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ABSTRACT 
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To further characterize the genetic determinants of resistance to anti-tuberculosis drugs we 

performed a genome-wide association study (GWAS) of 6,465 Mycobacterium tuberculosis 

clinical isolates from more than 30 countries.  A GWAS approach within a mixed regression 

framework was followed by a phylogenetic-based test for independent mutations. In addition 

to established and recently described resistance genes, novel mutations were discovered for 

cycloserine, ethionamide and p-aminosalicylic acid.  Capacity to detect resistance to 

ethionamide, pyrazinamide, capreomycin, cycloserine and para-aminosalicylic acid was 

enhanced by inclusion of insertions and deletions. Odds ratios for mutations within candidate 

genes were found to reflect levels of resistance. Novel epistatic relationships between 

candidate drug resistance genes were identified. Findings also suggest the involvement of 

efflux pumps (drrA, Rv2688c) in the emergence of resistance. Findings from this study will 

inform the design of new diagnostic tests and expedite the investigation of resistance and 

compensatory epistatic mechanisms. 

 

KEY WORDS: Mycobacterium tuberculosis, tuberculosis, GWAS, drug resistance, MDR-TB, 

XDR-TB 

 

Word count: 4,200 
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Introduction 

The emergence and spread of Mycobacterium tuberculosis (Mtb) resistant to multiple anti-

tuberculous drugs is of global concern. Programmatically incurable tuberculosis (TB), where 

effective treatment regimens cannot be provided due to resistance to the available drugs is a 

growing problem1. Resistance to rifampicin and isoniazid is classed as multidrug-resistant 

tuberculosis (MDR-TB), further resistance to the fluoroquinolones and any of the injectable 

drugs (amikacin, kanamycin or capreomycin) used to treat MDR-TB is termed extensively 

drug-resistant (XDR-TB). Treatment for patients with drug resistant tuberculosis is prolonged, 

expensive and outcomes are poor2. The drugs used are toxic and poorly tolerated, adverse 

events are common and may be severe and irreversible3. Inadequate treatment also risks 

amplification of resistance to further drugs and may prolong opportunities for transmission4.  

 

Mtb has a clonal genome (size 4.4Mb) with a low mutation rate and no evidence of between-

strain recombination or horizontal gene transfer5. The Mtb complex comprises seven 

lineages, of which four are predominant in humans: Lineage 1, Indo-Oceanic (e.g. East-

African-Indian (EAI) spoligotype families); Lineage 2, East-Asian (e.g. W/Beijing spoligotype 

families); Lineage 3, East-African-Indian (e.g. Central-Asian-Strain (e.g. CAS-DELHI) 

spoligotype families) and Lineage 4, Euro-American (e.g. Latin American-Mediterranean 

(LAM), Haarlem and the “ill-defined” T spoligotype families)5. 

 

Resistance in Mtb is mainly conferred by nucleotide variations (single nucleotide 

polymorphisms, insertions and deletions (indels)) in genes coding for drug-targets or -

converting enzymes. Changes in efflux pump regulation may have an impact on the 

emergence of resistance6 and putative compensatory mechanisms to overcome fitness 
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impairment coincidental with the acquisition of resistance have been described for some 

drugs7.  Detection of resistance conferring mutations offers a means of rapidly identifying 

resistance to anti-tuberculosis drugs8 but, with the exception of rifampicin, current molecular 

tests for resistance lack high levels of sensitivity8. To improve knowledge of genetic 

determinants of drug resistance we undertook whole genome analysis of a large collection 

(n=6,465) of clinical isolates from more than 30 geographic locations, representing the four 

major Mtb lineages (Figure 1, Supplementary table 1). We adopted a GWAS approach to 

identify nucleotide variation and loci underlying drug resistance as successfully applied in 

Mtb9–11 and other bacteria12,13. A total of 14 drugs with available phenotypic data on drug 

susceptibility testing were investigated (Supplementary table 2). Phenotypic drug 

susceptibility data was not available for each of the 14 drugs for every isolate and sample 

sizes ranged from over 6,000 for the most commonly tested first line drugs (isoniazid and 

rifampicin) to 255 and 248 for p-aminosalicylic acid and cycloserine, respectively, which are 

used to treat patients with XDR-TB. Here, we present findings from the most comprehensive 

study yet undertaken of the genetic determinants of resistance to anti-tuberculosis drugs or 

the Mtb resistome.  

 

RESULTS 

Genetic diversity and drug resistance 

High quality genome-wide SNPs (102,160), indels (11,122), and large deletions (284) were 

identified across all samples (n=6,465). Most SNPs (93.1%) had rare minor alleles (allele 

frequency <1%) (Supplementary Figure 1). Similarly, small indels were rare (96.6% had 

frequency <1%), and ranged in size from 1 to 45bp. A phylogenetic tree and principal 
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component analysis constructed using all genome-wide SNPs revealed the expected 

clustering by lineage (Figure 2, Supplementary Figure 2). 

 

Phenotypic analysis of susceptibility to anti-tuberculosis drugs found 31.2% of isolates were 

resistant to at least one drug, 15.1% were categorized as MDR-TB and 4.3% as XDR-TB 

(Supplementary table 2, Figure 2). Fourteen drugs were included in the genome-wide 

analysis: isoniazid (INH), rifampicin (RIF), ethionamide (ETH), pyrazinamide (PZA), ethambutol 

(EMB), streptomycin (STM), amikacin (AMK), capreomycin (CAP), kanamycin (KAN), 

ciprofloxacin (CIP), ofloxacin (OFL), moxifloxacin (MOX), cycloserine (CYS) and para-

aminosalicylic acid (PAS). Drug family groups including the second-line injectable drugs (SLID: 

AMK, KAN, CAP) and fluoroquinolones (FLQ: CIP, OFL, MOX) were also analysed. Insufficient 

phenotypic data was available for the inclusion of the new and repurposed drugs, 

bedaquiline, delamanid and linezolid. To reveal loci associated with drug resistance 

complementary methods were applied to mutations and aggregated non-synonymous 

mutations: a tree-based “PhyC” test for convergent evolution to detect homoplastic variants9 

and a GWAS approach within a mixed regression framework (See Online methods). Unless 

stated otherwise, all analysis used the complete dataset. First, we consider MDR-TB and XDR-

TB phenotypes (Table 1) and then individual drug GWAS and evolutionary results (Table 2). 

 

GWAS and phyC tests for MDR-TB and XDR-TB 

The gene-based GWAS of MDR-TB versus susceptible identified rpoB (RIF), Rv1482c-fabG1 

operon (INH, ETH), inhA (INH, ETH), katG (INH), and oxyR'-ahpC (compensatory mechanism 

for INH). The katG mutations at codon 315 (S315T, S315N, S315R) were all statistically 

significant, and collectively were the most frequent mutations (75.2%) across all resistance 
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loci identified, consistent with a recent study14 and highlighting their pivotal role in the 

emergence of INH resistance and MDR-TB. The katG S315T mutation is thought to emerge 

before RIF resistance associated mutations and therefore, from an evolutionary standpoint, 

preclude the emergence of MDR-TB14,15. However, our analysis highlighted that Rv1482c-

fabG1 and inhA mutations, in the absence of katG S315T, can emerge prior to MDR-TB, as 

previously shown in two phylogenetically-independent clades in Lisbon16,17. The other 

frequent MDR-TB mutations in our study included rpoB-S450L (RIF, 64.2%), embB-M306L/V/I 

(EMB, 49.1%), and rpsL-K43R (STM, 42.2%) (Supplementary table 3), and the magnitude 

correlates with historical treatment practice and emergence of resistance. There are 

corresponding signals of INH/RIF co-resistance with other first-line drugs, with the detection 

of gene-based association signals for gid (STM) and rpsL (STM), and a SNP-based association 

signal for the embC-embA intergenic region (EMB). SNP-based PhyC analysis detected the 

above loci, but in addition folC (PAS), pncA-Rv2044c intergenic region (PZA), and whiB6-

Rv3863 intergenic (putative STM or ETH) regions.  

 

The gene-based GWAS of XDR-TB versus MDR-TB identified mutations in gyrA (FLQ), rrs 

(aminoglycosides), the embC-embA intergenic region and ubiA (EMB). The PhyC test 

additionally revealed eis-Rv2417c (KAN), gyrB (FLQ), rrs (aminoglycosides), folC (PAS), alr 

(CYS), gid (STM) SNPs, and a novel mutation in the thyX-hsdS.1 intergenic region (A-9T, 

PAS)18,19. In addition to loci identified above, the gene-based GWAS comparing XDR-TB to 

susceptible groups identified rpoC (a compensatory mechanism for RIF resistance), ethA 

(ETH), eis-Rv2417c (KAN) and PPE52-nuoA (novel intergenic region, G-314T). The PhyC test 

additionally detected SNPs in gyrB (FLQ, D461N, D641H, T500N, T500I and A504V), supported 
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the thyX-hsdS.1 intergenic region SNP finding (PAS, A-9T), as well as identified a previously 

unreported ubiA SNP association (EMB, M180V).  

 

The drrA Arg262Gly mutation was significantly associated with XDR-TB compared to 

susceptible (mutation frequency 18% vs. 0%, respectively, P=1.5x10-8). We hypothesize that 

drrA may be involved in export of drugs across the membrane based on its strong association 

with XDR-TB in our study and its functional annotation as a probable transporter of antibiotics 

across the membrane (TubercuList, see URLs). This hypothesis is in accordance with the 

findings that rpoB mutations in Mtb may trigger compensatory transcriptional changes in 

secondary metabolism genes, in particular, in the biosynthesis and export of phthiocerol 

dimycocerosate (PDIM), increasing its expression and activity. As a consequence these strains 

became more virulent and multidrug resistant, increasing their fitness by increased efflux 

activity and lipid metabolism20,21. Similarly, a mutation in the Rv1144-mmpL13a intergenic 

region (C-102A) was highly associated with XDR-TB versus susceptible (mutation frequency 

17% vs. 0%, respectively, P=1.5x10-7). This mutation sits in the promoter to the operon 

containing mmpL13a and mmpL13b, which code for transmembrane transport proteins and 

could influence expression of these proteins6. 

 

Lineage-specific and compensatory mechanisms 

We conducted a stratified GWAS per lineage to identify lineage-specific loci associated with 

drug resistance. Most associations were present in more than one lineage. The largest 

number of lineage-specific drug resistance mutations were found in lineage 4, which was the 

largest collection investigated and contained more genetically diverse clones5, implying that 

geographically restricted mutations are being captured (Supplementary table 4). A previously 
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unreported putative compensatory locus was identified for pyrazinamide (pncB1) through 

analysis of lineage 1 which reached borderline significance for lineage 3.  

 

We applied a systematic approach to reveal epistatic interactions between GWAS loci (from 

Table 2) or explore known compensatory effects using a test of non-random association to 

detect the frequent co-occurrence of mutations in pairs of loci (Fisher exact test, P-value cut-

off <1x10-8) (Supplementary table 5). Deep phylogenetic mutations were removed to 

increase robustness. This approach proved to be successful at identifying well-known 

compensatory relationships between rpoB and rpoC loci (RIF)7, rpoB and rpoA (RIF)22 and katG 

and oxyR'-ahpC (INH)23. We captured the frequent co-occurrence of embB and ubiA mutations 

which together are known to lead to high levels of EMB resistance24, and they are therefore 

unlikely to represent a compensatory mechanism. Novel epistatic relationships included pncA 

with pncB2 (PZA) and thyA with thyX-hsdS.1 (PAS). The pncB2 effect appears to be specific to 

lineage 4 (Supplementary table 6). The other nicotinamide co-factor, pncB1, had weaker 

evidence of an epistatic relationship with pncA in lineage 1 (P=0.0016) (Supplementary table 

6). Similarly, there was marginal evidence for pyrG (lineage 4, P=0.00016)25 and Rv0565c 

(lineage 2, P=0.00027) with ethA (ETH)26 (Supplementary table 6). Follow-up investigations 

will need to determine whether mutations in these loci have an impact on the minimal 

inhibitory concentration (MIC) values or function as compensatory mechanisms. 

 

Overall, the GWAS approach was effective at detecting known drug resistance determinants 

and epistatic (gene-gene) relationships and identified novel ones that warrant functional 

validation in future studies. As resistance loci for individual drugs, especially second-line 

treatments, may be masked by an analysis of the composite MDR-TB and XDR-TB outcomes, 
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we repeated the GWAS, PhyC test and epistatic analysis for the 14 individual drugs 

considered.  

 

GWAS and phyC tests for individual drugs  

Rifampicin, isoniazid and ethionamide 

The rpoB locus showed the strongest association with RIF resistance, but the compensatory 

effects of rpoC and rpoA were also evident through homoplasy SNP analysis. As previously 

reported non-synonymous SNPs in rpoC (272 identified) were spread across the whole gene27. 

Altered or diminished activity of the catalase-peroxidase enzyme KatG is the most frequent 

mechanism of isoniazid resistance28, and as expected, the katG gene ranked first in the GWAS 

for this drug. Mutations in proposed INH drug targets, kasA and kasB previously included in 

some drug resistance databases, did not reach statistical significance in our study29, 

suggesting an odds ratio below our detection level of 1.4 (with 99% confidence of detection, 

90% statistical power). Both inhA, encoding the molecular target of isoniazid30 and the 

Rv1482c-fabG1 intergenic region harbouring its promoter, showed strong associations with 

INH and ETH, with greater effects in the former. In addition, oxyR'-ahpC intergenic associated 

mutations (20 detected) were found in the presence of katG polymorphisms (28), supporting 

its role as a compensatory mechanism.  For ethionamide, the ethA locus, encoding the drug-

metabolising enzyme was found to be associated with resistance as described previously31. A 

total of 153 non-synonymous mutations were identified in ethA, scattered throughout the 

gene and mostly affecting codons different from those already described8.  

Ethambutol 

Mutations in the embCAB operon, which encodes for enzymes involved in the biosynthesis of 

arabinan components of the mycobacterial cell wall, are mostly responsible for EMB 
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resistance but are not fully penetrant for resistance32. The embB and the embC-embA 

intergenic region had the strongest associations. Rv3806c (ubiA), described to contribute to 

high levels of EMB resistance in vitro17 was also significantly associated in our analysis 

demonstrating a role in clinical samples too across all four lineages. Two novel loci were 

identified: Rv2820c thought to enhance mycobacterial virulence ex vivo and in vivo, and 

Rv3300c a conserved protein with unknown function (TubercuList, see URLs). 

Pyrazinamide 

The pncA locus was the highest ranked association with PZA resistance in the GWAS and was 

a target of independent mutation, consistent with its established role33. Additionally, many 

low frequency SNPs were reported which were not used in the association analysis and could 

potentially confer resistance (Supplementary data 1). Other proposed PZA targets, namely 

rpsA34 and panD35, did not reach statistical significance in the GWAS and were not targets of 

independent mutation among PZA resistant strains in our collection.  

Streptomycin 

The rpsL, rrs and gid loci, all known to be involved in STM resistance18 were identified by 

GWAS. Mutations in rpsL are known to lead to intermediate to high levels of STM resistance36, 

and accordingly we observed high odds ratios indicative of high penetrance in association 

signals in this locus (Figure 3A). In contrast, candidate rrs and gid gene polymorphisms 

showed weaker overall signals (lower odds ratio) in the GWAS, which concurs with existing 

evidence that gid and rrs mutations confer lower levels of resistance36 (differences in odds 

ratios: rpsl vs. rrs/gid Wilcoxon P = 0.03; rpsl vs. gid Wilcoxon P = 0.04).  

Fluoroquinolones and Second-line injectables 

The gene- and SNP-based GWAS analysis revealed the gyrA locus, which encodes for the 

molecular target of FLQ37, as the strongest association signal. In addition to homoplastic 
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mutations in gyrA, evidence of independent mutation was detected in gyrB38. The Rv2688c 

C213R mutation was associated with MOX and FLQ resistance but did not reach statistical 

significance in OFL. The antibiotic transport ATP-binding protein encoded by Rv2688c is a 

known FLQ efflux gene39. As expected the strongest resistance gene and SNP-based 

association signals across AMK, KAN, and CAP was with the aminoglycoside (SLID) target gene 

rrs18. Association was observed with mutations in the eis promoter known to result in low 

levels of KAN resistance but not in co-resistance with other aminoglycosides40. Although the 

eis promoter mutations had a lower median odds ratio than that of rrs mutations, potentially 

supporting evidence that rrs mutations confer higher levels of KAN resistance40, this was not 

statistically significant due to small sample size (differences in odds ratios Wilcoxon P=0.24) 

(see Figure 3A).  

D-Cycloserine 

CYS inhibits the Alr enzyme, responsible for the conversion of L-Alanine into D-Alanine, by 

competing with L-Alanine for the active site. Resistance to CYS results from mutations in the 

alr coding region41. In our study alr was significantly associated with CYS resistance (Table 2) 

in line with recent evidence showing that clinical strains with alr mutations exhibit increased 

resistance to CYS11 and harboured multiple homoplastic mutations including Phe4Leu, 

Lys113Arg and Met343Thr. In a previous study, the Met343Thr mutation was detected in an 

XDR-TB strain that had been exposed to CYS treatment, predicted to alter the protein 

structure of Alr, and therefore it was hypothesised to be involved in CYS resistance42. To 

further understand the functional impact of the mutations found in alr we modelled the effect 

of these variants using the available crystal protein structure (PDB 1XFC, Supplementary 

figure 3). Mutations in alr were found to differ in their proximity to the CYS binding site and 

their effect on protein stability and ligand binding (Supplementary table 7). The Met343Thr 
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mutation (found in 12 susceptible and 2 resistant isolates) was predicted to have more drastic 

effect on protein structure compared to Lys113Arg, the most frequent mutation among CYS 

resistant isolates (in 7 susceptible and 23 resistant isolates). There appears to be a balance 

between the fitness cost associated with mutations and their frequency (Supplementary 

table 7). The Met343Thr mutation appears independently throughout the phylogenetic tree, 

but did not reach statistical significance for association to drug resistance (XDR-TB or CYS), 

implying that selection may be acting on this mutation but drug resistance may not be the 

driving factor.  

Para-aminosalicylic acid 

PAS is a pro-drug that is converted into its active form by thyA - a thymidylate synthase, which 

is an essential gene for Mtb survival. The candidate drug resistance loci are those involved in 

folate metabolism and biosynthesis of thymidine nucleotides (thyA, dfrA, folC, folP1, folP2 

and thyX)19. Of these, thyA and thyX-hsdS.1 (directly upstream of thyX) and were found to be 

associated with PAS drug resistance in both gene- and SNP-based GWAS. Importantly, it has 

been shown that G-16A SNP found in our study increased thyX expression by 18-fold relative 

to wild-type promoter although no link with PAS resistance was made18. Of 3 PAS resistance 

strains with the G-16A thyX promoter mutation, 2 also had a thyA mutation (P145L, H207R), 

further supporting that up-regulation of thyX is involved in resistance to PAS26, or has a 

compensatory role. The G-16A thyX is a homoplastic mutation, and therefore more likely to 

be compensatory.  

 

Overall, the (log) odds ratios for mutations with known levels of resistance based on MIC 

values followed an increasing trend from low to intermediate to high levels (Figure 3B; log 

odds ratios: linear regression trend P = 1.5x10-9, high vs. intermediate P = 5.2x10-5; 
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intermediate vs. low P = 5.8x10-10). This analysis demonstrates a potential utility of using odds 

ratios and their statistical significance to indicate the impact of a mutation and its propensity 

to cause low, intermediate or high-level resistance. Further, the odds ratios for the novel 

findings were marginally lower than those for known ones (Wilcoxon test P = 8.3x10-5), 

reflecting the ability of the GWAS to discover effect sizes of lower magnitude (Figure 3C). A 

pathway analysis comparing MDR-TB/XDR-TB to susceptible strains revealed only one 

significant annotation cluster with 17.7-fold enrichment for antibiotic resistance and 

response to antibiotics (P=1.6x10-7), further confirming the robustness of the GWAS 

approach. 

 

Association tests using small indels and large deletions  

An analysis of genome-wide small indels revealed associations in candidate resistance genes 

and operons (Supplementary table 8, Supplementary data 1). The candidate genes differed 

in their abundance of small indels, reflecting their essentiality for survival: drug targets had 

less density of indels whereas drug-metabolising enzymes had a greater density. For example, 

the pncA gene was the most polymorphic coding region (PZA, 44.72 indels /kb) while the least 

polymorphic was rpoB (RIF, 2.3 indels /kb). Although, most small indels (83%) in the candidate 

regions were 1bp in length and caused frame-shifts, the indels in rpoB inserted or deleted 

whole codons, i.e. they did not cause a shift in the codon reading frame. Indels in rpoB, pncA 

and the embAB promoter region were associated with MDR-TB, XDR-TB and their respective 

targets/activators. Indels in ethA were associated with ETH and XDR-TB resistance. Similarly, 

gid indels were associated with STM as expected.  
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The analysis of CYS revealed indel associations with the ald gene, supporting recent reports 

that loss of function in ald confers resistance11. Thus resistance to CYS appears to be conferred 

by both SNPs in alr and indels in ald.  Indels found in rrs were associated with KAN and CAP 

resistance, however they did not reach statistical significance for STM, which has a different 

drug binding site. CAP resistance was also found to be associated with three indels in tlyA, 

two of which are located at the 3’ end of the gene. In general, indels were distributed 

throughout the gene lengths however there was some evidence of areas of higher density 

such as the pncA region between codons 130 and 132 (close to the catalytic centre) and the 

rpoB 427-434 codon region.  

 

The only large deletion association identified by GWAS was a region encompassing the thyA 

and dfrA genes and PAS resistance. Five samples across 4 countries contained large thyA-dfrA 

deletions of varying length (Supplementary table 9, Supplementary figure 4). Associations in 

partial or whole gene deletions in katG, ethA and pncA, were close to statistical significance 

(P<0.05). These genes activate pro-drugs, and none are considered to be essential to Mtb 

survival. The large deletions detected occur independently in different branches of the 

phylogenetic tree and are likely to offer an alternative route to resistance compared to small 

genomic variants, across lineages and populations.  

 

Effects on resistance prediction using GWAS variants  

We sought to establish if any of the mutations found in association and homoplastic analysis 

increased the predictability of individual drug resistance phenotypes (Table 3). We used the 

reported phenotypic drug susceptibility test result as the reference standard to calculate the 

sensitivity and specificity for mutation-resistance predictions. Using a previously established 
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library of mutations8,17 (TBDR library), we found that although the sensitivity was greater than 

80% in 8/14 drugs, a substantial proportion of resistance phenotypes were not explained by 

known mutations, particularly in second-line drugs. Using the novel SNPs identified in this 

study we gained sensitivity for PAS (+10%), ETH (+14%) and CYS (+50%, not included in the 

TBDR library) (Table 3). The additional inclusion of small indels and large deletions further 

improved the predictive ability for 9 drugs while maintaining specificities of at least 90%, 

except for ETH which is 72% (Table 3).  

 

DISCUSSION 

To provide genomic insights into Mtb drug resistance we have combined the power of whole 

genome sequencing with a genome-wide association analytical approach in the largest and 

most geographically widespread study to date, encompassing a total of 6,465 clinical isolates 

of Mtb from more than 30 countries. Large sample sizes are required to identify complex or 

infrequent genetic effects, but also to negate effects due to possible errors in phenotypic drug 

susceptibility testing and misclassification43. The lack of standardization of phenotypic testing 

methodologies for Mtb is also a potential source of bias which was reduced by the inclusion 

of samples from different countries and laboratories using a variety of quality assured testing 

methodologies. Whilst resistant phenotypes may be imputed from established resistance 

causing mutations, inferring susceptibility to a drug cannot be assumed in the absence of 

corroborating evidence17. The completeness of our susceptibility test data meant that both 

GWAS and homoplasy-based methods could be applied across 14 drugs.  

 

The GWAS identified well-established resistance loci and compensatory relationships, 

thereby confirming the authenticity and robustness of the approach. It also revealed several 
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recently discovered loci (folC, ubiA, thyX-hsdS.1, thyA, alr, ald, dfrA-thyA), new epistatic 

relationships (pncA with pncB2, and thyA with thyX-hsdS.1) and efflux pumps represented by 

the ABC transporters drrA and Rv2688c associated with drug resistance. The novel genetic 

markers associated with resistance identified in this GWAS included SNPs in the ethA and thyX 

promoters, small indels in pncA and ald, and large deletions in pro-drug activators such as 

ethA and katG. These loci warrant functional follow-up and characterization studies to fully 

elucidate their role in treatment failure.  The associations identified may shed light on the 

molecular mechanisms underlying drug resistance and assist in the design of novel antibiotics. 

 

In our study, sample sizes for second-line drugs were reduced compared to the first-line 

drugs. This was due to the lower prevalence of resistance to second-line drugs and the fact 

that isolates susceptible to first-line drugs are not routinely tested for second-line drugs. 

However, due to the large effect that causal mutations have on drug resistance phenotypes, 

although not ideal, relatively small samples of bacterial genomes can be sufficient to identify 

causal mutations 43 as has been demonstrated in previous studies on Mtb 10-12. It should be 

noted that bedaquiline, delamanid and linezolid were excluded from our analysis due to the 

paucity of phenotypic susceptibility data. 

 

The analysis also highlighted the importance of indels on drug resistance, particularly their 

high density in drug-metabolizing genes, in contrast to highly essential drug-target genes 

where their density was low. The inclusion of small indels and large deletions improved the 

predictability of resistance phenotypes. However, for drugs like CYS and PAS mechanisms of 

drug resistance remain unknown and larger numbers of resistant cases will be required to 
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elucidate them. It is also possible that unknown mechanisms may be explained by the role of 

epigenetics and gene expression44.  

 

Mtb strains are usually classified as drug resistant or susceptible based on their capacity to 

grow in vitro when exposed to a critical concentration of the drug. Phenotypic testing 

methods have a degree of uncertainty, especially close to the threshold43. Testing against a 

range of drug concentrations to establish the minimum inhibitory concentration (MIC) is a 

preferred approach to determine the level of resistance but is not routinely undertaken40. 

MIC values were not available for every isolate presented here, but despite this limitation, 

loci known to be involved in low-levels of resistance (Table 3), were identified by our analysis. 

Indeed, our analysis revealed a relationship between known levels of resistance and the odds 

ratios from the GWAS, which could aid the clinical interpretation of molecular diagnostic data 

including measuring the sensitivity and specificity of individual mutations when diagnosing 

drug resistance. 

 

Emergence of resistance is driven by drug exposure and local TB treatment practices are a 

major influence on the prevalence and pattern of resistance.  A limitation of this study was 

the sampling methodology since collection of the isolates was not controlled or systematic 

and resistant isolates were not evenly distributed across collection sites.  However, within our 

study population we covered the four major Mtb lineages across 5 continents and sampled 

multiple geographical regions, allowing us to observe differences in the prevalence of drug 

resistance mutations and mechanisms. Some of drug resistance and compensatory/epistatic 

relationships were found to vary across geographical populations and bacterial lineage, 

implying that regional variation should be considered to fully characterise genotype-
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phenotype relationships. The differential lineage effects could impact on relative virulence 

between strain-types. Enhanced understanding of the genetic basis of anti-tuberculous 

phenotypic drug resistance will also aid in the development of more accurate molecular 

diagnostics for drug-resistant TB. An important finding of this study is the significance of 

genomic variation other than SNPs which has implications for the design of molecular tests 

for resistance. Improved tools are needed to guide treatment of patients with multidrug-

resistant disease where personalized treatment offers improved rates of cure45. Next 

generation sequencing offers a comprehensive assessment and may be used to guide 

treatment45. Although such technology is currently being implemented in some low burden 

countries such as the United Kingdom, it remains to be trialled in resource-poor settings that 

are representative of most TB patients worldwide.  
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FIGURE LEGENDS 
 
Figure 1. Geographical distribution of the 6,465 Mycobacterium tuberculosis isolates 

analysed in the study 

This world map shows the main geographical origins of the M. tuberculosis isolates included 

in this study. The study comprises strains from more than 30 countries, of which the 18 major 

contributors are shown on this map. See Supplementary table 1 for a detailed description of 

each dataset. Inner pie charts show the proportion of each of the main four lineages, and the 

outer charts summarise the drug resistance phenotypes. ‘Drug-resistant’ refers to non-MDR-

TB/XDR-TB resistance.  

 

Figure 2. Whole genome phylogeny of the 6,465 M. tuberculosis isolates 

Maximum likelihood phylogenetic tree constructed using 102,160 SNPs and 11,122 insertions 

and deletions spanning the whole genome and rooted on M. canetti (not shown), colour-

coded by lineage (inner circle) and drug resistance status (outer circle). ‘Susceptible’ refers to 

isolates being susceptible to all drugs tested. ‘Drug-resistant’ refers to strains being resistant 

to multiple drugs but not classified as multidrug-resistant (MDR-TB) or extensively drug-

resistant XDR-TB. 

 

Figure 3 

(Log) Odds ratios from SNP-drug resistance associations are a potential surrogate for 

resistance level. (A) Within each drug, boxplots for the log odds ratios (P<1x10-5) for each 

gene are arranged by increasing median values (as indicated by the horizontal line in the 

boxes) to show their relative effect on resistance. Mutations known to confer low, 
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intermediate or high levels of resistance (See Online Methods) are represented by points 

coloured blue, yellow or red, respectively, and their size is proportional to their frequency; 

overall, higher levels of resistance are reflected by higher odds ratios; one exception is for rrs 

and CAP, where the G1484C/T (high level resistance) mutation has a lower odds ratio than 

A1401G (intermediate level) due to its low frequency; a similar effect is seen for the same 

G1484C/T mutation in KAN resistance; (B) The distribution of (log) odds ratios (P<1x10-5) for 

the mutations within unknown, or known low (blue), intermediate (yellow) or high (red) levels 

of resistance; (C) The distribution of (log) odds ratios for known and novel drug resistance 

mutations (P<1x10-5). All boxplots consist of boxes (median and interquartile range) and 

whiskers that extend to the most extreme data point which is no more than 1.5 times the 

interquartile range from the box. 
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Table 1 
MDR-TB and XDR-TB gene-based associations 

Comparison Rv number Gene name P-value 
NS 

SNPs 
Indels 

(frame.) 
Assoc. 
SNPs 

PhyC 
SNPs 

MDR-TB vs. Susc. Rv0667 rpoB 2.99E-103 159 7 (0) 6 33 

MDR-TB vs. Susc. Rv1908c katG 2.44E-65 177 12 (9) 2 8 

MDR-TB vs. Susc. Rv1482c-Rv1483 Rv1482c-fabG1 1.28E-17 8 0 1 4 

MDR-TB vs. Susc. Rv2427A-Rv2428 oxyR'-ahpC 5.26E-15 17 3 0 7 

MDR-TB vs. Susc. Rv3919c gid 1.09E-08 137 26 (26) 0 15 

MDR-TB vs. Susc. Rv1484 inhA 8.55E-07 9 0 0 3 

MDR-TB vs. Susc. Rv0682 rpsL 7.31E-06 6 0 0 2 

XDR- vs. MDR-TB Rv0006 gyrA 2.46E-37 147 0 4 5 

XDR- vs. MDR-TB rrs rrs 4.33E-17 91 4 1 5 

XDR- vs. MDR-TB Rv3806c ubiA 4.22E-07 47 0 1 1 

XDR- vs. MDR-TB Rv3793-Rv3794 embC-embA 8.73E-06 6 6 0 6 

XDR-TB vs. Susc. Rv0667 rpoB 4.13E-183 159 7 (0) 5 3 

XDR-TB vs. Susc. Rv3795 embB 1.54E-75 168 2 (0) 4 2 

XDR-TB vs. Susc. Rv2043c pncA 4.33E-65 117 25 (22) 1 9 

XDR-TB vs. Susc. Rv1908c katG 9.52E-60 177 12 (9) 1 1 

XDR-TB vs. Susc. Rv3793-Rv3794 embC-embA 1.07E-31 6 6 2 4 

XDR-TB vs. Susc. rrs rrs 5.14E-28 91 4 2 3 

XDR-TB vs. Susc. Rv1482c-Rv1483 Rv1482c-fabG1 1.98E-27 8 0 2 1 

XDR-TB vs. Susc. Rv1484 inhA 3.09E-26 9 0 1 1 

XDR-TB vs. Susc. Rv0006 gyrA 8.62E-26 147 0 4 5 

XDR-TB vs. Susc. Rv0668 rpoC 2.62E-21 153 1 (0) 1 9 

XDR-TB vs. Susc. Rv0682 rpsL 2.02E-18 6 0 1 3 

XDR-TB vs. Susc. Rv3144c-Rv3145 PPE52-nuoA 3.65E-11 24 1 1 2 

XDR-TB vs. Susc. Rv3854c ethA 1.80E-10 163 38 (35) 0 1 

XDR-TB vs. Susc. Rv2936 drrA 1.46E-08 19 0 1 9 

XDR-TB vs. Susc. Rv2416c-Rv2417c eis-Rv2417c 2.53E-07 12 1 0 3 

XDR-TB vs. Susc. Rv1144-Rv1145 Rv1144-mmpL13a 1.48E-07 33 4 1 2 

XDR-TB vs. Susc. Rv3854c-Rv3855 ethA-ethR 9.87E-06 12 0 1 0 

This table shows loci (protein and RNA coding regions, intergenic regions) associated with MDR- and 
XDR-TB resistance (P<1x10-5). The column labelled as ‘NS SNPs’ shows the number of non-synonymous 
SNPs in the genes; the column ‘Indels (frame.)’  refers to the number of small indels resulting in 
frameshifts in the genes; ‘Assoc. SNPs’ refers to the number of SNPs identified by GWAS and ‘PhyC SNPs’ 
is the number of homoplastic SNPs identified using the PhyC test. The PhyC test additionally detected 
folC, pncA-Rv2044c and whiB6-Rv3863 loci when comparing MDR-TB against the susceptible group; and 
eis-Rv2417c, gyrB, rrs, folC, alr, gid, and the thyX-hsdS.1 intergenic region when comparing XDR-TB 
against MDR-TB; and alr, gyrB, pyrG, rpoA, and thyX-hsdS.1 loci when comparing XDR-TB against 
susceptible. Similarly, GWAS using SNPs additionally identified embC-embA for MDR-TB vs susceptible 
(1 SNP), rrs and ubiA genes for XDR-TB vs MDR-TB (each 1 SNP), and the ubiA gene for XDR-TB vs. 
susceptible (2 SNPs). 
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Table 2 

Individual drug gene-based associations in the complete dataset 

Drug* Rv number Gene name P-value 
NS 

SNPs 
Indels 

(frame.) 
Assoc. 
SNPs 

PhyC 
SNPs 

Isoniazid Rv1908c katG 1.02E-112 177 12 (9) 1 3 

Isoniazid Rv1482c-Rv1483 Rv1482c-fabG1 5.41E-54 8 0 2 2 

Isoniazid Rv2427A-Rv2428 oxyR'-ahpC 8.51E-27 17 3 0 3 

Isoniazid Rv1484 inhA 3.29E-07 9 0 1 1 

Rifampicin Rv0667 rpoB 8.47E-226 159 7 (0) 7 9 

Rifampicin Rv0668 rpoC 2.57E-08 153 1 (0) 0 9 

Ethambutol Rv3795 embB 2.48E-129 168 2 (0) 4 10 

Ethambutol Rv3793-Rv3794 embC-embA 8.49E-42 6 6 2 5 

Ethambutol Rv3806c ubiA 3.93E-13 47 0 1 2 

Ethambutol Rv2820c . 2.55E-08 16 0 1 0 

Ethambutol Rv3300c . 1.33E-07 39 5 (3) 0 0 

Ethionamide Rv1482c-Rv1483 Rv1482c-fabG1 6.01E-16 8 0 2 2 

Ethionamide Rv1484 inhA 6.72E-07 9 0 1 0 

Pyrazinamide Rv2043c pncA 3.62E-99 117 25 (22) 2 1 

Pyrazinamide Rv2043c-Rv2044c pncA-Rv2044c 6.64E-30 4 1 1 1 

Streptomycin Rv0682 rpsL 2.67E-85 6 0 2 2 

Streptomycin Rv3919c gid 3.54E-26 137 26 (26) 0 1 

Streptomycin rrs rrs 3.95E-13 91 4 1 3 

Amikacin rrs rrs 5.28E-48 91 4 1 1 

Kanamycin rrs rrs 1.76E-48 91 4 2 2 

Kanamycin Rv2416c-Rv2417c eis-Rv2417c 9.84E-21 12 1 1 1 

Capreomycin rrs rrs 1.68E-39 91 4 1 1 

Capreomycin Rv2172c-Rv2173 Rv2172c-idsA2 7.18E-06 18 0 0 0 

Ciprofloxacin Rv0006 gyrA 4.48E-45 147 0 2 2 

Moxifloxacin Rv0006 gyrA 2.98E-23 147 0 3 5 

Ofloxacin Rv0006 gyrA 4.87E-115 147 0 4 6 

D-Cycloserine Rv3423c alr 1.23E-13 57 0 1 0 

D-Cycloserine Rv0342 iniA 3.36E-08 76 13 (12) 1 0 

PAS Rv2764c thyA 3.74E-10 36 4 (4) 0 0 

PAS Rv2754c-Rv2755c thyX-hsdS.1 4.27E-07 21 0 1 1 

 
This table shows loci (protein and RNA coding and intergenic regions) associated with resistance 
to individual drugs (P<1x10-5). The column labelled as ‘NS SNPs’ shows the number of non-
synonymous SNPs in the genes; the column ‘Indels (frame.)’  refers to the number of small indels 
resulting in frameshifts in the genes; ‘Assoc. SNPs’ is the number of SNPs identified by GWAS, and 
‘PhyC SNPs’ refers to the number of homoplastic SNPs identified using the PhyC test. * The GWAS 
additionally detected a significant association of a SNP (C213R) in the Rv2688c locus (known efflux 
gene) with Moxifloxacin and Fluoroquinolones; the PhyC test additionally detected other 
associated loci for Amikacin (eis-Rv2417c), Capreomycin and D-Cycloserine (lhr), Kanamycin (thyX-
hsdS.1), Rifampicin (rpoA). Abbreviations: PAS, para-aminosalicylic acid. 
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Table 3 
 
Impact on drug resistance prediction (%) from GWAS findings  

Drug 
TBDR panel + SNPs 

+ small indels + 
SNPs 

+ big deletions + 
small indels + SNPs 

Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. 

Isoniazid 89 97 89 97 90 97 90 97 
Rifampicin 92 98 92 98 93 98 93 98 
Ethambutol 90 92 90 92 90 92 90 92 
Ethionamide 64 78 78 74 84 72 88 72 
Pyrazinamide 52 98 52 98 63 97 65 97 

Streptomycin 76 93 76 93 80 91 80 91 
Amikacin 83 96 83 96 85 93 85 93 
Kanamycin 84 98 84 98 84 98 84 98 
Capreomycin 75 96 75 96 81 95 81 95 
Ciprofloxacin 89 98 89 98 89 98 89 98 
Moxifloxacin 85 90 85 90 85 90 85 90 
Ofloxacin 86 96 86 96 86 96 86 96 
D-Cycloserine - - 55 92 61 90 61 90 
PAS 10 100 20 99 40 94 65 94 

MDR-TB 87 100 87 100 88 100 89 100 
XDR-TB 77 99 78 99 79 98 79 98 

 
This table shows the sensitivity and specificity achieved by known drug resistance SNPs and 
indels (TBDR, tbdr.lshtm.ac.uk)9, 31 when predicting phenotypic drug resistance (“TBDR panel" 
columns). The SNPs in the TBDR contribute 100% to the stated sensitivity, except rifampicin 
(99.8%) and ethionamide (99.3%). The other columns show the improvements achieved when 
including the SNPs, small indels and large deletions found associated with drug resistance in 
this study. The improvements in sensitivity are highlighted in grey. Abbreviations: MDR-TB, 
multidrug-resistant; PAS Para-aminosalicylic acid; Sens., sensitivity; Spec., specificity; SNPs, 
single nucleotide polymorphisms; XDR-TB, extensively drug-resistant. 
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ONLINE METHODS 

Sequence data and variant calling 

Sequence data for 6,465 Mycobacterium tuberculosis complex clinical isolates were 

generated as part of a collaborative global drug resistance project (n=2,637, 

pathogenseq.lshtm.ac.uk) or downloaded from the public domain (n=3,828) (Supplementary 

table 1). All isolates had undergone drug susceptibility testing by phenotypic methods. These 

isolates represented multiple populations from different geographic areas, and all four main 

lineages (1 to 4) (Supplementary table 1). The 2,637 samples not previously sequenced were 

Illumina sequenced generating paired-end reads of at least 50 bp with at least 50-fold genome 

coverage. The analytical workflow for the raw sequence data is summarised in 

Supplementary figure 5. The new and archived raw sequence data were aligned to the H37Rv 

reference genome (Genbank accession number: NC_000962.3) using the BWA mem 

algorithm46 (settings: –c 100 –T 50). The SAMtools/BCFtools47 (default settings) and GATK48 

software were used to call SNPs and small indels. The GATK parameters used are "-T 

UnifiedGenotyper -ploidy 1 -glm BOTH -allowPotentiallyMisencodedQuals 2”. The 

overlapping set of variants from the two algorithms was retained for further analysis. Alleles 

were additionally called across the whole genome (including SNP sites) using a coverage-

based approach5,49. A missing call was assigned if the total depth of coverage at a site did not 

reach a minimum of 20 reads or none of the four nucleotides accounted for at least 75% of 

the total coverage. Samples or SNP sites having an excess of 10% missing genotype calls were 

removed. This quality control step was implemented to remove samples with bad quality 

genotype calls due to poor depth of coverage or mixed infections. The final dataset included 

6,465 isolates and 102,160 genome-wide SNPs. Delly2 software50 was used to identify large 



30 
 

deletions. All large deletions were confirmed using localised de novo assembly, and those 

found in association analysis (dfrA/thyA, pncA, ethA/ethR, katG) confirmed using PCR.  

Phenotypic drug susceptibility testing 

Drug susceptibility data was obtained from World Health Organisation recognised testing 

protocols51. The M. tuberculosis (Mtb) isolates that provided sequence data included in this 

study are summarised in Supplementary table 1. Each sequence included in the study was 

derived from an isolate from an individual patient. Some DNA samples were from archived 

stocks (e.g. India, collected prior to 2009 and Malawi, collected between 1996 and 2010) and 

others were extracted specifically for this study. Information regarding isolates with 

previously reported sequence data was derived from published materials. Isolates were 

classed as resistant or susceptible to a drug on the basis of phenotypic testing using either 

the BACTEC 460 TB System (Becton Dickinson), the BACTEC Mycobacterial Growth Indicator 

Tube (MGIT) 960 system (Becton Dickinson)52, solid agar or Lowenstein Jensen slopes53,54. Not 

all samples were tested for resistance to all drugs, most notably some isolates found 

susceptible to the first-line drugs were not subjected to testing for resistance to second-line 

drugs. Where isolates were not tested for resistance to a particular drug they were excluded 

from the analysis for that drug. Drug susceptibility testing was mainly undertaken in local 

laboratories participating in the WHO supranational laboratory network using the recognised 

testing protocols51. Isolates from Malawi were shipped to the United Kingdom’s 

Mycobacterium Reference Laboratory for testing. Isolates from Uganda were tested at the 

Joint Clinical Research Centre (JCRC) in Kampala with quality control performed by the US 

Centers for Disease Control and Prevention (CDC). The Peruvian isolates were initially tested 

for resistance to rifampicin and isoniazid using the Microscopic Observation Drug 
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Susceptibility assay (MODS)54 at the Universidad Peruana Cayetano Heredia (UPCH) prior to 

transfer to the national reference laboratory for further testing. In Peru susceptibility to 

pyrazinamide (PZA) was assessed by the Wayne assay; a colorimetric biochemical test during 

which PZA is hydrolysed to free pyrazinoic acid55. Testing using the BACTEC 960® MGIT® or 

BACTEC 460® (Becton-Dickinson®) was performed according to the manufacturer's 

indications56. Pyrazinamide sensitivity was determined by using BACTEC 7H12 liquid medium, 

pH 6.0, at 100 μg/mL (BACTEC PZA test medium, Becton Dickinson).  When testing on agar 

critical drug concentrations used were rifampicin 1 μg/mL, isoniazid 0.2 μg/mL, streptomycin 

2 μg/mL, and ethambutol 5 μg/mL, ciprofloxacin 2 μg/mL, amikacin 5μg/mL, capreomycin 10 

μg/mL, kanamycin 5 μg/mL (Pakistan 6 μg/mL), ethionamide 5 μg/mL and para-aminosalicylic 

acid 2 μg/mL53. For Lowenstein-Jensen drug concentrations used were for streptomycin 4.0 

μg/ml, isoniazid 0.2 μg/ml, rifampicin 40.0 μg/ml, ethambutol 2.0 μg/ml, capreomycin 40.0 

μg/ml, kanamycin 30.0 μg/ml (China) or 20.0 μg/ml (Vietnam), ofloxacin 2.0 μg/ml, 

ethionamide 40 μg/ml, thioacetone (10 μg/ml), pyrazinamide 200 μg/ml, cycloserine 30 

μg/ml and para-aminosalicylic acid (PAS) 0.5 μg/ml55.  

Phylogenetic tree and association analysis 

The best-scoring maximum likelihood phylogenetic tree rooted on Mycobacterium canettii 

(Genbank accession number: HE572590) was constructed by RAxML software57 (10,000 

bootstrap samples) using the 102,160 high quality SNP sites. Spoligotypes were inferred in 

silico using SpolPred58, and strain-types determined using lineage-specific SNPs5. Further 

population structure assessment was performed using principal components analysis 

(Supplementary figure 2), which clustered samples by genotype congruent with the 

phylogenetic tree. The principal components were calculated from a SNP pair-wise distance 

matrix between each sample, and the first five components (summarising 82.7% of genetic 
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variation) were used as covariates in the regression-based association models. Mixed 

regression models were employed to estimate the strength of association between the binary 

drug resistance outcome (resistance vs. susceptible) and the aggregate number of mutations 

(SNPs, indels or large deletions) by coding region, RNA loci and intergenic regions, as well as 

operons49. The low frequency of variants required the aggregation of mutations to increase 

the power of detecting associated loci, and a mixed model approach has been demonstrated 

to work well at adjusting for the confounding effects of Mtb lineage, sub-lineage and 

outbreak-based population structure.49 The operons or functional units containing clusters of 

genes under the control of the same promoter were determined from TBDB (see URLs). Gene 

function was extracted from the Tuberculist webserver (see URLs). The mixed models also 

included the principal components to account for the main Mtb lineage and sub-lineage 

effects, and a SNP inferred kinship matrix as a random effect to account for highly related 

samples and fine-scale population structure due to potential outbreaks49. These models were 

implemented in GEMMA (v.1.1.2) software59. A SNP-based GWAS was used to identify 

individual variants associated with drug resistance expected to fall within the genes found 

associated in the ‘main’ analysis. To minimise any co-resistance between drugs, we adjusted 

for the presence of other resistance in the regression models. Co-resistance is expected to 

result from exposure to multiple anti-tuberculous drugs and the step-wise accumulation of 

mutations. Statistical significance thresholds to account for multiple testing were established 

using a permutation approach that sorted phenotypic test data without replacement and re-

performed GWAS analysis (10,000 times). We report all findings that are below a calculated 

permutation threshold of P<1x10-5. All statistical analyses were performed using R software. 

To identify SNPs enriched by convergent evolution and provide further evolutionary evidence, 

the phylogenetic-based phyC approach was employed9 using the implementation made 
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available in a previous study60. Any potential co-resistance effects were dissected through 

consulting gene annotation and published literature to report the most plausible role in drug 

resistance. Additionally, long branches in the phylogenetic tree leading up to clades enriched 

with drug resistant isolates leads to spurious associations. Truly drug resistant mutations 

often originate multiple times independently in the phylogeny. Mutations which originated 

once in the tree (i.e. clade-specific mutations), which are likely to lead to spurious 

associations, were removed from the GWAS results.  

Detection of putative compensatory mechanisms  

Loci were identified as being putative compensatory if they: (i) were associated with drug 

resistance, (ii) harboured homoplastic mutations, (iii) shared a similar biological function with 

a known drug-target or drug-activating enzyme, and (iv) were significantly more mutated in 

the presence of mutations in the drug-target or drug-activating enzyme coding gene. In the 

latter, deep phylogenetic and synonymous SNPs were removed prior to calculating the 

number of samples with non-synonymous SNPs at genes of interest (e.g. Ala1075Ala at rpoB 

or Glu1092Asp at rpoC). The significance of differences between studied genes was calculated 

using Fisher's exact test (cut-off of P<1x10-8). 

Protein mutation modelling 

Apo crystal structures for alr were downloaded from the Protein Data Bank (PDBe1XFC61) and 

then subjected to modelling of missing residues, WinCOOT regularisation, and removal of 

pyridoxal 5′-phosphate from both chains. The mCSM and DUET web servers were used to 

assess changes in protein stability, mCSM-PPI to quantify effects on protein-protein 

interactions and mCSM-Lig to quantify effects on drug binding62–64. For ligand binding, D-

Cycloserine was docked in the active site using Autodock Vina and Gold software65,66. 

Statistical analyses 
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The statistical mixed models used for association analysis are described above. The terms 

‘low’, ‘intermediate’ or ‘high’ levels of resistance referred to in the text and Figure 3 denote 

whether a mutation is known to confer low, intermediate or high MIC values, respectively, as 

reported in the literature18,40,67–71. Wilcoxon tests and linear regression models were used to 

compare differences in (log) odds ratios between resistance levels. Samples which had more 

than one known resistance causing variant were removed from these calculations. R 

statistical software (v3.4.1; see URLs) was used to perform this analysis. The R library “maps” 

was used to generate the world map with lineage and drug resistance frequencies.   

 

DATA AVAILABILITY 

All raw sequencing data are available, and the study accession numbers are listed in 

Supplementary table 1. For samples sequenced as part of our collaborative global drug 

resistance project, the ENA accession numbers for the isolates and their phenotypic drug 

susceptibility data are provided in Supplementary data 2. 
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