of these, 0.72% were highly 
likely to have a regulatory function as indicated by a RegulomeDB 
score <  2 (see Methods). However, of these, 51.5% were located 
inside a protein-coding gene and 0.81% were exonic. Of the 177 
exonic SNPs, 71 were exonic non-synonymous (Supplementary 
Table 12 and Supplementary Note). WDR90 included four exonic 
non-synonymous SNPs (rs7190775, rs4984906, rs3752493, and 
rs3803697) all in high linkage disequilibrium with the same inde-
pendent significant SNP (rs3184470). There were two exonic 
non-synonymous SNPs with extremely high combined annota-
tion-dependent depletion (CADD) scores21, suggesting a strong 
deleterious effect on protein function: rs13107325 in SLC39A8 
(locus 56, P = 8.31 ×  10−16) with the derived allele T (MAF =  0.03), 
associated with an increased risk of insomnia; and rs35713889 in 
LAMB2 (locus 42, P = 1.77 ×  10−7), where the derived allele T of 
rs35713889 (MAF =  0.11) was also associated with an increased 
risk of insomnia complaints. Supplementary Table 13 provides a 
detailed overview of the functional impact of all variants in the 
genomic risk loci.

Genes implicated in insomnia. To obtain an insight into the (func-
tional) consequences of individual GWS SNPs, we used FUMA18 
to apply three strategies to map associated variants to genes (see 
Methods). Positional gene mapping aligned SNPs to 412 genes 
by location. Expression quantitative trait loci (eQTL) gene map-
ping matched cis-eQTL SNPs to 594 genes whose expression levels 
they influence. Chromatin interaction mapping annotated SNPs 
to 159 genes based on three-dimensional DNA–DNA interactions 
between genomic regions of the GWS SNPs and nearby or distant 
genes (Supplementary Data Set 2, Supplementary Table 14, and 
Supplementary Note). Ninety-two genes were mapped by all three 
strategies (Supplementary Table 15), and 336 genes were physically 
located outside the risk loci but were implicated by eQTL associa-
tions (306 genes), chromatin interactions (16 genes), or both (14 
genes). Several genes were implicated by GWS SNPs originating 
from two distinct risk loci on the same chromosome (Fig. 2a,b): 
MEIS1, located on chromosome 2 in the strongest associated locus 
(locus 20), was positionally mapped by 51 SNPs and mapped by 
chromatin interactions in 10 tissue types, including cross-loci inter-
actions from locus 21, and is a known gene involved in insomnia6; 
and LRGUK, located on chromosome 7 in locus 106, was position-
ally mapped by 22 SNPs and chromatin interactions in 3 tissue 
types, including cross-loci interactions from locus 105. LRGUK 
was also implicated by eQTL associations of 125 SNPs in 14 gen-
eral tissue types. LRGUK was previously implicated in type 2 dia-
betes22 and autism spectrum disorder23 (disorders with prominent 
insomnia). However, it is not yet directly implicated in sleep-related 
phenotype, and is the most likely candidate to explain the observed 
association at loci 105 and 106.

Apart from linking individually associated genetic variants to 
genes, we conducted a genome-wide gene association analysis 
(GWGAS) using MAGMA24. GWGAS provides aggregate associa-
tion P values based on all variants located in a gene, and comple-
ments the three FUMA mapping strategies (see Methods). GWGAS 
identified 517 associated genes (Fig. 2c and Supplementary Table 
16). The top gene BTBD9 (P = 8.51 ×  10−23) on chromosome 6 in 
locus 81 was also mapped using positional and eQTL mapping (tis-
sue type: left ventricle of the heart), and is part of a pathway that 
regulates circadian rhythms. BTBD9 has been associated with RLS, 
periodic limb movement disorder25,26, and Tourette syndrome27. 
Involvement in sleep regulation was shown in Drosophila28; mouse 
mutants show fragmented sleep29 and increased levels of dynamin 
130, a protein that mediates the increased sleep onset latency that 
follows presleep arousal31.
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Of the 517 MAGMA-based associated genes, 222 were outside of 
the GWAS risk loci, and 309 were also mapped by FUMA. In total, 
956 unique genes were mapped by at least one of the three FUMA 

gene mapping strategies or by MAGMA (Supplementary Fig. 5). 
Of these, MEIS1, MED27, IPO7, and ACBD4 confirmed previous 
results6,7 (Supplementary Table 17). Sixty-two genes were implicated 
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by all four mapping strategies, indicating that, apart from a GWS 
gene-based P value, there were: (1) GWS SNPs located in proximity 
of or inside these genes; (2) GWS SNPs associated with differential 
expression of these genes; and (3) GWS SNPs involved in genomic 
regions interacting with these genes. We note that genes that were 
indicated by positional mapping and GWS gene-based P values, but 
not via eQTL or chromatin interaction mapping (n =  54 genes), may 
be of equal importance; yet, they are more likely to exert their influ-
ence on insomnia via structural changes in gene products (that is, at 
the protein level) and not via quantitative changes in the availability 
of gene products.

Implicated pathways, tissues, and cell types. To test whether 
GWS genes converged in functional gene sets and pathways, we 
conducted gene-set analyses using MAGMA (see Methods). We 
tested the associations of 7,473 gene sets: 7,246 sets derived from 
the MSigDB32; gene expression values from 54 tissues from the 
GTEx database33; and cell-specific gene expression in 173 types of 
brain cells (Fig. 2d and Supplementary Table 18). Competitive test-
ing was used and a Bonferroni-corrected threshold of P < 6.7 ×  10−6 
(0.05/7,473) to correct for multiple testing. Of the MSigDB gene 
sets, three Gene Ontology gene sets survived multiple testing: 
Gene Ontology:locomotory behavior (P = 8.95 ×  10−7); Gene 
Ontology:behavior (P = 5.23 ×  10−6); and Gene Ontology:axon 
part (P = 4.25 ×  10−6). Twelve genes (LRRK2, CRH, DLG4, DNM1, 

DRD1, DRD2, DRD4, GRIN1, NTSR1, SNCA, CNTN2, and CALB1) 
were included in all of these gene sets, and two of these (SNCA and 
DNM1) had a GWS gene-based P value (Supplementary Table 19).  
SNCA encodes α -synuclein and has been implicated in rapid eye 
movement (REM) sleep behavior disorder34 and Parkinson’s dis-
ease35. Altered expression in mice changes sleep and wake elec-
troencephalogram spectra36 along the same dimensions that have 
been implicated in insomnia disorder37. DNM1 encodes the syn-
aptic neuronal protein dynamin 1, which is increased in BTBD9 
mutant mice30 and mediates the sleep-disruptive effect of presleep 
arousal (see earlier; BTBD9 is the top associated gene). Conditional 
gene-set analyses suggested that the association with the gene-set 
behavior is almost completely explained by the association of loco-
motory behavior, and that the effect of axon part is independent 
of this (Supplementary Note). Gene Ontology:locomotory behavior 
includes 175 genes involved in stimulus-evoked movement38. This 
set includes 16 GWS genes: BTBD9, MEIS1, DAB1, SNCA, GNAO1, 
ATP2B2, NEGR1, SLC4A10, GIP, DNM1, GPRC5B, GRM5, NRG1, 
PARK2, TAL1, and OXR1. Gene Ontology:axon part reflects a very 
general cellular component representing 219 genes, of which 14 were 
GWS (KIF3B, SNCA, GRIA1, CDH8, ROBO2, DNM1, RANGAP1, 
GABBR1, P2RX3, NRG1, POLG, DAG1, NFASC, and CALB2).

Tissue specific gene-set analyses showed strong enrichment of 
genetic signal in genes expressed in the brain. Correcting for over-
all expression, four specific brain tissues reached the threshold for 
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significance: the overall cerebral cortex (P = 3.68 ×  10−6); Brodmann 
area 9 of the frontal cortex (P = 5.04 ×  10−7); BA24 of the anterior 
cingulate cortex (P = 3.25 ×  10−6); and the cerebellar hemisphere 
(P = 5.93 ×  10−6). Several other brain tissues also showed strong 
enrichment just below the threshold, including three striatal basal 
ganglia structures (nucleus accumbens, caudate nucleus, putamen). 
To test whether genes expressed in all three basal ganglia structures 
together would show significant enrichment of low P values, we used 
the first principal component (BGPC) of these basal ganglia struc-
tures (Methods) and found significant enrichment (P = 8.33 ×  10−8). 
When conditioning the three top cortical structures on the BGPC, 
they were no longer significantly associated after multiple testing 
correction (minimum P = 0.03), which was expected given that the 
BGPC correlated strongly with gene expression in cortical (and other) 
areas (r > 0.96). Similar results were obtained vice versa; that is, using 
the first principal component of all cortical areas and conditioning 
the three basal ganglia structures on this resulted in no evidence of 
enrichment of low P values for basal ganglia structures (minimum 
P = 0.53). These results show that (1) genes expressed in the brain 
are important in insomnia, (2) genes expressed in cortical areas are 
more strongly associated than genes expressed in basal ganglia, and 
(3) there is a strong correlation between gene expression patterns 
across brain tissues, which suggests involvement of general cellular 
signatures rather than specific brain tissue structures.

Brain cell type-specific gene-set analyses were first carried out on 
24 broad, cell-type categories. Cell type-specific gene expression was 
quantified using single-cell RNA sequencing of disassociated cells 
from the somatosensory cortex, hippocampus, hypothalamus, stria-
tum, and midbrain from the mouse (see Methods), which closely 
resembles gene expression in humans39. Results indicated that 
genes expressed specifically in the medium spiny neurons (MSNs, 
P = 4.83 ×  10−7) were associated with insomnia; no other broad, cell 
type-specific gene set survived our strict threshold of P < 6.7 ×  10−6. 
MSNs represent 95% of neurons within the human striatum, which 
is one of the four major nuclei of the subcortical basal ganglia. 
Specifically, the striatum consists of the ventral (nucleus accumbens 
and olfactory tubercle) and dorsal (caudate nucleus and putamen) 
subdivisions. The association with MSNs thus likely explains the 
observed association of the basal ganglia striatal structures (nucleus 
accumbens, caudate nucleus, putamen).

Using broad cell classes risks not detecting associations that are 
specific to distinctive yet rare cell types. To account for this, we then 
tested 149 specific brain cell-type categories and found significant 
associations with 7 specific cell types: mediolateral neuroblasts 
type 3, 4, and 5 (P = 2.36 ×  10−6, P = 1.88 ×  10−6, and P = 1.87 ×  10−6, 
respectively); D2-type MSNs (P = 2.12 ×  10−6); claustrum pyramidal 
neurons (P = 3.09 ×  10−6); hypothalamic Vglut2 Morn4 Prrc2a neu-
rons (P = 4.36 ×  10−6); and hypothalamic Vglut2 Hcn16430411 K18 
Rik neurons (P = 4.98 ×  10−6). The hypothalamus contains multiple 
nuclei that are key to the control of sleep and arousal, including the 
suprachiasmatic nucleus, which accommodates the biological clock 
of the brain40. These results suggest a role of distinct mature and 
developing cell types in the midbrain and hypothalamus.

Modest genetic overlap with sleep traits. Other sleep-related traits 
may easily be confounded with specific symptoms of insomnia, 
like early morning awakening, and difficulties maintaining sleep. 
The most recent genome-wide studies for other sleep-related traits 
included 59,128–128,266 individuals and assessed genetic effects 
on morningness41–43 (that is, being a morning person), sleep dura-
tion7,43, and daytime sleepiness/dozing7. Using increased sample 
sizes for each of these sleep-related traits (maximum n =  434,835), 
we investigated to what extent insomnia and other sleep-related 
traits are genetically distinct or overlapping. We performed GWAS 
analyses for the following six sleep-related traits: morningness; 
sleep duration; ease of getting up in the morning; taking naps dur-
ing the day; daytime dozing; and snoring (Supplementary Note and 
Supplementary Figs. 6 and 7). Of the 202 risk loci for insomnia, 39 
were also GWS in at least one of the other sleep-related traits (Fig. 3  
and Supplementary Table 20). The strongest overlap in loci was 
found with sleep duration; 14 out of 49 sleep duration loci over-
lapped with insomnia. Insomnia showed the highest genetic cor-
relation with sleep duration (− 0.47, s.e.m. =  0.02; Supplementary 
Table 21) compared to other sleep-related traits; this was not sur-
prising given that insomnia also shared the largest number of risk 
loci with sleep duration (see further discussion of results for sleep 
phenotypes in the Supplementary Note).

Gene mapping of SNP associations of sleep-related traits resulted 
in 973 unique genes (Supplementary Fig. 8 and Supplementary 
Tables 22–26). Gene-based analysis showed that, of the 517 GWS 
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genes for insomnia, 120 were GWS in at least one of the other sleep-
related traits, and one gene (RBFOX1) was GWS in all traits except 
napping and daytime dozing (Supplementary Table 27). The larg-
est proportion of overlap in GWS genes for insomnia was again 
with sleep duration, with 37 of the 134(27%) GWS genes for sleep 
duration being GWS for insomnia also. There was overlap in tissue 
enrichment in cortical structures and basal ganglia between insom-
nia and both morningness and sleep duration. At the single-cell level, 
MSNs were also implicated for morningness and sleep duration, 
but not for the other sleep-related traits (Supplementary Table 28).  
Taken together, these results suggest that, at a genetic level, insom-
nia shows considerable genetic overlap with sleep duration, and 
modest overlap with other sleep-related traits.

Strong overlap between insomnia and psychiatric traits. We con-
firm previously reported genetic correlations between insomnia and 
neuropsychiatric and metabolic traits, including type 2 diabetes, 
waist–hip ratio, and body mass index6,41 (Supplementary Table 29),  
and also identify several GWS SNPs for insomnia that have previ-
ously been associated with these traits (Supplementary Table 30).

The strongest correlations were with depressive symptoms 
(rg = 0.64, s.e.m. =  0.04, P = 1.21 ×  10−71), followed by anxiety dis-
order (rg = 0.56, s.e.m. =  0.11, P = 1.40 ×  10−7), subjective well-
being (rg = − 0.51, s.e.m. =  0.03, P = 4.93 ×  10−52), major depression 
(rg = 0.50, s.e.m. =  0.07, P = 8.08 ×  10−12), and neuroticism (rg = 0.48, 

s.e.m. =  0.02, P = 8.72 ×  10−80). Genetic correlations with metabolic 
traits ranged between 0.09 and 0.20. Notably, we observed a posi-
tive correlation with RLS (rg = 0.44, s.e.m. =  0.07, P = 4.36 ×  10−10), 
a trait that shares phenotypic characteristics with insomnia6. 
This suggests a partial genetic overlap, which we discuss in more 
detail in the Supplementary Note and Supplementary Tables 31 
and 32. In this study, we show that although insomnia lead SNPs 
are enriched in RLS, there is only a partial genome-wide overlap 
between insomnia and RLS, in line with previous analyses6. The 
genetic correlations between insomnia and anxiety and depression-
related traits (anxiety, neuroticism, major depression, and depres-
sive symptoms) were also stronger than the correlations between 
insomnia and the other sleep-related traits (Mann–Whitney U-test 
Z score =  − 2.56, P = 0.01). Since a similar high reliability has been 
reported for both sleep and psychiatric phenotypes, the findings 
suggest that genetically insomnia more closely resembles neuropsy-
chiatric traits than other sleep-related traits (Fig. 4). These genetic 
correlations were consistent within the two meta-analyzed samples 
separately (Pearson’s r2 =  0.98; Supplementary Fig. 9). To infer direc-
tional associations between insomnia and these correlated traits, 
we performed bidirectional multi-SNP Mendelian randomization 
analysis44 (see Methods). The results support a direct risk effect of 
insomnia on metabolic syndrome phenotypes including body mass 
index (bxy = 0.36, s.e.m. =  0.05, P = 1.25 ×  10−12), type 2 diabetes 
(bxy = 0.62, s.e.m. =  0.11, P = 2.29 ×  10−8), and coronary artery disease 
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(bxy = 0.61, s.e.m. =  0.09, P = 2.88 ×  10−12). We also found risk effects 
of insomnia on several psychiatric traits, including major depression 
(bxy = 1.57, s.e.m. =  0.07, P = 1.73 ×  10−111), schizophrenia (bxy = 0.68, 
s.e.m. =  0.10, P = 5.12 ×  10−11), attention deficit hyperactivity disor-
der (bxy = 0.77, s.e.m. =  0.06, P = 2.50 ×  10−45), neuroticism (bxy = 0.45, 
s.e.m. =  0.02, P = 3.56 ×  10−92), and anxiety disorder (bxy = 0.47, 
s.e.m. =  0.10, P = 4.11 ×  10−6), with evidence of a reverse risk effect 
of major depression (bxy = 0.06, s.e.m. =  0.003, P = 6.93 ×  10−99) and 
neuroticism (bxy = 0.24, s.e.m. =  0.01, P = 7.90 ×  10−157) on insomnia. 
In addition, insomnia was bidirectionally associated with educa-
tional attainment (bxy =− 0.32, s.e.m. =  0.02, P = 4.12 ×  10−45) and 
vice versa (bxy =− 0.10, s.e.m. =  0.01, P = 2.27 ×  10−23); the same 
bidirectional pattern was observed for intelligence. Unidirectional 
protective effects were only observed for height (bxy =− 0.03, 
s.e.m. =  0.02, P = 1.68 ×  10−77) and intracranial volume (bxy =− 0.03, 
s.e.m. =  0.01, P = 3.72 ×  10−16). Using GWAS results from RLS in the 
23andMe cohort, we observed patterns of bidirectional effects of 
insomnia on RLS (bxy = 0.35, s.e.m. =  0.05, P = 2.53 ×  10−12) and vice 
versa (bxy = 0.12, s.e.m. =  0.01, P = 1.21 ×  10−35). Overall, only a small 
proportion of SNPs showed pleiotropy between insomnia and other 
traits (Supplementary Table 33 and Supplementary Note).

Discussion
In the largest GWAS study to date of 1,331,010 participants, we 
identified 202 genomic risk loci for insomnia. Using extensive 
functional annotation of associated genetic variants, we demon-
strated that the genetic component of insomnia points toward a 
role of genes enriched in locomotory behavior, and enriched in 
specific cell types from the claustrum, hypothalamus, and stria-
tum, specifically in MSNs (Fig. 5). MSNs are γ -aminobutyric acid 
(GABA)ergic inhibitory cells and represent 95% of neurons in the 
human striatum, one of the four major nuclei of the basal ganglia 
(for reviews, see Vetrivelan et al.45, Lazarus et al.46, and Swardfager 
et al.47). MSNs were the first neurons in which the up and down 
states characteristic of slow-wave sleep were described48. Cell 
body-specific striatal lesions of the rostral striatum induce pro-
found sleep fragmentation, which is highly characteristic of 
insomnia45,49. As discussed more extensively in the Supplementary 
Note, fragmented REM sleep is highly characteristic of insom-
nia and related to the ongoing thought-like mental content that 
makes patients with insomnia underestimate sleep duration50–52. 
Consistently short objective sleep across nights occurs only in a 
minority of patients with insomnia53.

A role for the basal ganglia in sleep regulation is also suggested 
by the high prevalence of insomnia in neurodegenerative disor-
ders, such as Parkinson’s disease and Huntington’s disease, where 
the basal ganglia are affected. Vetrivelan et al.45 proposed a cortex-
striatum-globus pallidusexternal-cortex network involved in the con-
trol of sleep–wake behavior and cortical activation, where midbrain 
dopamine disinhibits the globus pallidusexternal and promotes sleep 
through the activation of D2 receptors in this network. Furthermore, 
brain imaging studies have suggested that the caudate nucleus of the 
striatum is a key node in the neuronal network imbalance of insom-
nia54; they also reported abnormal function in the cortical areas we 
found to be most enriched (BA955, BA2456). Our results support the 
involvement of the striato-cortical network in insomnia, by show-
ing enrichment of risk genes for insomnia in cortical areas as well 
as the striatum, and specifically in MSNs. We recently showed that, 
along with several other cell types, MSNs mediate the risk for mood 
disorders57 and schizophrenia39. MSNs are strongly implicated in 
reward processing; future work should address whether the genetic 
overlap between insomnia and mood disorders is mediated by gene 
function in MSNs.

Our results also showed enrichment of insomnia genes in 
the pyramidal neurons of the claustrum. This subcortical brain 
region is structurally closely associated with the amygdala and  

has been implicated in salience coding of incoming stimuli and 
binding of multisensory information into conscious percepts58. 
These functions are highly relevant to insomnia because the disor-
der is characterized by increased processing of incoming stimuli59. 
Claustrum activity during REM sleep is moreover key to activa-
tion of the anterior cingulate cortex that was also enriched for 
insomnia gene expression60.

We found enrichment of insomnia genes in mediolateral neuro-
blasts from the embryonic midbrain and in two hypothalamic cell 
types. The role of the mediolateral neuroblasts is less clear; although 
they were obtained from the embryonic midbrain, at present it is 
unknown what type of mature neurons they differentiate into. We 
note that the midbrain is similar on a bulk transcriptomic level to 
the pons61, and lacking cells from that region we cannot conclusively 
say that midbrain cell types are enriched.

The current findings provide an insight into the causal mech-
anism of insomnia, showing enrichment in specific cell types, 
brain areas, and biological functions. These findings are starting 
points for the development of new therapeutic targets for insom-
nia and may also provide valuable insights into other genetically  
related disorders.

URLs. GWAS Summary Statistics, https://ctg.cncr.nl/software/
summary_statistics MAGMA, http://ctg.cncr.nl/software/magma 
FUMA GWAS, http://fuma.ctglab.nl PLINK 1.90 beta, https://
www.cog-genomics.org/plink2 LD Hub, http://ldsc.broadinsti-
tute.org/ldhub MSigDB Collections, http://software.broadinsti-
tute.org/gsea/msigdb/collections.jsp METAL, http://genome.sph.
umich.edu/wiki/METAL_Program LDSC (LD SCore), https://
github.com/bulik/ldsc gsmr R-package, http://cnsgenomics.com/
software/gsmr/ GTEx Portal, https://www.gtexportal.org/home/ 
BUHMBOX, http://software.broadinstitute.org/mpg/buhmbox/.

Online content
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Methods
Meta-analysis. A meta-analysis of the GWAS results of insomnia and morningness 
in the UKB and 23andMe cohorts was performed using �xed-e�ects meta-analysis 
METAL16, using SNP P values weighted by sample size. To investigate sex-speci�c 
genetic e�ects, we ran the meta-analysis between the UKB and 23andMe datasets 
for males and females separately.

Genomic risk loci definition. We used FUMA18 version 1.2.4 (see URLs), an 
online platform for functional mapping and annotation of genetic variants, to 
define genomic risk loci and obtain functional information of the relevant SNPs in 
these loci. FUMA provides comprehensive annotation information by combining 
several external data sources. We first identified independent significant SNPs 
that had a GWS P value (<  5 ×  10−8) and were independent from each other 
at r2 <  0.6. These SNPs were further represented by lead SNPs, a subset of the 
independent significant SNPs that were in approximate linkage equilibrium 
with each other at r2 <  0.1. We then defined independent genomic risk loci by 
identifying physical regions in linkage disequilibrium with these lead SNPs that 
were >  250 kilobases (kb) apart from each other. The borders of the genomic risk 
loci were defined by identifying all SNPs in linkage disequilibrium (r2 ≥  0.6) with 
one of the independent significant SNPs in the locus; the region containing all 
these candidate SNPs was considered to be a single independent genomic risk 
locus. Linkage disequilibrium information was calculated using the UKB genotype 
data as a reference. Risk loci were defined based on evidence from independent 
significant SNPs available in both 23andMe and UKB datasets.

SNPs that were GWS but only available in the 23andMe dataset were not 
included when defining genomic risk loci and were not included in any follow-up 
annotations or analyses because there was no external replication in the UKB 
sample. If such SNPs were located in a risk locus, they are displayed in LocusZoom 
plots (gray, as there is no linkage disequilibrium information in the UKB). When 
risk loci contained GWS SNPs based solely on the 23andMe dataset, we did not 
count that risk locus because there were no other SNPs available in both samples 
that supported these GWS SNPs.

Gene-based analysis. SNP-based P values from the meta-analysis were used as 
input for the GWGAS; 18,182–18,185 protein-coding genes (each containing at 
least one SNP in the GWAS, the total number of tested genes can thus be slightly 
different across phenotypes) from the NCBI 37.3 gene definitions were used as the 
basis for the GWGAS in MAGMA24. Bonferroni correction was applied to correct 
for multiple testing (P < 2.75 ×  10−6).

Gene-set analysis. Results from the GWGAS analyses were used to test for 
association in three types of 7,473 predefined gene sets:

 1. 7,246 curated gene sets representing known biological and metabolic 
pathways derived from 9 data resources, cataloged by and obtained from the 
MSigDB version 6.0 (ref. 62, see URLs).

 2. Gene expression values from 53 tissues obtained from GTEx33, log2-
transformed with pseudocount 1 a�er winsorization at 50 and averaged per 
tissue (+ 1 combined gene expression in the basal ganglia by taking the �rst 
principal component from principal component analysis of gene expression 
in three basal ganglia structures). We caution that only a limited set of brain 
tissues were included; thus, we cannot rule out associations with many im-
portant areas such as the pons, midbrain, or thalamus based on this analysis.

 3. Cell type-speci�c expression in 173 types of brain cells (24 broad categories 
of cell types ‘level 1’, and 149 speci�c categories of cell types ‘level 2’), which 
were calculated following the method described by Skene et al.39. Brie�y, 
brain cell-type expression data was drawn from single-cell RNA sequencing 
data from mouse brains. For each gene, the value for each cell type was calcu-
lated by dividing the mean unique molecular identi�er counts for the given 
cell type by the summed mean unique molecular identi�er counts across all 
cell types. Single-cell gene sets were derived by grouping genes into 40 equal 
bins based on speci�city of expression. Mouse cell gene expression was shown 
to closely approximate gene expression in postmortem human tissue39.

These gene sets were tested using MAGMA. MAGMA uses a continuous 
measure of association (gene-based P value) of all genes that could be mapped by 
at least one SNP in the gene-based test and can perform gene-set analysis based 
on dichotomous gene sets (genes present in a gene set or not) or continuous 
values of gene expression in tissues and cells. We computed competitive P values, 
which represent the test of association for a specific gene set compared with 
genes not in the gene set to correct for the baseline level of genetic association in 
the data63. The Bonferroni-corrected significance threshold was P =  0.05/7,473 
gene sets =  6.7 ×  10−6. Conditional analyses were performed as a follow-up using 
MAGMA to test whether each significant association observed was independent of 
all others. The association between each gene set in each of the three categories was 
tested conditional on the most strongly associated set, and then, if any substantial 
(P < 0.05/number of gene sets) associations remained, by conditioning on the 
first and second most strongly associated set, and so on until no associations 
remained. Gene sets that retained their association after correcting for other sets 
were considered to represent independent signals. We note that this is not a test of 

association per se, but rather a strategy to identify, among gene sets with known 
significant associations and overlap in genes, which set(s) are responsible for 
driving the observed association.

SNP-based heritability and genetic correlation. Linkage disequilibrium score 
regression17 was used to estimate genomic inflation and SNP-based heritability  
of the phenotypes, and to estimate the cross-cohort genetic correlations. 
Precalculated linkage disequilibrium scores from the 1000 Genomes European 
reference population were obtained from https://data.broadinstitute.org/
alkesgroup/LDSCORE/.

Genetic correlations. Genetic correlations between sleep-related traits, and 
between sleep-related traits and previously published GWAS studies of sufficient 
sample size were calculated using linkage disequilibrium score regression on 
HapMap 3 SNPs only. Genetic correlations were corrected for multiple testing 
based on the total number of correlations (between 6 sleep-related phenotypes 
and 28 previous GWAS studies) by applying a Bonferroni-corrected threshold of 
P < 0.05/34 =  1.47 ×  10−3.

Stratified heritability. To test whether specific categories of SNP annotations were 
enriched for heritability, we partitioned SNP heritability for binary annotations 
using stratified linkage disequilibrium score regression64. Heritability enrichment 
was calculated as the proportion of heritability explained by an SNP category 
divided by the proportion of SNPs that are in that category. Partitioned heritability 
was computed by 28 functional annotation categories, by MAF in six percentile 
bins, and by 22 chromosomes. Annotations for binary categories of functional 
genomic characteristics (for example, coding or regulatory regions) were obtained 
from the LD Score website (see URLs). The Bonferroni-corrected significance 
threshold for 56 annotations was set at P < 0.05/56 =  8.93 ×  10−4.

Functional annotation of SNPs. Functional annotation of SNPs implicated in 
the meta-analysis was performed using FUMA17. We selected all candidate SNPs 
in genomic risk loci having an r2 ≥  0.6 with one of the independent significant 
SNPs (see above), a P value (P < 1 ×  10−5), a MAF >  0.0001 for annotations, and 
availability in both UKB and 23andMe datasets. The functional consequences for 
these SNPs were obtained by matching each SNP’s chromosome location, base-pair 
position, reference, and alternate alleles to databases containing known functional 
annotations, including ANNOVAR65 categories, CADD scores, RegulomeDB20 
scores, and chromatin state66. ANNOVAR categories identify the SNP’s genic 
position (for example, intron, exon, intergenic) and associated function. CADD 
scores predict how deleterious the effect of an SNP is likely to be for a protein 
structure/function, with higher scores representing higher deleteriousness. A 
CADD score >  12.37 is potentially pathogenic21. The RegulomeDB score is a 
categorical score based on information from eQTLs and chromatin marks, which 
ranges from 1a to 7 with lower scores indicating an increased likelihood of having 
a regulatory function. Scores are as follows: 1a =  eQTL +  transcription factor 
binding +  matched transcription factor motif +  matched DNase footprint +  DNase 
peak; 1b =  eQTL +  transcription factor binding +  any motif +  DNase 
footprint +  DNase peak; 1c =  eQTL +  transcription factor binding +  matched 
transcription factor motif +  DNase peak; 1d =  eQTL +  transcription factor 
binding +  any motif +  DNase peak; 1e =  eQTL +  transcription factor 
binding +  matched transcription factor motif; 1f =  eQTL +  transcription factor 
binding/DNase peak; 2a =  transcription factor binding +  matched transcription 
factor motif +  matched DNase footprint +  DNase peak; 2b =  transcription 
factor binding +  any motif +  DNase footprint +  DNase peak; 2c =  transcription 
factor binding +  matched transcription factor motif +  DNase peak; 
3a =  transcription factor binding +  any motif +  DNase peak; 3b =  transcription 
factor binding +  matched transcription factor motif; 4 =  transcription factor 
binding +  DNase peak; 5 =  transcription factor binding or DNase peak; 6 =  other; 
7 =  not available. The chromatin state represents the accessibility of genomic 
regions (every 200 base pairs (bp)) with 15 categorical states predicted by a hidden 
Markov model based on 5 chromatin marks for 127 epigenomes in the Roadmap 
Epigenomics Project67. A lower state indicates higher accessibility, with states 1–7 
referring to open chromatin states. We annotated the minimum chromatin state 
across tissues to SNPs. The 15 core chromatin states as suggested by the Roadmap 
Epigenomics Project are as follows: 1 =  active transcription start site (TSS); 
2 =  flanking active TSS; 3 =  transcription at gene 5′  and 3′ ; 4 =  strong transcription; 
5 =  weak transcription; 6 =  genic enhancers; 7 =  enhancers; 8 =  zinc finger genes 
and repeats; 9 =  heterochromatic; 10 =  bivalent/poised TSS; 11 =  flanking bivalent/
poised TSS/enhancer; 12 =  bivalent enhancer; 13 =  repressed polycomb; 14 =  weak 
repressed polycomb; 15 =  quiescent/low.

Gene mapping. GWS loci obtained by GWAS were mapped to genes in FUMA18 
using three strategies:

1. Positional mapping maps SNPs to genes based on physical distance (within 
a 10-kb window) from known protein-coding genes in the human reference 
assembly (GRCh37/hg19).

2. eQTL mapping maps SNPs to genes with which they show a significant 
eQTL association (that is, allelic variation at the SNP is associated with the 
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expression level of that gene). eQTL mapping uses information from 45 tissue types 
in 3 data repositories (GTEx33, Blood eQTL browser66, BIOS QTL browser68), and is 
based on cis-eQTLs that can map SNPs to genes up to 1 megabase apart. We used a 
false discovery rate of 0.05 to define significant eQTL associations.

3. Chromatin interaction mapping was performed to map SNPs to genes when 
there is a three-dimensional DNA–DNA interaction between the SNP region 
and another gene region. Chromatin interaction mapping can involve long-range 
interactions since it does not have a distance boundary. FUMA currently contains 
Hi-C data of 14 tissue types from the study of Schmitt et al.69. Since chromatin 
interactions are often defined in a certain resolution, such as 40 kb, an interacting 
region can span multiple genes. If an SNP is located in a region that interacts with 
a region containing multiple genes, it will be mapped to each of those genes. To 
further prioritize candidate genes, we selected only interaction-mapped genes 
where one region involved in the interaction overlaps with a predicted enhancer 
region in any of the 111 tissue/cell types from the Roadmap Epigenomics Project67, 
and the other region is located in a gene promoter region (250 bp upstream and 
500 bp downstream of the TSS and also predicted by the Roadmap Epigenomics 
Project to be a promoter region). This method reduces the number of genes 
mapped but increases the likelihood that those identified will indeed have a 
plausible biological function. We used a P false discovery rate <  1 ×  10−5 to define 
significant interactions, based on previous recommendations69 and modified to 
account for the differences in the cell lines used in this study.

GWAS catalog lookup. We used FUMA to identify SNPs with previously reported 
(P < 5 ×  10−5) phenotypic associations in published GWAS listed in the NHGRI-
EBI catalog70, which matched with SNPs in linkage disequilibrium with one of the 
independent significant SNPs identified in the meta-analysis.

Polygenic risk scoring. To calculate the explained variance in insomnia by our 
GWAS results, we calculated PGS based on the SNP effect sizes in the meta-
analysis. The PGS were calculated using two methods: LDpred71 and PRSice72, 
a script for calculating P value thresholded PGS in PLINK (see URLs). PGS 
were calculated using a leave-one-out method, where summary statistics were 
recalculated each time with one sample of n =  3,000 from the UKB dataset excluded 
from the analysis. This sample was then used as a target sample for estimating the 
explained variance in insomnia by the PGS.

Mendelian randomization. To investigate causal associations between insomnia 
and genetically correlated traits, we analyzed the direction of effects using 
generalized summary-data-based Mendelian randomization44 (see URLs). This 
method uses effect sizes from GWAS summary statistics (standardized betas 
or log-transformed ORs) to infer causality of effects between two traits based 
on GWS SNPs. Built-in HEIDI outlier detection was applied to remove SNPs 
with pleiotropic effects on both traits, since these may bias the results. We tested 
for causal associations between insomnia and traits that were significantly 
genetically correlated with insomnia (bzx). In addition, we tested for bidirectional 
associations by using other traits as the determinant and insomnia as the outcome 
(bzy). We selected independent (r2 <  0.1) lead SNPs with a GWS P <  5 ×  10−8 as 
instrumental variables in the analyses. For traits with <  10 lead SNPs (that is, the 
minimum number of SNPs on which generalized summary-data-based Mendelian 
randomization can perform a reliable analysis) we selected independent SNPs 
(r2 <  0.1), with a P < 1 ×  10−5. If the outcome trait is binary, the estimated bzx and bzy 
are approximately equal to the natural log of the OR. An OR of 2 can be interpreted 
as a doubled risk compared to the population prevalence of a binary trait for 
every s.d. increase in the exposure trait. For quantitative traits, bzx and bzy can be 

interpreted as a 1 s.d. increase explained in the outcome trait for every s.d. increase 
in the exposure trait.

Statistical analysis. SNP associations were tested using linear or logistic regression 
models depending on the sleep phenotype. We report two-sided P values of each 
statistical test unless otherwise specified.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data analyzed in the current study were partly provided by the UK Biobank 
Study (www.ukbiobank.ac.uk), received under UK Biobank application no. 
16406. Our policy is to make genome-wide summary statistics (sumstats) publicly 
available. Sumstats from the GWAS conducted are available for download from 
the CNCR Complex Trait Genetics lab at https://ctg.cncr.nl/; see also https://ctg.
cncr.nl/software/summary_statistics. Note that our freely available meta-analytic 
sumstats (insomnia and morningness) represent results excluding the 23andMe 
sample. This is a non-negotiable clause in the 23andMe data transfer agreement, 
intended to protect the privacy of the 23andMe research participants. To fully 
recreate our meta-analytic results for insomnia and morningness: (1) obtain 
insomnia and morningness sumstats from 23andMe; (2) conduct a meta-analysis 
of our sumstats with the 23andMe sumstats. 23andMe participant data are shared 
according to community standards that have been developed to protect against 
breaches of privacy. Currently, these standards allow for the sharing of summary 
statistics for at most 10,000 SNPs. The full set of summary statistics can be made 
available to qualified investigators who enter into an agreement with 23andMe that 
protects participants’ confidentiality. Interested investigators should email dataset-
request@23andme.com for more information.
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Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 

science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 

items might not apply to an individual manuscript, but all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research 

policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist.

Please do not complete any field with "not applicable" or n/a.  Refer to the help text for what text to use if an item is not relevant to your study. 

For final submission: please carefully check your responses for accuracy; you will not be able to make changes later.

    Experimental design

1. Sample size

Describe how sample size was determined. We included a sample si]e of �,33�,0�0 individuals, by combining results from UK 
Biobank and 23andMe, in order to maximi]e power for the detection of S13s with low 
individual effects.

2. Data exclusions

Describe any data exclusions. We excluded individuals based on non-(uropean ancestry, low genotype quality,  
relatedness and missing phenotype

3. Replication

Describe the measures taken to verify the reproducibility

of the experimental findings.

4. Randomization

Describe how samples/organisms/participants were

allocated into experimental groups.

1o randomi]ation procedures were used. We controlled for possible population 
stratification by including genetic principal components in all genome-wide analyses after 
selection of (uropean individuals

5. Blinding

Describe whether the investigators were blinded to 

group allocation during data collection and/or analysis.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.

We provide replication results between the two large datasets �23andMe and UKB�. To 
support external replication, we choose to make our UK Biobank GW$S results publicly 
available upon publication for the scientific community. These summary statistics, 
however, only include results from the UK Biobank study, as restrictions prohibit the 
publication of results in the 23andMe sample. ,n our methods section, we describe the 
steps other researchers need to take to obtain the same results.

1ot applicable. Group allocation was based on answers to sleep-related questions, 
assessing insomnia complaints. There was no treatment or intervention so blinded 
allocation was not applicable
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6. Statistical parameters

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the

Methods section if additional space is needed).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 

sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 

Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software

Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this

study.

3link �version �.9�, M$GM$ �version �.0�b�, )/$S+3&$ �version 2.0�,  /D Score 
regression �version �.�.0�, /Dpred �0.9.09�, GSM5 �version �.0.��, M(T$/ �version 
20��-03-2��, 5 �version 3.3.��, )UM$ �online platform, fuma.ctglab.nl�, BU+MB2; 
�version 0.3��

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 

available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 

providing algorithms and software for publication provides further information on this topic.

   Materials and reagents

Policy information about availability of materials

8. Materials availability

Indicate whether there are restrictions on availability of

unique materials or if these materials are only available

for distribution by a third party.

UK Biobank data has been provided under an approved application �$pplication 
number� �6406�. 23andMe summary statistics can be accessed after applying to 
23andMe. 

9. Antibodies

Describe the antibodies used and how they were validated

for use in the system under study (i.e. assay and species).

1o antibodies were used in the study

10. Eukaryotic cell lines

a. State the source of each eukaryotic cell line used.

b. Describe the method of cell line authentication used.

c. Report whether the cell lines were tested for

mycoplasma contamination.

1o eukaryotic cell lines were used in the study 

1o cell lines were used in the study

1o cell lines were used in the study

d. If any of the cell lines used are listed in the database

of commonly misidentified cell lines maintained by

ICLAC, provide a scientific rationale for their use.

1o cell lines were used in the study

    Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide all relevant details on animals and/or

animal-derived materials used in the study.

1o animals or animal-derived material were used in the study
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Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population

characteristics of the human research participants.

We used data of participants of the UK Biobank Study. Data were previously collected at 
one of the UK Biobank research centers in the UK, and included participants between the 
age of 40 and 69 years old. The 23andMe study collected online questionnaire data of 
customers that had previously been genotyped. Genome-wide association analysis was 
corrected for age, sex and genetic principal components.
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