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Transcriptomic analyses have identified tens of thousands of intergenic, intronic, and cis-antisense long noncoding RNAs

(lncRNAs) that are expressed from mammalian genomes. Despite progress in functional characterization, little is known

about the post-transcriptional regulation of lncRNAs and their half-lives. Althoughmany are easily detectable by a variety

of techniques, it has been assumed that lncRNAs are generally unstable, but this has not been examined genome-wide.

Utilizing a custom noncoding RNA array, we determined the half-lives of ~800 lncRNAs and ~12,000 mRNAs in the

mouse Neuro-2a cell line. We find only a minority of lncRNAs are unstable. LncRNA half-lives vary over a wide range,

comparable to, although on average less than, that of mRNAs, suggestive of complex metabolism and widespread func-

tionality. Combining half-lives with comprehensive lncRNA annotations identified hundreds of unstable (half-life < 2 h)

intergenic, cis-antisense, and intronic lncRNAs, as well as lncRNAs showing extreme stability (half-life > 16 h). Analysis of

lncRNA features revealed that intergenic and cis-antisense RNAs are more stable than those derived from introns, as are

spliced lncRNAs compared to unspliced (single exon) transcripts. Subcellular localization of lncRNAs indicated wide-

spread trafficking to different cellular locations, with nuclear-localized lncRNAs more likely to be unstable. Surprisingly,

one of the least stable lncRNAs is the well-characterized paraspeckle RNA Neat1, suggesting Neat1 instability contributes to

the dynamic nature of this subnuclear domain. We have created an online interactive resource (http://stability.

matticklab.com) that allows easy navigation of lncRNA and mRNA stability profiles and provides a comprehensive an-

notation of ~7200 mouse lncRNAs.

[Supplemental material is available for this article.]

High-throughput studies of mammalian genomes have revealed

that most of the genome is transcribed in a complex manner, in-

cluding the production of tens of thousands of long non-protein-

coding RNAs (lncRNAs) (Carninci et al. 2005; Birney et al. 2007;

Guttman et al. 2009, 2010). Despite rapid progress, only a small

proportion of lncRNAs have been functionally characterized

(Amaral et al. 2011), and little is known about most lncRNAs. One

particularly poorly understood aspect of lncRNAs is their post-

transcriptional regulation and metabolism in the cell. Despite an

absence of genome-wide studies to examine lncRNA stability, it has

been a general expectation that lncRNAs will be less stable than

protein-coding mRNAs, both due to their lower average level of

expression and the existence of knownunstable classes of lncRNAs

(Dinger et al. 2009a). These classes, including cryptic unstable

transcripts (CUTs) in yeast (Wyers et al. 2005), upstream non-

coding transcripts (UNTs) in Arabidopsis (Chekanova et al. 2007),

and promoter upstream transcripts (PROMPTs) in humans (Preker

et al. 2008), have supported the suggestion that many, if not most,

lncRNA transcripts are highly unstable (Houseley and Tollervey

2009). However, the stability of the small number of functional

lncRNAs that have been determined (Sheardown et al. 1997; Seidl

et al. 2006; Sone et al. 2007; Askarian-Amiri et al. 2011), suggest

that lncRNAs, like mRNAs, have a wide diversity of half-lives.

However, genome-wide methods, which provide a more objective

view of lncRNAs as a class, are required to test this hypothesis.

Previous studies have investigated mRNA stability genome-

wide usingmicroarray technology andRNA sequencing (Raghavan

et al. 2002; Yang et al. 2003; Narsai et al. 2007; Friedel et al. 2009;

Sharova et al. 2009; Rabani et al. 2011; Schwanhausser et al. 2011)

but have not considered lncRNAs. These studies revealed a wide

variation in stability between different mRNAs and its importance

in combining with transcription to determine the steady-state

levels of transcripts and also to control the speed and timing of

changes in gene expression (Elkon et al. 2010; Rabani et al. 2011).

For example, the low stability of groups ofmRNAs, including those

that encode transcription factors, is integral to their rapid dynamic

regulation (Yang et al. 2003; Narsai et al. 2007; Friedel et al. 2009).

Although changes in transcription are responsible formost dynamic

changes in gene expression, changes in RNA stability also provide

amechanism to regulate gene expression levels (Blattner et al. 2000;

Sharova et al. 2009; Rabani et al. 2011).

Here, we perform a genome-wide analysis of lncRNA stability

using custom microarrays that examine ;7200 lncRNAs together

with ;20,000 protein-coding transcripts. Although the average

turnover of lncRNAs is higher than mRNAs, we find that lncRNAs

display a wide range of stabilities comparable to that of protein-
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coding transcripts. The functionally characterized lncRNA Neat1

was also found to be highly unstable, highlighting the notion that

high turnover is not refractory to function and rather can promote

the dynamic nature of lncRNAs and the cellular constituents with

which they are associated.

Results

Genome-wide determination of RNA half-lives

To examine the stability of lncRNAs, we inhibited transcription in

mouse Neuro-2a (N2A) neuroblastoma cells with actinomycin D

(Hurwitz et al. 1962) and measured RNA levels over a 32-h time

course. In the absence of transcription, the percentage of an RNA

remaining is determined by its rate of decay. Use of an extended

time course, similar to that conducted for mRNAs in Arabidopsis

(Narsai et al. 2007), allows improved half-life measurements for

transcripts with slow decay rates (Friedel et al. 2009) compared to

previous transcriptional inhibition experiments in mammals that

were continued to only 8 h (Raghavan et al. 2002; Yang et al. 2003;

Sharova et al. 2009). We validated the transcriptional blocking

methodology by determining the stability of the Myc oncogene

mRNA, which is known to have a very short half-life (Dani et al.

1984; Raghavan et al. 2002), by qPCR. Consistent with previous

observations,MycmRNAwas highly unstable (Fig. 1A) with a half-

life of 33 min (95% confidence interval 25–48 min).

Genome-wide analysis of lncRNA stability was conducted

using NCode (Life Technologies) microarrays, which contain

probes that target ;7200 distinct lncRNA transcripts as well as

probes that target most annotated protein-coding genes. As re-

ported previously (Sharova et al. 2009), the most stable transcripts

increased in relative abundance in samples from later time points

and so give the artifactual appearance of up-regulation. Therefore,

we normalized the scale of the array expression data to a pool of

ultra-stable control transcript(s). Gapdh had been used to normal-

ize shorter time courses in a previous study (Raghavan et al. 2002),

but it is not stable over 32 h (Supplemental Fig. S1), and scaling to

a single mRNA over a long time course could introduce noise. We

recently identified the lncRNA Zfas1 (1500012F01Rik) as highly

stable with no degradation over a 16-h time course (Askarian-Amiri

et al. 2011) and were able to confirm by qPCR that its relative ex-

pression was virtually unchanged after 32 h (Fig. 1B). As expected,

the microarray data showed a relative increase in Zfas1 expression

by 32 h (Fig. 1C). Therefore, we selected six genes showing similar

profiles toZfas1 that also had previous evidence of high stability in

mouse cells (Friedel et al. 2009). This high stability was confirmed

by qPCR analysis of two of these mRNAs, Atp5e and Gstm1 (Sup-

plemental Fig. S1), which showed little or no change in abundance

over the time course. The average fold change between 0 h and

each treated time point for these seven genes was adjusted to zero,

and the intensity values of the probes were scaled proportionately

to create the normalized time course data set.

We identified 14,987 transcripts that were expressed signifi-

cantly above background (Supplemental Table S1), fromwhich we

calculated transcript half-lives by modeling each transcript with

one-phase exponential decay or linear decay. As one-phase expo-

nential decay is not optimal for modeling some highly stable

transcripts, we calculated half-lives using both exponential decay

and linear decay and selected the best model for each transcript

(see Methods). Examination of transcript half-lives revealed that

linear decay began to be favored for transcripts with half-lives

above 18 h. After filtering to remove transcripts that could not be

accurately modeled, we determined the half-lives for 12,670

transcripts (including 823 lncRNAs), (Supplemental Table S2).

Examples of half-lives calculated from the microarray data are

shown in Figure 1D–F.

Figure 1. RNA half-life determination following transcription inhibition. (A,B) Transcript decay curves after blocking transcription in N2A with acti-
nomycin D and measuring transcript remaining relative to a control gene by qPCR. Error bars show standard deviation. (A) Myc decay relative to Gapdh.
Gapdh is a suitable control gene for transcripts that are not highly stable. Results are from four biological replicates, which were subsequently used for
microarray analysis. The fitted curve was modeled by one-phase decay using nonlinear least squares regression. Myc expression was also tested in mock
treated time courses, which did not show evidence of transcript decay. (B) Transcript decay curve for Zfas1 relative to Atp5e. Results from three biological
replicates. No degradation is observed, and nonlinear regression supports a horizontal line fit. (C ) Zfas1 expression over 32-h time course following
transcription inhibition from microarray. Four biological replicates; error bars show standard deviations. Nonlinear regression was used to test model fits
and supports a linear fit with a positive slope showing apparent up-regulation of expression by 32 h. (D–F ) Decay curves and half-lives determined for two
randommRNAs (D,E ) and one lncRNA (F ) transcript frommicroarrays. All weremodeled using one-phase exponential decay. Error bars represent standard
deviations.
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To confirm modeled transcripts were within the dynamic

range of the arrays, we compared transcript half-lives with their

expression values at 0 h. We did not observe increased half-lives at

low expression levels, which could have suggested that array

background was preventing the decay of signal. This observation

held true whether comparing all RNAs, or lncRNAs only (Supple-

mental Fig. S2). Indeed, therewas a significant correlation (r= 0.2045,

Spearman correlation) between higher expression and longer half-

lives for all RNAs, but no correlation between lncRNA expression

and half-life (Supplemental Fig. S2).

We validated that the arrays were sufficiently sensitive to

detect unstable transcripts by comparing the calculated half-life for

Myc as determined by qPCR to that determined by themicroarrays,

as well as the array stability of Znfx1, which we recently showed to

be unstable in N2A cells by qPCR (Askarian-Amiri et al. 2011). The

array-determined half-life ofMycwas 34min, which is in excellent

agreement with qPCR, as was that of Znfx1 (65min by array versus

50 min by qPCR). These data confirmed the accuracy of the array

results and our ability to determine the half-lives of short-lived

transcripts.

GO analysis of stable and unstable protein-coding genes

Previous studies have shown that unstable protein-coding transcripts

are enriched for transcription factors, while mRNAs encoding pro-

teins for various cellular metabolic processes are enriched amongst

stable transcripts (Yang et al. 2003; Friedel et al. 2009; Sharova et al.

2009; Rabani et al. 2011). To assess the biological robustness of our

data, we performed a GO analysis of protein-coding transcripts

foundwithin the unstable (half-life < 2h) andhighly stable (half-life

> 12 h) fractions using Fatigo (Medina et al. 2010). Consistent with

previous studies, we found that genes involved in transcription and

regulation of gene expression were enriched in the unstable frac-

tion, especially proteins with transcription factor activity, which

were strongly overrepresented (P = 1.59 3 10�7), while genes in-

volved in numerous cellular metabolic processes and with oxi-

doreductase activity were enriched amongst the highly stable

mRNAs (Supplemental Table S3). Together, these observations

suggest our experimental model for RNA decay is applicable for

making biologically relevant interpretations.

Stability of lncRNAs

To examine the stability of lncRNAs and how they compare to

mRNAs, we graphed the distribution of half-lives. Figure 2A reveals

that transcript half-lives ranged from <30 min to >48 h. LncRNAs

show a similar range of half-lives to protein-coding transcripts,

suggesting that lncRNA stability is a regulated process. Themedian

lncRNA half-life was 3.5 h (mean 4.8 h), whereas the median half-

life for protein-coding transcripts was 5.1 h (mean 7.7 h). This re-

sult shows that lncRNAs are not unstable as a class, although their

half-lives are, on average, shorter than protein-coding RNAs (P <

0.0001) (Fig. 2A).We also find that a higher percentage of lncRNAs

are classified as unstable (29% versus 17%) (t½ < 2 h; P < 0.0001)

(Fig. 2B,C) and a lower percentage as highly stable (6% versus 17%)

(t½ > 12 h; P < 0.0001) (Fig. 2B,D).

In total, we identified;240 unstable lncRNA transcripts (t½ <

2 h). Although most lncRNAs are yet to be annotated, this group

contains a number of known and functionally validated lncRNAs.

These include Neat1 (see below), the probable mouse Adapt33

(5430416N02Rik) homolog, a number of lncRNAs that associate

with chromatin-binding proteins (Guttman et al. 2011) (see be-

low), small RNA host transcripts including Mir17hg, an isoform of

Rmst, and several snoRNA host genes including Snhg3, Snhg5, and

one Snhg8 isoform, as well as the imprinted lncRNAs Kcnq1ot1 and

Peg13. The low stability of several snoRNA host transcripts is in

stark contrast to the extreme stability of Zfas1, which is also a

snoRNA host gene.

Fifty-one lncRNAs had half-lives of over 12 h and were,

therefore, classified as highly stable. These lncRNAs corresponded

to a variety of genomic context classifications including inter-

genic, bidirectional with other transcripts, and intronic to protein-

coding loci. Few have been characterized in detail with the

exception of 4933436C20Rik (Linc1399), identified as involved in

maintaining pluripotency in embryonic stem cells, where it asso-

ciates with the chromatin-binding protein CBX3 (Guttman et al.

2011). Given that we have characterized the stability of only

a subset of the total number of lncRNAs, these results suggest that

there are a large number of highly stable lncRNAs. Although the

function of these transcripts is generally unknown, genes with

enzymatic and housekeeping functions are enriched amongst

stable protein-coding RNAs, so we hypothesize that housekeeping

lncRNAs will also show high stability.

Clustering of RNA decay profiles

Transcripts of different stabilities provide a rich variety of decay

profiles. To visualize these, we clustered all lncRNAs using un-

supervised hierarchical clustering (Fig. 3). These results further

reinforce the notion that lncRNAs are not generally unstable but

rather show a wide range of stability profiles.

Previous analyses of coding transcript stability have revealed

relationships between stability and gene function and thatmRNAs

Figure 2. Half-lives of lncRNA and protein-coding transcripts. (A) Box-
and-whisker plot of coding and lncRNA transcript half-lives. (Whiskers) 1st–
99th percentile, with individual transcripts outside this shown as dots. (Box)
25th–75th percentile. Difference calculated using a nonparametric Mann-
Whitney t-test. (B) Frequency distribution showing the fraction of protein-
coding and lncRNA transcripts in 2-h bins. Plotted points are at the center of
the 2-h bin.Only time pointswith 1%ormore of transcripts are plotted. (C )
Percentage of unstable (half-life under 2 h) lncRNA and protein-coding
transcripts. Significant difference calculated using a x2 test. (D) Percentage
of highly stable (half-life over 12 h) lncRNA and protein-coding transcripts.
Significant difference calculated using a x

2 test.
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that act in common biological pathways (same GO function)

(Sharova et al. 2009) or proteins found within the same complexes

(Friedel et al. 2009) often have similar stabilities. On this basis, we

hypothesize that the stability of lncRNAs may be similarly related

to their functional classes and that lncRNAs with related functions

may tend to cluster together according to their stability profiles.

To reveal potential relationships between stability and func-

tion, we reclustered all expressed transcripts by their decay profiles

using QAPgrid (Inostroza-Ponta et al. 2011). The decay profile for

each individual cluster is shown in Figure 4. As a result of this

optimization-based approach to visualization, the distance between

each cluster in the final layout is related to the difference between

the decay profiles. From our data set of 14,987 decay profiles, the

method produced 152 clusters, which, in turn, aggregate into seven

‘‘super-clusters’’ containing related decay profiles. The 152 clusters

contain from 2 to 4447 transcripts. Most transcripts are found in

a relatively small number of clusters, with 29.7% present in the

single most populous cluster (Cluster 0), which is part of the largest

super-cluster (Super-cluster 0). Indeed, the ten most populous in-

dividual clusters contain 79.9% of all transcripts, from the generally

highly unstable transcripts in Cluster 1 (1087 transcripts) through

to the extremely stable transcripts in Clusters 15 (196 transcripts)

and 27 (797 transcripts). Hence, it appears that a reasonably small

number of clusters and super-clusters can define the dynamics of

RNA degradation.

To facilitate the browsing and visualization of transcript sta-

bilities, we developed an interactive, web-accessible version of the

QAPgrid representation of the clusters (http://stability.matticklab.

com/). Each decay cluster is linked to a table of the transcripts it

contains, together with their associated half-lives and further an-

notations including transcript classification, structural features,

conservation, subcellular localization and expression information.

Comparing the annotated transcripts present indifferent super-

clusters (i.e., independent of modeled half-lives) revealed a number

of features overrepresented within individual super-clusters. For ex-

ample, Super-cluster 1 showed an enrichment for genes encoding

nuclear proteins (P < 5.72 3 10�60) involved in the regulation of

transcription (P < 4.403 10�56) as estimated by g:profiler (Reimand

et al. 2011), while aMEDLINE-based analysis usingGATHER (Chang

and Nevins 2006) revealed a significant enrichment of genes asso-

ciated with the term ‘‘oncogene’’ (P < 0.0003) (Supplemental Table

S4). Super-cluster 1 also had the highest proportion of lncRNAs

(13.5%). Taken together these analyses demonstrate how QAPgrid

clustering facilitates both the extraction of biologically meaningful

data from, and visualization of, genome-wide data sets.

Combining clustering and RNA half-lives to identify

potentially independent transcripts

The identification of transcripts from common loci with different

half-lives or occurrence within different super-clusters provides a po-

tential means to disentangle independent transcripts from complex

loci. This is useful as such loci can contain numerous overlapping

transcripts with alternative splice sites and varying start and end

positions, which can be very challenging to distinguish.

We searched the four most populous super-clusters (0, 1, 3,

and 5, containing 94% of clustered probes) for Unigene genes with

multiple probes that clustered into more than two super-clusters.

This analysis identified 21 genes (Supplemental Fig. S3; Sup-

plemental Table S4). One gene identified was Tcf4 (transcription

factor four). Two probes to constitutive splice junctions showed

half-lives of 14.5 and 6.7 h, respectively, whereas three probes

distributed across the 5-kb Tcf4 39UTR (Supplemental Fig. S4) all

identified a half-life of 3.4–3.5 h, The high concordance and di-

vergent half-life of the 39UTR suggests its regulation is independent

of the common coding isoform, potentially due to processing of

the 39UTR (Mercer et al. 2011) or due to specific use of the 39UTRby

an alternative Tcf4 isoform. This differential stability across the

gene locus would be difficult to detect by standard expression ar-

rays or next-generation sequencing, but regulation of this nature is

readily identifiable from transcript decay.

Another example that illustrates the value of stability pro-

filing for disentanglement of transcripts is the noncoding snoRNA

host gene Snhg4, which terminates ;4 kb upstream of the coding

geneMatr3. Both cDNA cloning (Bortolin and Kiss 1998) and next-

generation sequencing (Guttman et al. 2010) suggest Snhg4 is

commonly a 59upstream start site forMatr3 (Supplemental Fig. S4).

However, our data show that Snhg4 is unstable (and found in Su-

per-cluster 1), whereas Matr3 is highly stable (and found in Super-

cluster 5), suggesting that these transcripts can be distinct and

independently regulated.

Figure 3. Hierarchical clustering of transcript decay rates. Unsupervised
hierarchical clustering of all lncRNA transcripts above the expression cut-off.
Clustering was performed using cluster3 (de Hoon et al. 2004) and visual-
ized in Java Treeview (Saldanha 2004). All transcripts were set to an ex-
pression level of 1 at 0 h, so clustering is determined only by decay rate.
Transcripts that decay quickly turn black during the early time points;
transcripts that shownodegradation remain bright yellow. As clusteringwas
performed on all transcripts above the expression cut-off, transcripts whose
half-lives could not be determined are also included.
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Genomic location impacts lncRNA stability

Previous studies have defined a number of sequence elements that

influence mRNA stability (Yang et al. 2003; Narsai et al. 2007;

Sharova et al. 2009). To further understand how lncRNAs differ in

stability and why they are, on average, less stable thanmRNAs, we

investigated the relationship between lncRNA stability and their

corresponding sequence elements and features.

To analyze various features that could affect lncRNA stability,

we created a comprehensive set of genome-wide lncRNA annota-

tions (Supplemental Table S2), which represent the most detailed

annotations of mouse lncRNAs to date. An important feature of

lncRNAs is the genomic location they are transcribed from in re-

lation to protein-coding genes (Mercer et al. 2009). On this basis,

lncRNAs can be broadly classified as intronic, where they originate

from within coding gene loci, cis-antisense, where they are tran-

scribed from the opposite stand to other transcripts, or intergenic,

where they are transcribed outside of, or between, coding genes

(Supplemental Fig. S5). Comparison of the stability of intergenic,

intronic and cis-antisense lncRNAs revealed significant differences

between the groups, with intronic lncRNAs less stable than those

from intergenic regions or antisense to other transcripts (P < 0.001)

(Fig. 5A) with a much greater percentage of intronic lncRNAs

classified as unstable (t½ < 2 h) (P < 0.0001) (Fig. 5B,C), although

there was no difference between the number classified as highly

stable (t½ > 12 h) (P = 0.34, x2 test).

LncRNAs can be transcribed from other genomic loci in-

cluding bidirectionally (either head-to-head or tail-to-tail) with

other transcripts (Engstrom et al. 2006), 39 from coding genes

(uaRNAs) (Mercer et al. 2011) and from promoter regions (pro-

moter-associated) (Preker et al. 2008) (Supplemental Fig. S5). An-

other subset of lncRNAs are large intergenic noncoding RNAs

(lincRNAs) (Guttman et al. 2009, 2010), many of which have

critical roles in differentiation and development (Guttman et al.

2011). We identified the half-lives for 90 transcripts from lincRNA

regions, including LincRNA-p21 (Gm16197), which acts downstream

from p53 (also known as TP53) to repress many genes (Huarte et al.

2010) and which was quite stable with a half-life of over 6 h.

Comparing all classes of lncRNAs revealed that intergenic, cis-

antisense, tail-to-tail bidirectional and uaRNA transcripts are sig-

nificantly more stable (on average) than intronic and promoter

associated lncRNAs (P < 0.01) (Fig. 5D). Intergenic and cis-anti-

Figure 4. Distance-based clustering of transcript decay rates. Transcripts are automatically clustered; with those showing indistinguishable decay
profiles over the time course present in the same cluster, while transcripts with similar profiles are found in nearby clusters. The physical distance between
individual clusters and between super-clusters represents the degree of difference in the decay profile. Clusters of clusters or super-clusters are created by
applying the method used to form the clusters to the clusters themselves. Title gives the cluster number and the number of probes in the cluster. (X-axis)
Cumulative expression of all probes in the cluster. Decay profiles are stacked bar graphs with every stack representing a separate transcript; when there are
many transcripts in a cluster, the expression level of some transcripts cannot be individually visualized and are seen as areas of black (representing many
transcripts). An interactive version of this figure can be found at http://stability.matticklab.com/.
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sense transcripts were also more stable than head-to-head bi-

directional transcripts (P < 0.05). Hierarchical clustering of lncRNA

stability profiles supported this result. The most stable classes (inter-

genic, cis-antisense, tail-to-tail and uaRNAs) clustered together, as did

the unstable group of intronic, promoter-associated and head-to-

head bidirectional lncRNAs, while lincRNAs showed intermediate

characteristics (Supplemental Fig. S6).

Comparison of cellular localization with stability

Functional studies of lncRNAshave shown thatmanyact as repressors

or activators of gene expression through various mechanisms,

including modification of epigenetic

state, alternative splicing, and RNA poly-

merase binding efficiency (Dinger et al.

2008; Khalil et al. 2009; Zhao et al. 2010;

Amaral et al. 2011). Proteins with similar

regulatory roles, such as transcription

factors, typically have short half-lives

and are nuclear-localized. Therefore, to

identify lncRNAs with potential regula-

tory roles in the nucleus, we interrogated

total RNA isolated from nuclear and cy-

toplasmic fractionated N2A cells with the

NCode microarrays. Successful isolation

of pure nuclei and cytoplasmic fractions

was confirmed by qPCR andWestern blot

(Supplemental Fig. S7). The array data

were validated by qPCR for a number of

genes ranging from nuclear-specific to

cytoplasmically enriched (Supplemental

Fig. S8) and also by the high nuclear en-

richment of known nuclear lncRNAs,

such as Xist and Bace1as. Array analysis

revealed 499 lncRNAs that were signifi-

cantly enriched in the cytoplasm and

191 in the nucleus. Intersection with

lincRNAs and lncRNAs listed in lncRNAdb

revealed a number of known and unchar-

acterized localizations of lncRNAs, includ-

ing nuclear enrichment of Adapt33, Zfas1,

and several other snoRNA host genes.

Taken together, these results support the

widespread trafficking of lncRNAs to dif-

ferent subcellular locations.

Among the subset of lncRNAs for

which a half-life could be determined, we

identified 22 that were significantly en-

riched in the cytoplasm and 105 that were

enriched in the nucleus. Nuclear-localized

transcripts displayed a significantly lower

stability (Fig. 5E) with a greater pro-

portion (52%) of the nuclear-enriched

transcripts classified as highly unstable

(P < 0.0001, x2 test) (t½ < 2 h) (Fig. 5F;

Supplemental Fig. S9). In contrast, stable

transcripts (t½ > 6h)were not enriched in

either compartment (P = 0.26, x2 test).

We considered whether the unstable

nature of nuclear-localized transcripts

was due to an overabundance of unsta-

ble lncRNA genomic classes (intronic,

promoter-associated, and head-to-head). Head-to-head transcripts

were, instead, underrepresented in the nucleus (P = 0.0154, Fisher’s

exact test). An increased prevalence of exosome-targeted transcripts

similar to CUTs and PROMPTs could also help explain the low sta-

bility of nuclear transcripts; however, there was no enrichment for

promoter-associated lncRNAs in the nucleus (P = 0.74, Fisher’s exact

test) or among the unstable nuclear fraction (P = 1.0, Fisher’s exact

test). Although intronic transcripts were enriched in the nuclear

fraction (P = 0.0005, Fisher’s exact test), nuclear-localized intronic

lncRNAs were less stable than those intronic lncRNAs not found in

the nucleus (P = 0.015, MannWhitney t-test). Taken together, these

results suggest the impact on stability is due to the cellular location

Figure 5. Effect of lncRNA features on stability. (A) Comparison of the stability of intronic versus inter-
genic and cis-antisense lncRNAs. Box-and-whisker plot. (Whiskers) 1st–99th percentile, with individual
transcripts outside this shown as dots. (Box) 25th–75th percentile. Difference calculated using one-way
ANOVAwith Kruskal-Wallis nonparametric test and Dunn’s post-test to compare individual annotations. (B)
Frequency distribution showing the fraction of lncRNA transcripts in 2-hbins. Plotted points are at the center
of the 2-h bin.Only time points with 1%ormore of transcripts are plotted. (C ) Percentage of unstable (half-
life under 2 h) lncRNA intergenic, cis-antisense, and intronic transcripts. Significant difference calculated
using x

2 test. (D) Comparison of the stability of all lncRNA genomic classifications. Box-and-whisker plot. To
focus on the center of the distribution, whiskers show 10th–90th percentile, with individual transcripts
outside this shown as dots, and only half-lives between 0.2 h and 20 h are shown. Significant differences
found between stability of classes using one-wayANOVAwith Kruskal-Wallis nonparametric test andDunn’s
post-test to compare individual annotations. (*) Level of significance common to all comparisons. (E)
Comparison of the stability of localized transcripts. Box-and-whisker plot and statistical testing as per A. (F)
Frequencydistribution showing the fraction of nuclear, cytoplasmic, andnonenriched transcripts in 2-hbins.
Plotted points as per B. (*) P < 0.05, (**) P < 0.01, (***) P < 0.001.
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of these lncRNAs, rather than resulting

from their genomic classification.

The relatively high turnover of nu-

clear-localized lncRNAs is consistent with

the notion that these lncRNAs are acting

as regulatory molecules, which, like their

protein-coding counterparts, are turned

over rapidly to provide a high degree of

dynamism to the processes they regulate.

We find preliminary evidence to support

this hypothesis by investigating the sta-

bility of RNAs identified as interacting

with chromatin-binding proteins (Amaral

et al. 2011; Guttman et al. 2011), which

are less stable than lncRNAs (P = 0.049,

Mann Whitney t-test), more likely to be

unstable (P = 0.017, Fisher’s exact test),

and more likely to be nuclear-localized

(P = 0.028, Fisher’s exact test).

LncRNA decay elements

A number of decay elements have been

detected, predominantly in the 39UTR,

of mRNAs, including AU-rich elements

(AREs) (Bakheet et al. 2001) and Puf

family protein-binding sites (Xie et al.

2005). SplicedmRNA transcripts aremore

stable than single exon mRNAs (Narsai

et al. 2007), and there are positive corre-

lations between both the number of in-

trons and the density of splice junctions

per kb of ORF length and stability (Sharova et al. 2009). To in-

vestigate whether these factors known to affect coding transcript

stability also impact the stability of noncoding RNAs,whichwould

suggest common regulatory and decay pathways, we analyzed the

splicing status and putative AREs and Puf-binding sites of lncRNAs

in the context of their stability. Similar to mRNAs, we find that

spliced lncRNAs are more stable than single exon transcripts

(P < 0.0001) (Fig. 6A) and that single exon transcripts are over-

represented among unstable transcripts (t½ < 2 h) (P < 0.0001)

(Fig. 6B; Supplemental Fig. S11). However, unlike mRNAs (Sup-

plemental Fig. S10), no correlationwas found between the stability

of spliced transcripts and the number of introns or density of splice

junctions (Supplemental Fig. S11). Furthermore, no significant

relationship was found between lncRNA stability and predicted

ARE or Puf-binding sites (Supplemental Fig. S11), although the

closeness to statistical significance for ARE sites (P = 0.091, Spear-

man correlation), suggests such a relationship might be present

with a larger sample size. As expected, we did observe a negative

relationship between the presence of these motifs and mRNA sta-

bility (Supplemental Fig. S10).

Utilizing our genome-wide lncRNA annotations, we exam-

ined other properties of lncRNAs that could impact stability.

LncRNAs with a polyadenylation signal had higher stability than

those transcripts that appeared internally primed (P < 0.0001) (Fig.

6C; Supplemental Fig. S11).We also identified positive correlations

between the stability of lncRNAs and increases in transcript con-

servation and GC% percentage (Fig. 6D; Supplemental Fig. S11).

These relationships were also identified in mRNAs (Supplemental

Fig. S10). Although current long RNA structure prediction ap-

proaches are limited, GC% is a simple proxy for the potential of

a RNA to fold into secondary structures due to the higher stability

of GC base pairs. The positive relationship between GC% and

stability suggests that lncRNAs with more structural elements are,

perhaps not surprisingly, more stable.

Finally, we also investigated whether there were any charac-

teristics of lncRNAs that could explain why they were less stable

than mRNAs. Unexpectedly, we observed similar proportions of

mRNAs and lncRNAs localized to the nucleus, with nuclear-

enrichedmRNAs also displaying lower stability than cytoplasmic or

nonenriched transcripts (P < 0.001, one-way ANOVA). These results

suggest it is not the frequent localization of lncRNAs to the nucleus

that results in their lower stability relative to mRNAs; instead, the

differential stability may be due to other RNA features. We find that

many RNA characteristics that positively correlate with stability

in lncRNAs and/or mRNAs, such as whether or not a transcript is

spliced, the density of splice junctions, GC%, and degree of evolu-

tionary conservation, havemuch lower values in lncRNAs compared

to mRNAs (all P < 0.0001, Mann Whitney t-tests and x
2 tests). For

example, the average intron density in lncRNAs is much lower than

formRNAs, whichmay explainwhy the correlation for lncRNAswas

positive but not significant; i.e., too few lncRNAs have sufficient

intron density to providemeasureable stabilization, as is the case for

mRNAs. Taken together, we find evidence that anumber of sequence

features known to affect mRNA stability also impact lncRNAs and

provide some insight into why lncRNAs are, on average, less stable.

Comparison of lncRNA stability between mouse and human

We investigated the conservation and variability in lncRNA half-

lives between mouse and human. Searching the stability micro-

Figure 6. LncRNAs and decay elements. (A) Comparison of the stability of single exon versus spliced
lncRNAs. Box-and-whisker plot. (Whiskers) 1st–99th percentile, with individual transcripts outside this
shown as dots. (Box) 25th–75th percentile. Difference calculated using a nonparametric Mann-Whitney
t-test. (B) Frequency distribution showing the fraction of single exon versus spliced lncRNAs in 2-h bins.
Plotted points are at the center of the 2-h bin. Only time points with 1% or more of transcripts are plotted.
(C ) Comparison of the stability of lncRNAs containing a major or minor polyA signal versus those with
evidence of internal priming. Box-and-whisker plot and statistical testing as per A. (D) Correlation between
GC% and lncRNA half-life. Spearman correlation = 0.0852 (P = 0.0145) indicates a small positive re-
lationship between increased half-life and lncRNAswith higher GC%. Spearman correlation utilized because
data is non-Gaussian. Trend line shows a semilog fit from nonlinear regression. Axes are log10-linear.
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arrays performed by Friedel et al. (2009) on human B cells and

mouse 3T3 cells for probes corresponding to the genomic locations

of lncRNAs from lncRNAdb (Amaral et al. 2011), we identified 11

lncRNAs with measured half-lives in both species (Supplemental

Table S5). While most lncRNAs showed similar half-lives between

the two species, four were significantly different, showing higher

stability in human (all P < 0.001) (Fig. 7A). For example, MALAT1,

which is found in SC35 splicing speckles and plays a role in the

regulation of splicing (Tripathi et al. 2010) was highly stable in

human B cells, with a half-life of 16.5 h, compared to 3 h inmouse

3T3 cells. Investigation of Malat1 in mouse N2A cells by qPCR

identified a half-life of 4 h (Supplemental Fig. S13), in good

agreement with Friedel et al. (2009) but significantly shorter than

determined previously in mouse embryonic fibroblasts (Bernard

et al. 2010). NEAT1 was also stable in human cells but unstable in

mouse (investigated further below).

We recently reported on the extreme stability of the Zfas1

lncRNA,which is expressed from a bidirectional promoter with the

Znfx1 protein-coding gene (Askarian-Amiri et al. 2011) and showed

no evidence of degradation after 16 h of transcriptional inhibition.

Using the improved stable control genes, we extended this analysis

to find that Zfas1 levels remain unchanged even after 32 h (Fig. 1B).

This remarkably high level of stability may explain its very high

expression level in N2A cells (top 0.5% of all expressed transcripts).

In contrast, the stability of Zfas1 in mouse 3T3 cells and in human

revealedmuch shorter half-lives of 1.7 and 3 h, respectively (Friedel

et al. 2009). Friedel et al. (2009) did not block transcription to de-

termine RNA half-lives; however, this result appears independent of

the method used, as another study of mRNA half-lives in mouse

embryonic stem cells using actinomycin D found the Zfas1 half-life

to be 63min (Sharova et al. 2009). Rather, these results suggest there

can be large changes in lncRNA stability both within and between

species and highlights the dynamic nature of lncRNA post-tran-

scriptional regulation.

The architectural lncRNA Neat1 is highly unstable

Neat1 is a structural RNA involved in the formation and integrity

of nuclear paraspeckles (Bond and Fox 2009; Sunwoo et al. 2009;

Mao et al. 2011). Surprisingly, given its identification as a func-

tional ‘‘architectural’’ RNA and similar to Friedel et al. (2009),Neat1

was very unstable with a half-life of <30 min by array and 15 min

by qPCR (Fig. 7B). As Neat1 is unspliced and has short, ;3.2 kb

(Neat1_v1/Men epsilon) and long, ;20 kb (Neat1_v2/Men beta)

isoforms transcribed from a single promoter (Guru et al. 1997;

Sunwoo et al. 2009), both the array and qPCRwere quantifying the

combined stability of the short and long isoforms (Fig. 7B,C).

Neat1_v2, but not Neat1_v1, is able to rescue a Neat1 knockdown

(Sasaki et al. 2009) and is required for paraspeckle formation in

mice (Nakagawa et al. 2011), suggesting this isoform is more cen-

tral to Neat1 function. Although qPCR specific to this isoform

revealed it was significantly more stable than the combined short

and long isoforms (P < 0.05), the long isoform is still unstable with

a half-life of 60 min (Fig. 7D,E).

To investigate whether the high instability of Neat1 affected

the formation of paraspeckles, we performed RNA-protein FISH in

N2A cells. This revealed only a few, small nuclear speckles within

aminority of cells by RNAFISH,whichwas consistentwith the lack

of localization of the paraspeckle protein NONO to nuclear speckle

structures (Fig. 7G; Supplemental Fig. S12). N2A cells are ‘‘un-

differentiated,’’ and the up-regulation of Neat1 (and formation of

paraspeckles) upon differentiation has been reported in other cell-

type specific differentiation systems (Chen and Carmichael 2009;

Sunwoo et al. 2009). To examine the possibility that Neat1 up-

regulation may be partially post-transcriptional and that low sta-

bility may prevent proper paraspeckle formation, we investigated

Neat1 stability in 3T3 cells, whichhave abundant paraspeckles (Fig.

7H; Supplemental Fig. S12). The half-lives ofNeat1 (v1 and v2) and

Neat1_v2 were calculated as 32 min (95% CI = 24 min–47.8 min)

and 63 min (95% CI = 47.3 min–93 min), respectively, indicating

that there was no difference in Neat1 stability between cells with

and without paraspeckles. Subtracting the expression of Neat1_v2

fromNeat1 (v1 and v2) revealed thatNeat1_v1was significantly less

stable than the long isoform, with a half-life of 19.6 min (95%CI =

15.22 min–27.59 min) (Fig. 7F). Therefore, we conclude that the

presence/absence of paraspeckles in these cells is not related to

Neat1 stability. Furthermore, the highly unstable nature of Neat1

demonstrates that instability is not a barrier to lncRNA function

and that, instead, the high turnover of Neat1 could contribute to

the highly dynamic nature of paraspeckles (Mao et al. 2011).

Discussion

Contrary to some expectations, examination of lncRNA stability

and comparison to that of protein-coding genes has revealed that

lncRNAs are not generally unstable but rather show a wide varia-

tion in their stability profiles in a manner similar to mRNAs. In

light of several studies that show remarkably specific expression

profiles for lncRNAs in diverse tissues and development systems

(Dinger et al. 2008; Guttman et al. 2010; Cabili et al. 2011), as well

as a recent large-scale screen showing functions for many lncRNAs

in embryonic stem cell differentiation (Guttman et al. 2011), the

large variation in lncRNA stability is consistent with their func-

tional diversity and is likely a reflection of their complex post-

transcription regulation. Indeed, post-transcriptional regulation is

particularly important for lncRNAs because, unlike protein-coding

genes, they do not have any further translational and post-trans-

lational opportunities for regulation. We find that a number of

lncRNA characteristics correlate with stability, including genomic

location, subcellular localization, splicing, and GC percentage.

Other characteristics, such as the density of exon junctions, hadno

measurable impact on lncRNAs despite providing the strongest

correlation with the mRNA stability of those tested. LncRNA ex-

pression level also was not correlated with stability, suggesting

that lncRNAs below the expression cutoff will not be generally

unstable either, although this possibility cannot be completely

discounted. Overall, we find that analysis of lncRNA sequence

features is an effective means of gaining insight into factors un-

derlying stability.

A large number of post-transcriptional regulatory pathways

act by regulating RNA stability and degradation. Some, such as the

nuclear and cytoplasmic exosomes, have been found to degrade

lncRNAs (includingCUTs, UNTs, and PROMPTS) and regulate their

function (Camblong et al. 2007; Chekanova et al. 2007; Berretta

et al. 2008; Preker et al. 2008; van Dijk et al. 2011). How other

pathways, such as miRNAs and nonsense mediated decay (NMD),

act on lncRNAs is poorly understood. In Arabidopsis, putative

lncRNAs can be regulated by NMD (Tycowski et al. 1996; Kurihara

et al. 2009), a process thought to require a pioneer round of tran-

slation (Maquat et al. 2010), which could suggest ‘‘noisy’’ trans-

lation of lncRNAs. Recently, the first example of miRNA regulation

of lncRNAs was identified (Hansen et al. 2011), suggesting this

process may be widespread. RNA-binding proteins can also affect

RNA stability; for example, the presence of the exon-junction
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Figure 7. Neat1 stability. (A) Comparison of lncRNA stabilities in mouse and human from Friedel et al. (2009). Error bars are standard deviations.
Significant differences determined by two-way ANOVA using Bonferroni multiple comparisons. (***) P < 0.001, (****) P < 0.0001. (B) Transcript decay
curve for Neat1 (both v1 and v2 isoforms) in N2A cells after blocking transcription with actinomycin D and measuring transcript remaining relative to
Gapdh by qPCR. Four biological replicates. Error bars are standard deviations. Fit modeled by one-phase decay using nonlinear least squares regression. (C )
Neat1 genomic locus showing v1 and v2 isoforms plus positions of PCR amplicons, FISH, and microarray probes. (D) Neat1_v2/ long isoform half-life in
N2A cells, qPCR as per B. (E) Comparison ofNeat1 (both v1 and v2 isoforms) (95% CI = 10–32min) andNeat1_v2/ long isoform (95%CI = 40min–1 h, 57
min) in N2A cells. Error bars show 95% confidence intervals. Unpaired t-test. (F) Comparison of stability of Neat1 isoforms in 3T3 cells. qPCR from three
biological replicates. Error bars show 95% confidence intervals. Unpaired t-test. (G,H) Combined RNA protein FISH onN2A cells (G) and 3T3 cells (H). (Left
panel) Neat1 RNA; (second panel) localization of paraspeckle protein NONO; (third panel) DAPI nuclear stain; (final panel) overlay.
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complex has been hypothesized to be responsible for the increased

stability ofmRNAswith ahigher density of splice junctions (Sharova

et al. 2009). Indeed, we find this appears to apply to lncRNAs, as

spliced lncRNAs are more stable than those that are unspliced.

We find that a larger proportion of lncRNAs than mRNAs are

unstable. Both our results and previous findings from mammals

and yeast (Seidl et al. 2006; Berretta et al. 2008; vanDijk et al. 2011)

have shown that low stability does not mean lncRNAs are non-

functional. Instead, low stability can be important for regulating

lncRNA function. For example, stability can determine where

and when a lncRNA can perform its function, as exemplified by

PHO84 antisense in yeast (Camblong et al. 2007). Furthermore, by

not requiring translation to produce a functional gene product,

lncRNAs, especially those acting in the nucleus, can function al-

most immediately after transcription (Dinger et al. 2009a) and so

may not require a long half-life. In addition, unstable transcripts

are very sensitive to changes in the level of transcription and re-

spond quickly when transcription changes (Elkon et al. 2010;

Rabani et al. 2011). Low stability, such as that observed in many

transcription factor mRNAs, allows dynamic gene expression in

response to environmental signals (both intra- and extracellular)

that can activate or repress genes. A growing number of lncRNAs,

have been found to interact with chromatin and chromatin mod-

ification complexes, and some have been shown to regulate gene

expression (Dinger et al. 2008; Khalil et al. 2009; Zhao et al. 2010;

Guttman et al. 2011; Wang et al. 2011). It has previously been

hypothesized that unstable lncRNA would be suitable for regulat-

ing gene expression (Dinger et al. 2009a), and indeed, we find that

RNAs which associate with chromatin binding proteins exhibit

lower stability, suggesting that lncRNA ‘‘transcription factors’’ with

analogous properties to their coding mRNA counterparts may

exist.

Consistent with our finding that low stability does not mean

lack of function, we identify the nuclear paraspeckle component

Neat1 as among the least stable lncRNAs. Nuclear paraspeckles are

highly dynamic nuclear subdomains (Mao et al. 2011). Transcrip-

tion of Neat1 is required to both nucleate and maintain para-

speckles at the Neat1 locus, with paraspeckles quickly disassem-

bling upon inhibition ofNeat1 transcription (Mao et al. 2011). The

unstable nature of the Neat1 isoforms could contribute to this

dynamic regulation, as paraspeckles formed around a highly stable

RNA would likely be less susceptible to such quick degradation. In

human, NEAT1 appears to be more stable than in mouse (Friedel

et al. 2009; Sasaki et al. 2009; Sunwoo et al. 2009), with unknown

consequences for NEAT1 function and paraspeckle dynamics.

Although occurring at a lower incidence thanmRNAs, we also

identified a number of highly stable lncRNAs. Apart from the re-

cently identified Zfas1 (Askarian-Amiri et al. 2011), which was too

stable for array-based half-life modeling but the stability of which

has been confirmed by qPCR, few of these lncRNAs have been

characterized. Highly stable mRNAs often encode highly stable

proteins with ‘‘housekeeping’’ functions, such as those in central

metabolism, which do not require dynamic regulation for their

proper function (Schwanhausser et al. 2011). Similarly, highly

stable lncRNAs may serve ‘‘housekeeping’’ roles. The existence of

highly stable lncRNAs also suggests that some lncRNAs have

evolved to avoid degradation through various mechanisms, such

as secondary structure and interactions with RNA-binding pro-

teins, about which little is known.

Despite the large impact actinomycin D treatment has on

cells, previous genomic scale studies have shown good agreement

between actinomycin D treatment and other methods, which do

not require transcriptional blockade (Dolken et al. 2008; Friedel

et al. 2009; Rabani et al. 2011; Schwanhausser et al. 2011), with the

proviso that the actinomycin D time course is of sufficient dura-

tion (>6 h) to determine the half-life of stable transcripts (Friedel

et al. 2009). Although actinomycin D treatment can stabilize

transcripts globally, the rank order of transcript stabilities appears

relatively unchanged (Rabani et al. 2011; Schwanhausser et al.

2011), supporting the validity of our conclusions regarding lncRNA

stability.

The increasing availability of genome-wide technologies such

as microarrays, high-throughput proteomics and next-generation

sequencing has led to an explosion of studies featuring massive

data sets. However, there has been minimal innovation with re-

spect to the visualization of and accessibility to genome-scale data

sets, and it is typically a complex process to extract and navigate

the data sets associated with such studies. To address this issue,

here we have presented our data set using QAPgrid clustering and

combined this with an interactive navigation system based on

Google Maps and an easily searchable database. As a result, users

can become oriented within the data at various levels, such as by

browsing the stability profiles or by searching for clusters that

contain a particular transcript. In addition to providing conve-

nient access to the data presented here, such an interface can be

readily adapted to other genome-scale data sets. We also suggest

that such advances in data dissemination are important to provoke

further innovation in this important area, whichwe anticipate will

become an increasingly essential component in any study pre-

senting genome-scale data.

Attempts to dissect the regulatory circuitry of a biological

system have increasingly led to the application and integration of

various ‘‘omics’’ approaches. Our data and that of others suggest

that there are significant correlations between stability profile and

function (Sharova et al. 2009; Rabani et al. 2011; Schwanhausser

et al. 2011). Furthermore, transcripts clustered into the same decay

profiles (despite large differences in actual transcript expression

levels) may be regulated by the same post-transcriptional regula-

tory pathways and/or contain similar regulatory sequences. Given

the substantial complexity of the mammalian transcriptome,

which continues to grow with increasingly sensitive technology,

there is an increasing need for techniques to aid in the functional

annotation of novel transcripts and variant isoforms, which now

by far exceed the number of transcripts for which a function has

been assigned. We suggest that stability profiling provides an im-

portant facet in the characterization of the transcriptome in a

given biological system and is an important consideration in the

ranking of candidate transcripts to pursue for more detailed func-

tional studies.

Methods

Cell culture and RNA extraction

Mouse Neuro-2a (N2A) neuroblastoma cells (ATCC number CCL-

131) and NIH-3T3 cells were cultured at 37°C, 5% C02, in DMEM

plus 10% newborn calf serum and penicillin/streptomycin. For

stability experiments, cells were grown to;50% confluency before

RNA polymerase activity was blocked with 10 mg/mL actinomycin

D (Sigma) in DMSO. Control cells were treated with DMSO alone.

Transcriptional inhibition of N2A cells was conducted for 32 h,

with cells harvested at time zero (0 h) and after 30 min, 2, 4, 8, 16,

and 32 h. Inhibition of 3T3 cells was conducted for 24 h with

harvesting at time zero (0 h) and after 30 min, 2, 4, 8, and 24 h.

Cells were collected by trypsinization and total RNA extracted
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using RNeasy columns (Qiagen) and treated with DNase. RNA

samples were confirmed DNA-free by performing PCR for a geno-

mic target on the purified RNA. Integrity of RNA for microarrays

was confirmed using the Agilent 2100 Bioanalyzer (Agilent Tech-

nologies). High quality, intact rRNA was found at all time points,

although after 32 h of transcriptional inhibition, the first indi-

cations of rRNA degradation were visible despite continued high

RNA integrity number (RIN) values. Success of transcriptional in-

hibition was confirmed by testing the stability of Myc mRNA (Fig.

1A; Supplemental Fig. S13).

Stability microarrays

Stability microarrays were conducted using the NCode Mouse

Noncoding RNA Microarray (Life Technologies), which contain

27,281 probes targeted against protein-coding transcripts and

7228 probes targeted against noncoding transcripts. Two color

arrays were performed where transcriptionally inhibited time

points were compared to the untreated 0-h sample. Four biological

replicates were performed with two dye swaps. Control DMSO-

treated samples were not analyzed by microarray. 0.5 mg of total

RNAwas used for cRNA production using the Quick Amp Labeling

Kit (Agilent). Equal micrograms were used because total RNA is

comprised mainly of rRNA, which is highly stable, so the amount

of rRNA, and hence total RNA, stays essentially the same even

though mRNAs are decaying. Array hybridization was performed

as per the Two-color Microarray Protocol (Version 5.7) (Agilent)

and scanned using a G2565BA Microarray Scanner (Agilent).

Stability array normalization

Array data was processed using LIMMA (Smyth and Speed 2003;

Smyth 2004; Ritchie et al. 2007) via the R Project for Statistical

Computing (www.r-project.org). Background correction was per-

formed via theminimummethod. Between array normalization of

0-h control samples was performed with G-quantile or R-quantile

normalization (depending on the channel of the 0-h sample),

while T-quantile normalization was performed for each transcrip-

tionally inhibited time point to better retain transcript degradation

signals. Scaling normalization was conducted using the previously

identified highly stable gene Zfas1 (Askarian-Amiri et al. 2011) and

six other stable genes. These were identified by comparing the top

100 most stable mouse mRNAs from NIH-3T3 cells (Friedel et al.

2009) against the present data and selecting those appearing to be

up-regulated during later time points similar to Zfas1. The average

fold change of this group of seven genes between each time point

was calculated, set to zero, and the probe intensity data was scaled

proportionately. Summary statistics for each probe including ex-

pression values, fold change, adjusted P-values, and Bayesian (B)

statistics were calculated using LIMMA. An eBayes (B statistic) prior

of 25%was used. An appropriate expression cutoff was empirically

determined by examining the ability of the microarrays to detect

transcriptional decay as the 0-h expression level decreased and

selecting a 0-h value which was sufficiently above background to

allow accurate half-lives to be calculated. Raw and normalized

microarray data is available at the ArrayExpress Data Warehouse

(EMBL-EBI; ArrayExpress accession number E-MTAB-961).

Half-life calculations

Half-lives were calculated for probes above the expression cut-off

of 25. Probe responses ranged from fast degradation to unchanged.

Decay profiles were modeled by one-phase exponential decay

(constraints: plateau $ 0, K > 0) and/or linear decay using non-

linear least squares regression using R (www.r-project.org). Probes

showing statistically decreased expressionweremodeledwith both

one-phase decay and linear decay. Only fits with an R2
> 0.7 were

utilized. Where both models produced good fits, the model pro-

ducing the better R2 value was chosen. The remaining probes were

modeled with linear decay only. Half-lives were calculated from

a filtered set of probes shown by an F-test to have a significantly

negative slope and with R2
> 0.7.

Clustering

Unsupervised hierarchical clustering was performed using cluster3

software (de Hoon et al. 2004). Clustering of all lncRNAs above the

expression cut-off used the command line parameters -g 4 -e 2 -m

m, which specifies the pairwise complete linkage method for the

clustering and Pearson correlation for both the microarray and

probe clustering. Normalized probe intensities are expressed rela-

tive to 1 at time 0 h. Clustering of lncRNA genomic location classes

used the command line parameters -cg a -g 0 -e 5 -m m, which

centers each time point by subtracting the mean, utilizing the

pairwise complete linkage method for the clustering and Spear-

man’s rank correlation for the lncRNA classes only. The resulting

clusters were visualized using Java TreeView (Saldanha 2004).

The unsupervised graph-based clustering and visualization of

decay profiles was performed using QAPgrid. The clustering ap-

proach and several illustrative examples on different data sets

have been published previously (Inostroza-Ponta et al. 2011). The

clustering algorithm receives as input the time expression values of

14,987 probe sets. After computing the Pearson correlation values

for all pairs of probe sets (x,y)—which we denote as r(x,y)—a

distance matrix is calculated according to the formula d(x,y) =

1�r(x,y). The clustering algorithm (MSTkNN) does not require

user-defined parameters such as the number of clusters or number

of elements per cluster. According to its built-in stopping criteria, it

has returned 152 clusters. In turn, another matrix of distances is

computed between each of these 152 clusters (for details of cal-

culations, see Inostroza-Ponta et al. [2011]). With the input of

these two matrices, we use a metaheuristic (a memetic algorithm)

to solve a quadratic assignment problem defined over a grid. We

obtain a layout in which, at least globally, highly similar expres-

sion patterns among clusters and super-clusters are likely to be in

close proximity in the final figure produced by themethod. For the

figures, each of the cluster’s profile graphs was produced using

stacked bar plots using R (www.r-project.org). To allow integration

between half-lives, clustering, and transcript annotations, each

cluster was linked to a list of the probes contained in the cluster,

along with half-life and annotation information. Cluster enrich-

ment analysis was performed with g:profiler and GATHER (Chang

and Nevins 2006; Medina et al. 2010; Reimand et al. 2011).

Annotation of coding and noncoding RNA transcripts

Protein-coding gene structures were based on UCSC KnownGenes

(Fujita et al. 2011) and Refseq (Pruitt et al. 2009) as of April 2011.

Noncoding transcripts were derived from the ‘‘All mRNA’’ track in

the UCSCGenome Browser (Fujita et al. 2011) and were defined as

noncoding if they had <5%overlapwith protein-coding exons and

an ORF less than 100 amino acids. PhyloCSF (Lin et al. 2011) was

used to filter putative lncRNAs, and any transcripts with a score

of 50 (or above) were defined as protein coding. A classification

as protein coding was overridden if the transcript was found in

lncRNAdb (Amaral et al. 2011) or had been identified as binding to

chromatin regulatory proteins (Guttman et al. 2011). Genomic

locations of lncRNAs were defined as follows: Head-to-head tran-

scripts from bidirectional promoters were defined as transcripts

that originate from the antisense strandwithin 1 kb upstream of or
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0.5 kb downstream from the 59 end of another RNA transcriptional

start site. Tail-to-tail transcripts terminate on the antisense strand

within 1000 nt downstream or 1000 nt overlapping the termina-

tion site of another transcript. Cis-antisense transcripts were de-

fined as those lncRNAs where at least 90% of their exonic length

overlapped with a transcript on the opposite strand. Exclusively

intronic ncRNAs were defined as those that initiated and termi-

nated within introns of protein-coding genes in the sense orien-

tation. The broader definition of intronic ncRNAs included any

sense noncoding transcript where at least 75% of its exonic region

covers the introns of a protein-coding gene. Intergenic transcripts

were defined as ncRNAs not transcribed within 2 kb upstream of

a protein-coding region on either strand or 30 kb downstream in

the sense direction or 2 kb downstream in the antisense direction.

39UTR-associated transcripts (uaRNAs) were defined as any ncRNA

that initiates within 30 kb downstream from a stop codon on the

same strand [to allow for the potential of 39UTRs that extend be-

yond their annotations (Moucadel et al. 2007; Mercer et al. 2011)].

Promoter-associated transcripts were defined as single exon tran-

scripts whose transcriptionwas foundwithin 3 kb upstream of and

1 kb downstream from transcription start sites on either strand.

Note that some genomic categories are mutually exclusive, but

others are not. LincRNAs were from Guttman et al. (2009, 2010),

lncRNAdb (Amaral et al. 2011), and Guttman et al. (2011) (chro-

matin protein-binding lincRNAs only).We identified the half-lives

for 144 transcripts from lincRNA regions. However, we only clas-

sified 90 of these as noncoding. This apparent discrepancy is pri-

marily a consequence of the conservative nature of our lncRNA

classification but can also be attributed to updated Refseq anno-

tations that class some lincRNAs as probable coding genes. There

was no difference between the stability of those lincRNAs we clas-

sified as coding or noncoding (P = 0.93).

Puf family-binding sites were predicted using the UGUAN

AUA consensus sequence (Xie et al. 2005). AU-rich elements were

searched for using the AUUUA motif. The number of major and

minor polyadenylation signals was calculated for the last 35 nt of

transcripts. Major signals: AATAAA and ATTAAA. Minor signals:

AATTAA, AAATAA, AGTAAA, AATATA, CATAAA, TAATAA, and AAT

AAT. Transcripts with 12 or more A nt in the final 20 nt of a tran-

script or first 20 genomic nt 39 from the transcript were identified

as candidates for internal priming.

GO analysis was performed with Fatigo (Medina et al. 2010;

Reimand et al. 2011). Statistical analyses of lncRNA and mRNA

features that define stabilitywere performed usingGraphPadPrism

(GraphPad Software).

N2A fractionation arrays

N2A nuclear and cytoplasmic fractions were isolated using a vari-

ation of a procedure described previously (Andersen et al. 2002).

Cells were trypsinized, washed twice in ice cold PBS, and resus-

pended in low salt buffer (10 mM HEPES, pH 7.9, 10 mM KCl, 1.5

mM MgCl2, 0.5 mM DTT) on ice to swell (swelling was confirmed

using a phase contrastmicroscope). Cells were transferred to an ice

cold Dounce homogenizer and homogenized until at least 95%

of cells were burst, but nuclei were still intact. Homogenate was

centrifuged at 220g for 5 min at 4°C to separate the cytoplasmic

fractions and nuclear-enriched pellets. The pellets were resus-

pended in 0.25 M sucrose, 10 mM MgCl2 buffer and overlayed on

0.88 M sucrose, 0.5 mM MgCl2 buffer, then were centrifuged at

3000g for 15 min at 4°C to obtain pure nuclei. RNA was extracted,

and three biological replicate microarrays performed and normal-

ized as described previously (Askarian-Amiri et al. 2011). An eBayes

(B-statistic) prior of 15% was used. Data was uploaded and ana-

lyzed using NRED (Dinger et al. 2009b). Probes with expression

of log2 $ 7 were defined as expressed. Enrichment in either

compartment was defined as $twofold expression enrichment,

P-value < 0.05, B-statistic > 0. Raw and normalizedmicroarray data

is available at the ArrayExpress Data Warehouse (EMBL-EBI;

ArrayExpress accession number E-MTAB-952).

qPCR

Reverse transcription was carried out with the SuperScript III cDNA

synthesis kit (Invitrogen) using randomhexamers. Quantitative real-

time PCR (qPCR) was performed using SYBR Green PCR Master Mix

and real time cyclers (Applied Biosystems). Relative quantification to

a stability control (GapdhorAtp5e)was performed for stability qPCRs.

At least three biological replicates were performed for all transcrip-

tionally inhibited time courses. Decay profiles were graphed and

half-lives calculated using GraphPad Prism (GraphPad Software) as

perAskarian-Amiri et al. (2011). The0-h timepoint expression level

was set to 100%, and the percentage of transcript remaining at

each time point calculated. Half-lives were calculated by nonlinear

regression with a least squares fit (plateau > 0, k > 0), using one-

phase exponential decay, or, when no decay was observed, a linear

line. Primer sequences are provided in Supplemental Table S6.

Absolute quantification was performed for fractionation sam-

ples. Equivalent micrograms of nuclear and cytoplasmic RNAs used

for qPCR were converted to cell equivalents by multiplying the

cytoplasmic expression level by the cytoplasmic/nuclear RNA ratio

calculated from the RNA extraction yields. Nuclear:cytoplasmic

enrichment ratios were calculated from three biological replicates.

Western blotting

Protein lysate concentrations were measured using the Bradford

assay and then run on 12.5% polyacrylamide gels, which were

Coomassie-stained to confirm equal loadings. Proteins from SDS-

PAGE gels were transferred to PVDF membrane using a semi-dry

procedure. Membranes were blocked overnight in 5% milk pow-

der. Primary and secondary antibody incubations were carried out

for 2 h. GAPDH (1:4000 dilution) (R&D systems), HISTONE H3

(1:1000), anti-rabbit HRP (1:5000) (Cell Signaling Technologies).

Proteins were visualized using ECL (GIBCO).

FISH

N2A and NIH-3T3 cells were seeded onto microscope cover slips

and grown until ;80% confluent. Cover slips were incubated in

Extraction buffer (100mMNaCl, 300mM sucrose, 10mMPIPES, 3

mM MgCl2, 0.5% Triton, and 10 mM vanadyl ribonucleoside

complex, VRC) for 1 min and then fixed with 4% PFA/PBS at 4°C

for 40 min, followed by overnight incubation in 70% ethanol at

4°C. Biotinylated oligos against mouse Neat1 (59-aaactgttattcccatc

aacccacggttccaggcacatt-39biotin and 59-aatgacacaccactcaactaaattca

gggcaggttggct-39biotin) or a scrambled control oligo (59-gacatcct

catcggaatttagggcatatcgcaatcgcgc-39biotin) were used at a final con-

centration of 1 mM and denatured at 80°C for 10 min in 70%

formamide. Oligos were made up to 20 mL with hybridization

buffer (0.4% BSA, 20% dextran sulphate, 43 SSC buffer, 2 U/mL

RNase out) and incubated on cover slips at 37°C overnight. Cover

slips were washed once in 15% Formamide/23 SSC, then in 23

SSC, and then in 13 SSC. Streptavidin Alexa Fluor488 (Invitrogen)

was diluted 1:500 in 43 SSC/0.4% BSA and incubated on each

cover slip at 37°C for 1 h, followed by washing in 43 SSC, then 43

SSC/0.1% Triton, then again in 43 SSC. NONO mouse mono-

colonal antibody (Souquere et al. 2010) was diluted 1:500 in PBS/

0.05%Tween-20 and incubated on cover slips at room temperature

for 1 h, followed by three washes with PBS/0.05% Tween-20, then
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probed with anti-mouse-TRITC secondary antibody (Jackson

Immuno Research Laboratories) diluted 1:250 in PBS/0.05%

Tween-20 for 1 h, followed by three washes in PBS/0.05% Tween-

20. Cover slips were stained with DAPI (Sigma), mounted with

Vectashield (Vector Laboratories), and z-stacks obtained using a

Nikon TiE fluorescent microscope.

Paraspeckle quantification

Maximum projections of deconvolved z-stacks of NIH-3T3 cell

nuclei (N = 18) and N2A cell nuclei (N = 31) from Neat1 FISH with

NONO and DAPI costaining were converted to grayscale in each of

the three fluorescent channels used. The images were then ana-

lyzed usingCellProfiler (www.cellprofiler.org) using amodification

of the ‘‘Speckle counting’’ pipeline (available on request) that is

given on the CellProfiler website (http://www.cellprofiler.org/

examples.shtml).

Data access

Raw microarray data is available at the ArrayExpress Data Ware-

house (EMBL-EBI; ArrayExpress accession numbers E-MTAB-952

and E-MTAB-961). All normalized stability and localization array

data is available online at http://stability.matticklab.com and/or in

Supplemental Tables S1 and S2.
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