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Core promoters are critical regions for gene regulation in higher eukaryotes. However, the 

boundaries of promoter regions, the relative rates of initiation at the transcription start sites 

(TSSs) distributed within them, and the functional significance of promoter architecture remain 

poorly understood. We produced a high-resolution map of promoters active in the Drosophila 

melanogaster embryo by integrating data from three independent and complementary methods: 

21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid 

amplification of cDNA ends (RLMRACE) reads, and 50,000 cap-trapped expressed sequence 

tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysis indicates that, due to 

non-promoter-associated RNA background signal, previous studies have likely overestimated the 

number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form 

a complex continuum of shapes, and that promoters active in the embryo and adult have highly 

similar shapes in 95% of cases. This suggests that these distributions are generally determined by 

static elements such as local DNA sequence and are not modulated by dynamic signals such as 

histone modifications. Transcription factor binding motifs are differentially enriched as a 

function of promoter shape, and peaked promoter shape is correlated with both temporal and 

spatial regulation of gene expression. Our results contribute to the emerging view that core 

promoters are functionally diverse and control patterning of gene expression in Drosophila and 

mammals. 

 

[Supplemental material is available for this article. The sequencing data from this study have 

been submitted to the NCBI Sequence Read Archive 

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under accession nos. SRX015329, SRA008141, 

and SRX015869.] 

The Drosophila melanogaster embryo is an important model system used to study transcriptional 

regulation of gene expression during development (for review, see Biggin and Tjian 2001). 

Much recent work has focused on the genome-wide identification and characterization of binding 

sites for sequence-specific transcription factors in Drosophila, other model animals, and human 

(The ENCODE Project Consortium 2007; Li et al. 2008; MacArthur et al. 2009). For a global 

understanding of how transcription factors and other chromatin proteins and their bound genomic 

regions interact with core promoter regions (for review, see Juven-Gershon and Kadonaga 

2010) to regulate transcription, it is necessary to discover and characterize promoter regions 

comprehensively. 

 

Transcription start sites (TSSs) were first defined by primer extension studies (Qu et al. 1983). 

Subsequently, improved approaches such as rapid amplification of cDNA ends (RACE) 

(Frohman et al. 1988) and cap-trapped 59 expressed sequence tag (EST) sequencing (Carninci et 

al. 1996) were developed. More recently, cap analysis of gene expression (CAGE), a high-

throughput method for promoter discovery, has been used in mouse and human to characterize 

capped transcript ends (Shiraki et al. 2003; Carninci et al. 2006). In Drosophila, TSSs have been 

defined on a modest scale by sequencing and annotation of 59 ESTs generated from cap-trapped 

cDNA clones (Misra et al. 2002; Stapleton et al. 2002). The current reference annotation of the 

D. melanogaster genome sequence uses these data, and 59 ESTs from non-cap-trapped cDNA 

libraries (Rubin et al. 2000), to define 59 transcript ends (Drysdale 2008). While these ESTs 

have been useful for annotating 59 ends of genes, there are insufficient numbers to identify core 



promoters of lowly expressed transcripts or to determine the distributions of TSSs within most 

core promoter regions. 

 

Analysis of 5’ EST clusters and surrounding genomic sequences identified 10 sequence motifs 

within core promoter regions of D. melanogaster representing binding sites for factors involved 

in the initiation of transcription (Ohler et al. 2002). Subsequent analysis of FlyBase 5’ transcript 

ends (Misra et al. 2002; Drysdale 2008) revealed an additional five sequence motifs in promoter 

regions (FitzGerald et al. 2006). In these studies, promoters were modeled as discrete points 

rather than as local distributions of TSSs. Yasuhara et al. (2005), using 5’ RLM-RACE to study a 

small set of transcripts, showed that Drosophila promoters are characterized either by a broad 

region of distributed TSSs, which they described as ‘‘slippery promoters,’’ or by a single TSS 

defining a discrete promoter. These findings are consistent with analysis of CAGE data that 

define ‘‘peaked’’ and ‘‘broad’’ promoter classes in the mouse and human genomes (Carninci et 

al. 2006). Recent analysis of cap-trapped and non-cap-trapped 5’ ESTs has determined that 

promoters characterized by a broad distribution of TSSs are also common in Drosophila (Rach et 

al. 2009). In both mammals and Drosophila, peaked and broad promoters differ in the 

enrichment of core promoter sequence motifs and are associated with different spatial patterns of 

activation (Carninci et al. 2006; Rach et al. 2009). Because peaked and broad promoters are 

distinct, a complete understanding of gene regulation depends on characterizing and classifying 

these regulatory elements in greater detail. 

 

Two recent genome-wide studies contribute to the characterization of promoters in Drosophila. 

Ni et al. (2010) describe a new high-throughput method, named PEAT, for paired-end 

sequencing to map capped 5’ transcript ends and define 5699 clusters of sequence tags in 

Drosophila embryo, many of which correspond to core promoters. Nechaev et al. (2010) report 

on high-throughput RNA-sequencing of short nuclear RNAs associated with paused RNA 

polymerase II (Pol II) in Drosophila embryo-derived S2 cells and find that these RNAs are 

specifically associated with many core promoters. These reports constitute significant advances, 

but neither attempted the comprehensive characterization of Drosophila promoters. 

 

As part of the modENCODE project (Celniker et al. 2009), we used two independent methods, 

CAGE and 5’ RLM-RACE, to map and validate TSS distributions within promoter regions of 

long capped transcripts expressed at significant levels, either maternally or zygotically, in the 

developing D. melanogaster embryo. These methods are complementary in two ways. First, like 

5’ EST sequencing, CAGE randomly samples capped 5’ transcript ends in proportion to 

expression level, whereas 5’ RLM-RACE targets capped 5’ ends of specific transcripts and has 

greater sensitivity for lowly expressed transcripts. Second, CAGE and RACE recover the cap 

structure at 5’ transcript ends using very different strategies. Both methods were adapted for 

next-generation sequencing platforms, and we produced large data sets that sample many 

promoter regions with redundancy sufficient to classify promoters by their TSS distributions. We 

integrated CAGE, RACE, and EST data to identify and characterize promoters. We used an 

entropy-based score to show that TSS distributions form a complex continuum of shapes, and we 

used the score to classify promoters as peaked or broad.We then performed RACE on a subset of 

the same transcripts in an adult RNA sample and found that promoters that are active in 

both stages have very similar TSS distributions. This suggests that promoter shape is determined 

by static features such as local DNA sequence. We showed that peaked promoters are strongly 



and significantly associated with genes that have restricted temporal and spatial expression 

patterns. Our integrative analysis suggests that the numbers of active promoters in mammals 

determined from CAGE data have been overestimated by fivefold. Finally, the genome-wide 

annotation of promoter architecture described here provides a resource for future studies of the 

regulation of transcription by factors bound to core promoters and their interactions with cis-

regulatory modules and the Pol II complex. 

 

Results 

 
Cap-trapped 59 ESTs reveal peaked and broad TSS distributions within promoters 

 

In an initial assessment of the distributions of TSSs within active promoters in the D. 

melanogaster embryo, we analyzed 66,169 previously described embryonic cap-trapped 5’ ESTs 

(Stapleton et al. 2002), known as RIKEN embryo (RE) ESTs, including 3035 clones represented 

by full-insert cDNA sequences, to the reference genome sequence (Release 5, 

http://www.fruitfly.org). Because these ESTs are long sequences (average length 453 nt), >92% 

(61,429) map uniquely to the genome (Supplemental Table 1). 

 

We associated 50,415 ESTs with 5771 FlyBase r5.12 (FB5.12) gene models (Drysdale 2008). 

Approximately three-fourths of ESTs associated with annotations share their first splice site with 

the first splice site of the associated transcript. This agreement is expected because many of these 

ESTs were used in producing FlyBase annotations (Misra et al. 2002). The median number of 

associated ESTs per gene is four. Consistent with previous descriptions of TSS distributions 

within promoters in Drosophila (Yasuhara et al. 2005) and mammals (Carninci et al. 2006), we 

find that TSS distributions span a range of shapes from peaked to broad (Supplemental Fig. 1). 

Only 565 genes have a sufficient number of ESTs (20 or more, as shown below) for the 

distribution of TSSs within their promoters to be classified as peaked or broad. We therefore 

generated additional TSS data to characterize additional promoters.  

 

Massively parallel mapping of TSSs in the Drosophila embryo using CAGE 

 

To map TSSs of long capped transcripts efficiently in a massively Parallel manner, we 

performed CAGE on total RNA from a 0- to 24-h collection of D. melanogaster embryos. This 

sample represents the entire period of embryogenesis; it contains maternally expressed 

RNAs loaded into the oocyte and zygotically expressed RNAs including those expressed in 

differentiated cell types and tissues arising during embryonic development. We constructed a 

CAGE library modified for sequencing on the Illumina GAI platform and generated 42 million 

27-nt sequence tags. 

 

Alignment of short sequence reads to a complex genome sequence is a challenging problem. We 

used ELAND (Illumina) to align the CAGE tags to the reference genome sequence, allowing 

up to two mismatches. This resulted in unique map locations for 23 million tags and multiple 

map locations for 6 million tags. However, ELAND does not take into consideration the 

sequence quality of reads, nor does it provide a rigorous estimate of the significance of 

alignments. To improve the mapping of CAGE data, we mapped tags to the genome using 

StatMap (Methods), an alignment program built on statistical modeling principles, to assign 



alignment probabilities to each tag. We identified 26 million tags with significant alignments, 

excluding reads that aligned to transposable elements. Based on poly(A)+ RNA-seq analysis, 

80% of these tags map to genes that are expressed in the 0- to 24-h embryo sample as defined by 

reads per kilobase per million (RPKM) > 1. 

 

The StatMap alignments of CAGE tags are consistent with transcription start sites of long capped 

transcripts: 80% of tags map within the 5’ untranslated region (UTR) of a transcript (Fig. 1A; 

Supplemental Data File 1). Furthermore, poly(A)+ RNA-seq expression levels and CAGE-tag 

counts are correlated within first exons (Spearman’s p ~  0.47), which include both the first 

exons of annotated 5’ UTRs and initial coding exons of transcripts without annotated 5’ UTRs, 

in a log-linear fashion (r ~ 0.48). The next largest fraction (17%) of tags is distributed throughout 

protein-coding genes on the transcribed strand, consistent with the existence of an RNA 

background signal in the CAGE assay that is not associated with TSSs of long capped 

transcripts. Such peaks have been detected in previous studies (Affymetrix/Cold Spring Harbor 

Laboratory ENCODE Transcriptome Project 2009; Ni et al. 2010) and are thought to correspond 

to RNA processing sites, where a transcript has been cleaved and recapped in the cytoplasm 

(Schoenberg and Maquat 2009). To account for this, we modeled the stranded signal throughout 

genes as a mixture of signal originating from promoter regions and background. We modeled the 

background as a mixture of signal linearly proportional to transcript expression level as 

measured by stranded RNA-seq of total RNA (Methods) and uniform unstranded signal, which 

we treated as random noise in a manner similar to Balwierz et al. (2009). All CAGE tags that 

could be explained by our model as RNA background or random noise (18% of mapped tags) 

were removed from subsequent analysis (Supplemental Methods), resulting in a set of 21 million 

filtered aligned CAGE tags. 

 

To understand the impact of our filtering procedure, we grouped the unfiltered and filtered 

CAGE signals into ‘‘CAGE peaks’’ by iterative hierarchical clustering. The minimum inter- 

peak distance was 50 bp; closer peaks were merged. Clustering of all 26 million unfiltered 

aligned tags resulted in 143,000 peaks, of which 57% were low-signal peaks with fewer than 15 

tags and only 10% mapped near the 5’ end of a transcript. In contrast, clustering of the 21 million 

filtered aligned tags resulted in 45,000 statistically significant peaks (Fig. 1B), of which 41% 

were low-signal peaks with fewer than 15 tags and 23% map near the 5’ end of a tran- 

script. The filtered alignments resulted in a twofold increase in the specificity of CAGE peaks for 

5’ transcript ends without imposing an arbitrary threshold on tag counts. It removed 39,000 weak 

intronic peaks and 9000 peaks in coding sequence, many of them very strong and hence not 

filterable by thresholding alone. These filtered intronic and coding CAGE peaks likely 

correspond to uncapped background and low-frequency RNA processing sites. In order to target 

our study of CAGE data toward promoters, and not RNA processing sites, we used the filtered 

set for all subsequent analysis. The CAGE peak with the largest tag count maps to CG9184 and 

contains 326,403 tags, of which 170,000 are aligned to a single base pair, indicating that the 

dynamic range of the assay is at least 1 × 10
5
. 

 

To interpret the CAGE peaks, we determined their intersections with gene annotations (FB5.12) 

on the same strand (Methods; Fig. 1). There is a strong correspondence between the assigned 

annotations and tag counts per peak. Of the 1000 strongest CAGE peaks, 95% overlap a first 

exon. In contrast, only 5% of the 1000 weakest peaks overlap an annotated first exon, whereas 



53% are intergenic. In all, 7073 CAGEpeaks (17%) overlap a 5’ UTR (43% of annotated 5’ 

UTRs), and another 2190 CAGE peaks (5%) map within 100 bp of a 5’ transcript end on the 

same strand. These peaks together account for 86% of the filtered aligned CAGE tags 

(Fig. 1A,B) and are likely to represent promoter regions. In addition, 19% of CAGE peaks 

overlap protein-coding exons (3% of filtered tags), 20% overlap introns (3% of filtered tags), and 

21% map in intergenic regions at least 100 bp from a transcript (2% of filtered tags). Finally, 

17% of CAGE peaks overlap 3’ UTRs (6% of filtered tags), accounting for 52% of all 3’ UTRs 

(for this overlap, P-value < 1 × 10
-16

 as computed using the genome structural correction [GSC]; 

Bickel et al. 2011; Methods). These peaks are unlikely to represent promoter regions (see 

below). 

 

Surprisingly, more than 90,000 CAGE tags mapped to the mitochondrial genome in 33 peaks 

that include the 5’ ends of nearly every transcription unit (Supplemental Fig. 2; Torres et al. 

2009). We are not aware of any evidence that mitochondrial transcripts are capped, and there is 

evidence to the contrary in other animals (Grohmann et al. 1978).We observed a similar mapping 

of human CAGE tags (The ENCODE Project Consortium, unpublished data on cell lines K562 

and GM12878 at http://genome-test.cse. ucsc.edu/cgi-

in/hgTrackUi?db=hg18&g=wgEncodeRikenCage) produced in the ENCODE project (The 

ENCODE Project Consortium 2007) to human mitochondrial transcripts. We also found 

that 1.4 million CAGE tags aligned to the Drosophila rDNA repeat (Supplemental Fig. 2; Tautz 

et al. 1988). The rRNA genes are transcribed by RNA polymerase I into a single, long pre-rRNA 

transcript that is processed into the mature rRNAs, so these CAGE peaks do not correspond to 

TSSs. These and previous results indicate that some CAGE peaks do not correspond to Pol II 

promoters. Thus, in this study, we do not consider CAGE evidence alone sufficient to 

define a promoter region. 

 

Directed mapping of TSSs in the Drosophila embryo using 5’ RLM-RACE 

 
In an approach complementary to and independent of CAGE, we performed 8727 targeted 5’ 

RLM-RACE experiments on the same 0–24-h embryo total RNA sample used for CAGE, to 

characterize TSS distributions within promoters of embryonic transcripts of 7742 genes. We 

produced 2.1 million RACE reads on the 454 Life Sciences (Roche) platform, of which 1.2 

million were oriented, trimmed, mapped to the genome, and associated with a transcript. 

Compared to the 61,429 mapped RE ESTs, this is a 20-fold increase in the number of embryonic 

long cap-trapped 5’-end reads. The average length of trimmed mapped reads was 154 nt. Of 

trimmed mapped reads, 29% were spliced, with 2% covering more than one splice junction. A 

total of 8418 transcripts of 7546 genes (96% of the transcripts targeted) was associated with at 

least one RACE read, and on average each transcript was associated with 143 RACE reads. A 

single RACE experiment can sample multiple promoters. For example, three RACE experiments 

targeting different transcripts of l(3)neo38 detected seven promoters (Fig. 2). Using a threshold 

of three reads, we identified 698 new promoters detected only by RACE. 

 

Defining promoter regions 

 
We devised an iterative hierarchical clustering procedure to group tags into promoter regions and 

applied it to the RE EST, CAGE, and RACE data sets independently. Then, we integrated these 



clusters to produce consensus clusters based on the tags from all three data sets (Fig. 3).We 

identified 12,454 promoters and associated 11,672 with 8037 genes (Methods). This corresponds 

to an average of 1.4 promoters per gene: one promoter for each of 5849 genes, two for each of 

1403 genes, and three or more promoters for each of 786 genes. 

 

We grouped the promoters based on evidentiary support into three categories: validated (V), 

supported (S), and RACE-only (R). The validated set (8694 promoters) is defined by two or 

more data types, the supported set (3062 promoters) by either a CAGE peak or at least three 

RACE reads overlapping a 5’ UTR, and the RACE-only set (698 promoters) by three or more 

RACE reads with no support from an overlapping 5’ UTR. Within the validated set, 7657 pro- 

moters have CAGE peaks, 7948 have RACE data, 7260 have RE ESTs, and 5477 have all three 

data types (Fig. 4A). We discovered 2075 new promoters: 1257 have CAGE peaks, 1272 have 

RACE data, 566 have RE ESTs, and 163 have all three data types (Supplemental Data Files 2 

and 3). 

 

We intersected our set of 12,454 promoters with the recently published set of embryonic 5’ 

capped transcript end clusters produced using PEAT (Ni et al. 2010). Ni and colleagues report 

5699 clusters: 4054 overlap or are within 25 bp of a TSS or 5’ UTR, 88 are in introns, 197 are 

intergenic, and finally 1360 are in coding exons or 3’ UTRs.We note that their analysis did not 

distinguish between coding exons and 3’ UTRs and that clusters mapping antisense to genes 

were included in the intergenic category. Our promoter set overlaps 76% of all the PEAT clusters 

and 92% of the 4054 TSS and 5’ UTR-associated clusters. Of the clusters unique to the PEAT 

data, 68% are in coding exons or 3’ UTRs. The authors attributed these clusters, as do we, to re-

capping of transcript fragments. 

 

We examined the remaining 10,670 CAGE peaks not supported or validated in our analysis in 

order to estimate the number of additional promoters in these data. At a threshold of 50 tags (2.5 

tags per million aligned tags), CAGE peaks are about as likely to map to 5’ UTRs as to coding 

exons or introns, and are nearly as likely to map to intergenic regions (Fig. 1C). If we consider 

CAGE peaks overlapping 5’ UTRs, RACE clusters or RE EST clusters to be promoters, and all 

the rest to be false discoveries (unlikely since RACE has not been performed on all CAGE 

peaks), then CAGE peaks in the neighborhood of this threshold have a false discovery rate 

(FDR) of 25%. Above this threshold, there are 2268 unsupported CAGE peaks in intergenic or 

intronic regions. To determine whether these CAGE-only peaks represent promoters of 

unannotated or incompletely annotated transcripts, we intersected these peaks with transcribed 

regions detected by RNA-seq analysis of a time course of embryonic development with a 

sequencing depth of 930 million reads (Graveley et al. 2011). We found 196 CAGE peaks (9% 

of unsupported intergenic and intronic peaks) within 100 bp of the 5’ end of a transcribed region, 

and these are likely to represent unannotated promoters (Supplemental Data File 4); 12 of these 

CAGE peaks map to the 5’ ends of newly discovered primary transcripts of microRNA genes 

(Graveley et al. 2011). Hence, the majority of unsupported CAGE peaks are likely associated 

with other phenomena, and not with bona fide transcription initiation sites. 

 

At each called promoter, each assay produced a slightly different distribution of tags. Even 

within technical replicates of the same assay, there is sampling variance, and between two 

distinct assays, there are assay-specific effects. To understand the TSS distribution in our 



validated promoter set, we studied the distributions of mapped tags in each of the assays at each 

promoter. We have achieved ‘‘single base-pair resolution’’ if all three assays appear to be drawn 

from the same underlying multinomial distribution. However, cross-correlation analysis revealed 

a tendency of each assay to provide tag distributions that are ‘‘shifted’’ by 1 or 2 bp from each 

other assay (Fig. 4B). For the 3406 validated promoters with more than one tag from each assay, 

99% show a shift of at least 1 bp for at least one pair of assays. We estimate that 5% of CAGE 

tags have untemplated 5’ dG residues (see Carninci et al. 2006), which does not explain the 

apparent shifts. 

 

Our approach has generated an average resolution, estimated by cross-correlation, of 1.7 bp (Fig. 

4B). To represent TSS distributions within promoters as accurately as possible, we modeled this 

uncertainty in an assay-agnostic fashion. We estimated the resolution and smoothed the TSS 

distribution for each assay with a window size given by our estimate.We combined the smoothed 

distributions across the three assays to obtain variance-normalized consensus probability density 

functions (PDFs) that are the input to the following downstream analyses. 

 

Defining promoter shapes 

 
To characterize the tag distribution within each promoter region, we calculated a shape index 

(SI) based on the observed number of tags at each position (Methods). The SI is analogous to the 

thermodynamic entropy of a system and quantifies the number of states occupied by the system 

(the tag heights and locations) and the total possible states (the entire promoter region). The SI is 

distributed continuously (Fig. 5A) and is correlated with promoter width (Fig. 5B). While 

promoter width is bi-modally distributed (Supplemental Fig. 3), we find that SI is a better metric 

because unlike promoter width, it is insensitive to rare outlier tags discovered as the depth of 

sampling increases. There are 1351 promoters with widths >30 bp where 75% of transcription 

initiation events occur within 2 bp of the dominant TSS (Fig. 3C). Conversely, 90 promoters 

with widths <30 bp have TSS usage preferences distributed throughout a broad region. The 

continuous nature of the SI distribution necessarily makes classification of promoters into 

discrete classes somewhat arbitrary. However, to study general trends in the data, we classified 

promoters with SI > -1 as ‘‘peaked’’ and promoters with SI ≤ -1 as ‘‘broad’’ (Methods). Of 

the 12,454 promoters in the annotated set (V, S, and R), we classify 2337 as peaked, 6607 as 

broad, and 3456 as unclassified due to low tag count (2487) or class-instability (982) as 

determined by subsampling from the existing TSS distribution (Methods). A real-valued shape 

index has considerable advantage over fixed classifications such as those employed in previous 

studies, since it can be used to rank promoter shapes from most peaked to most broad.  We use 

this property below to study the differences in expression patterns. 

 

Due to the observed offsets among the CAGE, RACE, and EST data (see above), our method of 

smoothing can produce an artificially broad composite TSS distribution. If we had classified all 

promoters that are peaked in the individual assays as peaked in the composite, then as many as 

35% of promoters would be classified as peaked. Furthermore, using the previously published 

classification rule of Ni et al. (2010), we find that 25% of promoters are classified as ‘‘Narrow 

Peak,’’ 20% as ‘‘Broad Peak,’’ and the remainder as ‘‘Weak Peak’’—generally, what we 

classified as broad. These numbers are similar to those reported by Ni et al. (2010) (26% Narrow 

Peak and 16% Broad Peak), but differ from those reported by Rach et al. (2009) (80% Peak, 20% 



Broad). Rach et al. (2009) used available EST data only, while Ni et al. (2010) and we used next-

generation sequencing assays. Previous classification approaches do not provide a real-valued 

score for promoter shape, and hence are not as useful as the shape index. Our Supplemental 

Data Files allow re-analysis of our data to classify promoters according to different criteria. We 

also provide a movie that displays several hundred promoters in succession and ordered by 

their shape index that illustrates the range of TSS distributions (Supplementary Data File 5). 

 

There is a median of 64 tags per validated peaked promoter and 182 tags per validated broad 

promoter. We determined that 20 tags are required, on average, to confidently infer promoter 

class (Supplemental Methods). Deeper coverage (promoters supported by at least 100 tags) does 

not, on average, lead to wider called promoters (r ~ 0.1, p ~ 0.1). This suggests that transcription 

in broad promoter regions is initiated probabilistically within a well-defined region. TSS 

distributions within broad promoters are not uniform; the probability of initiation is often 

complex with multiple peaks and troughs (Fig. 3H). The median width of broad promoters, 162 

nt, is approximately the length of DNA in one nucleosome. 

 

TSS distributions are stable for promoters active in both embryos and adults 

 
To determine whether TSS distributions within promoters change during development, we 

performed 1920 59 RLM-RACE experiments targeting 1681 genes using total RNA from a 

mixed-sex, mixed-age collection of adult flies. We generated 296,547 sequence reads and 

mapped and associated 262,530 with transcripts. From these data we defined 2128 promoters, 

including 1921 that are also in our embryonic set. In order to determine the stability of promoter 

shape between adults and embryos, we performed a cross-correlation analysis, as above, treating 

the adult RACE data as though they were a replicate of the embryonic RACE data. The 

estimated resolution is 0.15 bp (Supplemental Fig. 4), with 96% of promoters showing maximal 

cross-correlation at a shift of 0 bp. The median Pearson correlation for these promoters is r ~ 

0.85. This is in contrast to the integrative analysis of CAGE, RACE, and RE ESTs, in which 

99% of validated promoters show a shift of one or more base pairs in relative TSS distribution 

between the assays. Hence, TSS distributions are strikingly stable for promoters active in both 

embryos and adults. In addition, promoters classified in embryos as peaked or broad retain their 

peaked or broad classification in adults with 95% identity. Finally, we discovered 185 promoters 

in adults that we did not observe in the embryo. Of these, 70% are found more than 100 bp from 

an embryonic promoter, CAGE peak, or RE EST, indicating that these constitute adult-specific 

promoters. 

 

Core promoter motifs are differentially enriched in peaked and broad promoters 

 
To determine how sequence composition varies with promoter shape, we examined nucleotide 

content and the occurrences of 15 core promoter motifs (Ohler et al. 2002; FitzGerald et al. 

2006) and the pause button (PB) motif associated with Pol II stalling (Hendrix et al. 2008) in 

validated promoters with at least 100 TSS tags (Fig. 5; Supplemental Table 2). In contrast to 

mammalian promoters in which CG di-nucleotides are enriched in broad promoters, mono- 

and dinucleotide contents were similar in peaked and broad Drosophila promoters. The five 

positionally enriched core promoter motifs, corresponding to TATA, Inr, and DPE elements, 

were enriched in peaked promoters, consistent with previous reports (Rach et al. 2009; Ni et al. 



2010). In addition, the GAGA and PB motifs were enriched in peaked promoters. Four core 

promoter motifs were overrepresented in broad promoters: the enrichments of Ohler 6 and Ohler 

7 were previously reported (Rach et al. 2009), and the enrichments of NDM1 and DMv1 are 

new. Five remaining motifs lacked significant differential enrichment between peaked and broad 

promoters. 

 

Positional enrichments of core promoter motifs were determined by computing the frequency of 

occurrence in a 200-bp window centered on the dominant TSS within each promoter re- 

gion (Supplemental Fig. 5). The TATA-box (Lifton et al. 1978) occurred within 5 bp of position 

–32 in 16% of peaked promoters and 4% of broad promoters. The INR element (Smale and 

Baltimore 1989) occurred within 5 bp of position +1 in 70% of peaked promoters and 35% of 

broad promoters. The DPE element (Burke and Kadonaga 1996) occurred within 5 bp of position 

+26 in 5% of peaked promoters and 1.5% of broad promoters. Notably, the PB motif was 

positionally enriched, occurring within 5 bp of position +24 in 19% of peaked promoters and 

7.8% of broad promoters. Thus, these motifs are enriched at the expected positions relative 

to the dominant TSS in peaked promoters, and they are also detected at the same location but at 

reduced rates relative to the dominant TSS peak in broad promoters (Supplemental Fig. 5). 

 

To assess differences in the CAGE and RACE assays, we studied the locations of the three most 

positionally enriched motifs relative to CAGE and RACE peaks in peaked promoters (Fig. 6). 

The average distance between RACE peaks and the TATA-box motif is –32 bp, while for CAGE 

peaks this distance is –30 bp. Similarly, the INR motif appears precisely at RACE peaks but is 

shifted by +1 bp from CAGE peaks. Finally, the DPE motif maps at +25 bp relative to RACE 

peaks and at +24 relative to CAGE peaks. In each case, the average location of the motif relative 

to RACE peaks is more consistent with published studies (e.g., FitzGerald et al. 2006) and is 

more sharply delineated than the average location relative to CAGE peaks. 

 

Peaked promoters are associated with restricted gene expression patterns 

 
Using poly(A)+ RNA-seq data from 12 2-h windows throughout embryonic development 

(Graveley et al. 2011), we found that the 100 genes with the broadest promoters (lowest SI) were 

2.4-fold more likely than the 100 genes with the most peaked promoters (highest SI) to have a 

constitutive temporal expression pattern (Fig. 7A). Of the genes with the broadest promoters, 

46% were constitutively expressed across the entire 24-h period of embryonic development. 

Conversely, only 19% of the genes with the most peaked promoters were constitutively 

expressed, and 56% were expressed during no more than half the period of embryonic 

development (six of 12 windows). 

 

We examined the spatial expression patterns of 5750 genes associated with a single, classified 

embryonic promoter and with documented whole-mount embryonic in situ expression data 

(Tomancak et al. 2007). Genes with restricted spatial expression patterns tend to have a peaked 

promoter (mean SI = –0.7), while genes with ubiquitous spatial expression tend to have a broad 

promoter (mean SI = –3) (Fig. 7B). The majority of genes with peaked promoters, 344 of 401 

(85%), were expressed in a spatially restricted pattern; the remainder had ubiquitous expression. 

In contrast, the majority of genes with broad promoters, 1238 of 1893 (65%), were expressed 



ubiquitously; the remainder had spatially restricted expression patterns (x
 2

 test, P-value < 1 × 

10
–16

).  Exemplary cases are shown in Figure 7C.  

 

Characterization of CAGE peaks within 3’ UTRs 

 
There are 10,670 CAGE peaks identified by more than 50 tags that do not overlap mapped 

RACE reads, RE ESTs, or annotated 5’ UTRs. Of these, 4153 (39% of these peaks, accounting 

for 1.1 million CAGE tags) overlap an annotated 3’ UTR. Such peaks have been reported 

previously in mammals (Carninci et al. 2006). 

 

Neither the TATA nor the INR motif is positionally enriched in 3’ UTR CAGE peaks, but the PB 

and DPE motifs are sharply and two fold enriched at position –10 bp from the dominant CAGE-

tag position (Supplemental Fig. 6). Surprisingly, we find that 18% of 3’ UTR, CAGE peaks have 

a PB motif at position –10 bp. In our promoter set, both motifs are positionally enriched 26 bp 

downstream from the dominant TSS. There is no significant difference in motif enrichment 

between the peaked and broad classes for CAGE peaks in 3’ UTRs. Hence, 39 UTR, CAGE 

peaks are associated with positional signals, but differ substantially from known promoters in the 

locations of those signals. 

 

Of the 7639 genes with a CAGE peak overlapping a 5’ UTR, 80% also have a peak overlapping 

the 3’ UTR. The strength of these reciprocal 3’ peaks correlates weakly, but not very linearly, 

with the strength of the 5’ peak (r ~ 0.14, p ~ 0.36), and the 3’ peak includes on average 25% as 

many CAGE tags (179 tags). Thus, there is a prevalent and strong CAGE signal on the sense 

strand within the 3’ UTRs of protein-coding transcripts. We identified RE ESTs overlapping 14 

such CAGE peaks and performed full-insert sequencing to show that the cDNA clones overlap 

the 3’ UTR of the corresponding mRNA transcripts and terminate in poly(A) tails (Supplemental 

Results). Therefore, the ESTs do not represent unannotated promoters of downstream genes. 

 

A recent study of short capped nuclear RNAs (<100 nt) in Drosophila embryo-derived S2 cells 

showed that virtually all such RNAs colocalized specificallywith 7400 known promoters 

(Nechaev et al. 2010). The authors successfully characterized these short RNAs as byproducts of 

Pol II stalling, and, importantly, observed no 3’-UTR signal (K Adelman, pers. comm.) in 

contrast to our total RNA CAGE data. We conducted a brief re-analysis of these short RNA-seq 

data and confirmed this observation: there is no signal in a 3’ UTR except at loci where the 3’ 

UTR overlaps a 5’ UTR on the same strand (data not shown). Thus, these data support our 

conclusion that CAGE peaks in 3’ UTRs are unlikely to represent novel sites of transcription 

initiation. We conclude that CAGE peaks in 3’ UTRs are likely to be associated with transcript 

degradation products that might be recapped by a recently described cytoplasmic capping 

complex (Otsuka et al. 2009). Thus, the CAGE peaks within 3’ UTRs appear to represent 5’ ends 

of cytoplasmic transcript fragments, and not independent promoters. 

 

Discussion 

 

Genome-wide analysis of core promoter architecture in D. melanogaster has been limited by the 

availability of TSS data. Previous studies have relied on 5’ ESTs generated from large-insert 

cDNA libraries, including libraries constructed using methods that do not trap the 5’ cap 



structure (Ohler et al. 2002; FitzGerald et al. 2006; Rach et al. 2009). The recently reported 

PEAT clusters of Ni et al. (2010) include 4054 promoters, but only the mode of each TSS 

distribution is reported. We mapped large numbers of TSS tags in the developing Drosophila 

embryo using two independent methods: CAGE and 5’ RLM-RACE. Comparison of TSS 

distributions within core promoters as determined by integrative analysis of CAGE, RACE, and 

cap-trapped 5’ ESTs shows that these methods are consistent and cross-validating in defining 

promoters and determining their TSS distributions. We report 12,454 embryonic promoters and 

their TSS distributions (Supplemental Data File 4), providing the first well-documented, 

genome-wide map of Drosophila promoter architecture. As we continue to generate data on 

Drosophila promoters in the modENCODE project, we will maintain updated, public versions of 

the data files on the Berkeley Drosophila Genome Project website (http://www.fruitfly.org). 

 

Unlike previous analysis of genome-wide TSS data, our statistical analysis recognized that the 

CAGE assay has a biochemical background and modeled this background to assess confidence. 

This had a major impact on our conclusions. We identified 143,000 CAGE peaks by clustering 

unfiltered CAGE data, whereas using our RNA-seq-based filtering approach to enrich for CAGE 

peaks associated with transcription initiation events we find only 45,000 significant CAGE 

peaks. As has been previously reported, CAGE tags identify a diverse population of RNA 

elements. We find that these include the 5’ ends of capped transcripts; 5’ ends of some uncapped 

transcripts including mitochondrial transcripts and rRNAs, which are very abundant in total 

RNA; and 5’ ends of transcript fragments that tend to be associated with 3’ UTRs. Some 

of these must result from <100% efficiency in the cap-trapping protocol (see Schoenberg and 

Maquat 2009). Our analysis of CAGE peaks in 3’ UTRs revealed little or no evidence for a class 

of long capped RNAs that initiate within 3’ UTRs and instead is consistent with recapping of 

transcript fragments. After integrative analysis with RACE, RE-ESTs, and gene annotations, we 

identify 20,365 CAGE peaks corresponding to annotated and putative new promoters. Thus, 

because our filtering and integrative analysis retained only 14% of CAGE peaks (accounting for 

80% of tags), we conclude that previous analyses of CAGE data are likely to have overestimated 

the number of promoters in mammals by at least fivefold. 

 

The concordance between our integrated promoters and the PEAT clusters recently reported by 

Ni et al. (2010) is strong near annotated promoters and weaker in other regions. Ni and col- 

leagues used the peak-caller F-seq (Boyle et al. 2008), which was designed for analysis of DNase 

I hypersensitive site data and masks tags outside of dense clusters. In contrast, we systematically 

quantified and controlled for background signal using stranded RNA-seq data.We found that, just 

as in our analysis of CAGE data, a surprising number of PEAT reads (55,000 reads) map to the 

mitochondrial genome sequence. These clusters may be due to imperfect cap selection, but this 

phenomenon has been detected by three different methods (5’ RE ESTs, CAGE, and PEAT) 

and merits further investigation. 

 

Our high-throughput approach to RACE using pooling and the 454 sequencing platform enabled 

us to target at least one promoter of an unprecedented 7238 genes or 77% of 9409 genes 

expressed (RPKM > 1) in the 0–24-h embryo sample. The scale of these RACE data has 

resulted in the characterization of 1722 promoters that were not detected by CAGE or RE ESTs. 

It is not yet clear why some promoters are detected by RACE but not by CAGE. The intuitive 

answer, that these genes tend to be expressed at low levels, does not appear to be the case. The 



set of 5’ transcript ends detected solely by RACE is expressed, on average, at about the same 

level as the set detected by both CAGE and RACE. Although confounding, this certainly 

underlines the need for the application of multiple, independent experimental methods to the 

discovery and validation of promoters. 

 

The precise boundary between peaked and broad promoters in the continuum of our shape index 

is largely a subjective decision. However, our simple classification allowed us to demonstrate 

compelling biological correlates of promoter shape. Four classes of promoters have been defined 

in mammals (Carninci et al. 2006), and we initially used near-identical criteria to define four 

promoter classes in Drosophila. However, we observed that similar core promoter motifs were 

enriched between the ‘‘peaked’’ and ‘‘broad-with single-peak’’ classes, and that genes with 

‘‘broad’’ and ‘‘multimodal’’ (a broad-with-multiple-peaks class defined in mammals) promoters 

had similar associations with constitutive gene expression profiles in the developmental time-

course data.We found that the strongest discrimination was between just two classes, peaked and 

broad. Two such classes were defined previously in Drosophila using different criteria (Rach et 

al. 2009), but that study defined more peaked (81%) than broad (19%) promoters because it was 

based on low-coverage EST data. 

 

Promoter shape has biological significance. First, core promoter sequence motifs are 

differentially enriched in the peaked and broad classes. Second, genes with peaked promoters 

have a marked and highly significant tendency to be expressed in spatially and temporally 

restricted patterns, and genes with broad promoters do not. Previous studies indicated these 

tendencies in mammals (Carninci et al. 2006) and Drosophila (Hendrix et al. 2008; Rach et al. 

2009; Ni et al. 2010), but the statistical significance of the correlations we report is much higher. 

Thus, peaked and broad promoters are differentially regulated by mechanisms to be elucidated in 

future studies. 

 

The CAGE, RACE, and EST data used to define our promoter set were produced from rapidly 

developing embryos that contain many different cell types and tissues. Thus, it is possible that in 

some cases mixed peaked and broad signals result from a super-position of peaked and broad 

promoters. This is unlikely, because these complex promoter shapes are observed in mammalian 

cell lines (Carninci et al. 2006). There may be subtle tissue-specific differences in TSS 

distributions within promoters, and this is an important area for future research. 

 

Beyond identifying and classifying promoters, at the finer scale of TSS usage within promoter 

regions, the CAGE, RACE, and EST data are somewhat discordant. CAGE and RACE are inde- 

pendent methods, and there are many reasons why they might not produce identical results. The 

approaches described here represent the best available methods in current use for genome-wide 

TSS mapping. Integrative analysis indicates that we have achieved a resolution of 1.7 nt, near 

single-nucleotide resolution. We find that in peaked promoters, RACE is better correlated than 

CAGE with the published location preferences of the position-specific core promoter motifs, but 

this result may be due to the methods used to determine these published preferences rather than 

to an advantage of RACE. Hence, our promoter annotations are agnostic with respect to the 

relative accuracy or precision of CAGE, RACE, and 5’ ESTs. As additional CAGE peaks are 

validated using RACE or other approaches, it may become clear that one method is fun- 



damentally more informative than the other, in which case a reanalysis of these data may sharpen 

the resolution we report here. The causes of these offsets and computational methods for coping 

with them are subjects for future study. Sources of bias may include PCR variance in CAGE and 

RACE, and sequence-specific preferences of T4 DNA ligase (Romaniuk et al. 1982) in RACE. 

 

Promoter shape was highly similar between embryos and adults for promoters active in both 

developmental stages; 95% of promoters retain their peaked or broad classifications. We posit 

that the remaining 5% are due to stochastic noise in RACE data. This result indicates that TSS 

distributions are innate aspects of promoters, rather than dynamically controlled transcriptional 

modes. This is consistent with the finding of Frith et al. (2008) that TSS distributions in 

mammalian promoters, as determined by CAGE, can be predicted from the local DNA sequence. 

Thus, it may be that the TSS distribution of a promoter can be entirely characterized by assaying 

at a single biological sample in which the promoter is active. 

 

Finally, the phenomenon of peaked and broad promoter architectures appears to be conserved in 

Drosophila and mammals. Peaked promoters are associated with position-specific motifs and 

spatially restricted gene expression in both. Here, we have shown that peaked promoters are also 

strongly associated with temporally restricted gene expression in the developing Drosophila 

embryo. Although CpG islands are not found in Drosophila, the broad class of promoters in 

Drosophila shares features in common with CpG-island promoters in mammals. Both account for 

a majority of promoters in their genomes, both are characterized by a broad distribution of TSSs, 

and both are associated with constitutive gene expression. These promoter classes may have a 

common origin in evolution with the mammalian lineage acquiring the CpG island as a derived 

feature. Thus, promoter shape appears to represent a fundamental aspect of gene regulation in 

animals. 

 

Methods 

  

EST analysis 

 
Previously described cap-trapped 59 RE ESTs (Stapleton et al. 2002) were reanalyzed to ensure 

accurate vector trimming and genomic alignment. The vector sequence at the junction in EST 

reads was identified using cross_match (http://www.phrap.org) and aligned to the genome using 

sim4 (Florea et al. 1998) centered on a region surrounding the BLAST HSP (Altschul et al. 

1997).We associated an EST with a gene if an EST alignment shared genomic coordinates with 

either the start or stop codon, or the start or end coordinate of any exon. 

 

RNA preparation 

 
Total RNA was prepared from a 0–24-h collection of embryos and a collection of adults of the 

D. melanogaster strain of genotype y
1
; cn

1
 bw

1
 sp

1
, the same strain used to produce the reference 

genome sequence (Adams et al. 2000). RNA was produced using the RNeasy procedure 

(QIAGEN); this method reduces the representation of RNA shorter than 200 nt. 

 

Poly(A)+ RNA-seq analysis 



 
A poly(A)+ RNA-seq library was constructed from the 0–24-h embryo total RNA sample (10 

µg) using the mRNA-Seq Sample Prep Kit (Illumina). The library was used to produce paired-

end sequences of 76 nt each on the Illumina GAII platform. Sequence reads were aligned to the 

Release 5 reference genome sequence using TopHat (Trapnell et al. 2009), allowing up to two 

mismatches per read and including multiply mapped reads. We mapped 13 million reads. The 

FB5.12 annotation and the alignments were used to compute expression values as reads per 

kilobase of exon per million reads (RPKM) for all nonredundant initial exons in the annotation. 

These RNA-seq data have been submitted to the NCBI Sequence Read Archive (SRX015869). 

 

Total RNA-seq analysis 

 
Strand-specific total RNA-seq data produced using the SOLiD platform (Applied Biosystems) 

from 12 embryo samples in 2-h windows spanning embryonic development are described in 

Graveley et al. (2011). We aligned these reads using StatMap; the first 27 nt of each 50-nt read 

were aligned to the reference genome sequence, so that alignments would have similar biases as 

the alignments of CAGE tags. The alignment results from the 12 samples were combined into a 

single set of alignments and used to model the background of CAGE tags as described in 

Supplemental Methods. 

 

CAGE 

 
CAGE was performed on the 0–24-h embryo total RNA sample as described in Valen et al. 

(2009) with adaptations for the Illumina GA I sequence analyzer. A detailed protocol is provided 

in Supplemental Methods. The CAGE tags have been submitted to the NCBI Sequence Read 

Archive (SRX015329). 

 

CAGE data analysis 

 
A total of 41,804,261 (99.2%) of the 42,132,348 CAGE tags were trimmed to remove the 5’ 

adapter sequence ACACAGCAG; reads that did not match exactly to this sequence were not 

used in subsequent analysis. CAGE library construction can result in the addition of untemplated 

dG residues to CAGE products at the position of the TSS (Carninci et al. 2006). These residues 

were not explicitly trimmed, but were instead modeled as a random process during alignment to 

the genome sequence. CAGE tags were aligned using StatMap, as described in Supplemental 

Methods, with the command-line options -p -10 -m 2. 

 

We modeled the stranded CAGE signal as a mixture of signal originating from promoters and 

background signal, as described in Supplemental Methods. Mapped filtered CAGE tags were 

clustered to define CAGE peaks as described in Supplemental Methods. 

 

 

 

 

 



RACE 

 
We performed 5’ RNA ligase mediated rapid amplification of cDNA ends (RACE) using the 

FirstChoice RLM-RACE procedure (Ambion) with modifications indicated below. A detailed 

RACE and sequencing protocol is provided in Supplemental Methods. 

 

In the 0–24-hembryo total RNA sample, we targeted all FB5.12 transcript models that overlap 5’ 

ESTs from the RE (Stapleton et al. 2002) and LD (Rubin et al. 2000) cDNA libraries, both 

constructed from mixed-stage embryos. We added transcripts of genes expressed in the embryo 

based on whole-mount RNA in situ hybridization (Tomancak et al. 2007) and literature surveys. 

From this set of transcripts, we designed nested primer pairs for 5’ RLM-RACE. Primers 

matching the annealing temperature, sequence composition, and offset from the annotated 5’ 

transcript end specified by the manufacturer’s protocol were designed using Primer3 (Rozen 

and Skaletsky 2000). To reduce redundancy, transcripts that share an initial exon with another 

transcript already selected were not included. Pairs of nested transcript-specific oligonucleotide 

primers were designed within 150 to 250 bp of each annotated 5’ transcript end unless the 

sequence composition prevented design of a suitable primer in this range. The set contains 8570 

distinct primer pairs representing 7742 genes. 

 

Primer sets were used to perform individual RACE reactions without multiplexing. The number 

of PCR cycles per round of nested PCR was reduced from 40 to 20 to preserve a diversity of 

product lengths. In 1453 cases in which no detectable product was obtained, five additional PCR 

cycles were added to the second round of nested PCR. RACE products were quantified and sized 

before being combined into molar-normalized pools of 1440 to 2787 reactions. The pooled 

products were sequenced on the 454 Life Sciences (Roche) platform using the manufacturer’s 

library construction and sequencing protocols. 

 

On the adult total RNA sample, we used 1920 of the primer pairs from the embryo RACE 

experiments and identical protocols to target FB5.12 transcript models known to be expressed in 

the adult based on overlap with RH (RIKEN Head) ESTs (Stapleton et al. 2002). 

 

RACE data have been submitted to the NCBI Sequence Read Archive (SRA008141). 

 

RACE data analysis 

 
RACE reads were oriented, trimmed, aligned to the reference genome, and associated with 

transcripts as described in Supplemental Methods. 

 

Defining promoters 

 
For promoters identified by exactly one data type (supported or RACE-only promoters), we take 

the TSS distribution to be the empirical distribution of mapped tags. Whenever CAGE peaks, 

RACE clusters, or RE ESTs overlapped, we assigned the clusters to a validated promoter region. 

Within each promoter region we modeled the distribution of tags within each of the three assays 

as a multinomial distribution, with each bin corresponding to a single base pair. We then 

modeled the joint distributions of the mapped tag counts at each position as originating from an 



underlying ‘‘consensus’’ binomial, as described in Supplemental Methods.We defined the 

resolution of a validated promoter to be the maximum pairwise offset between the tag 

distributions of two assays. The output of this analysis is the set of consensus TSS PDFs 

for our promoters.  

 

Promoter classification 

 
The shape index of the TSS distribution within a promoter is defined as: 

 

 
 

where p is the probability of observing a TSS at base position i within the promoter, and L is the 

set of base positions that have at least one TSS tag. Promoter regions with shape index score >–1 

were classified as peaked (P); all others were classified as broad (B). Classifications were subject 

to statistical testing, as described in Supplemental Methods, to filter out ambiguous results; all 

ambiguous promoters were relabeled as unclassified (U). 

 

Intersection with gene annotations 

 
Annotation features from one gene can overlap those of another gene, so we adopted a 

progressive strategy for associating peaks with annotations. We first associated peaks with 59 

UTRs, then with regions within 100 bp of a 59 transcript end (59 end), followed by 39 UTRs, 

introns, protein-coding exons, and finally other annotations (e.g., pseudogenes and regions 

within 100 bp of a 39 end). The remaining peaks are classified as intergenic.  

 

Motif analysis 

 
Known promoter motifs were mapped using 16 position-specific scoring matrices (PSSMs) 

(Ohler et al. 2002; FitzGerald et al. 2006; Hendrix et al. 2008). Motifs were modeled by these 

PSSMs and were counted if their scores exceeded the 99th percentile score derived from 

sampling a background set of sequences with matching nucleotide content. Additional details are 

given in Supplemental Methods. 

 

P-values and overlap analysis 

 
P-values and associated analyses on the overlap of two sets of genomic annotations were 

computed using the Genome Structural Correction (GSC) statistical package available from the 

ENCODE Consortium (Bickel et al. 2011; http://www.encodestatistics.org). P-values have been 

Bonferroni-corrected by the total number of tests performed during this study. This step is highly 

conservative, but as in any study where a large number of tests are performed during exploratory 

data analysis, it is essential to prevent the reporting of spurious associations. 
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Figure 1 

 

 
 

Figure 1. Intersection of CAGE data with gene annotations. (A) The fractions of total CAGE tags 

that overlap annotated features. (B) The fractions of CAGE peaks that overlap annotated 

features. (C ) CAGE peaks are ordered by tag count from highest to lowest. For bins of 1000 

CAGE peaks, the fractions of peaks that overlap five classes of annotated features are plotted. 

The CAGE peaks toward the top of the rank list primarily overlap 5’ UTRs, while peaks at the 

bottom of the rank list tend to be intergenic. At the bottom of the rank list, the fractions of 

overlap approach expectation as computed by the GSC statistics package. 

 

 

 

 

  



Figure 2 

 

 
 
Figure 2. RLM-RACE analysis of the l(3)neo38 gene. RACE primers were designed to target 

three transcript isoforms of the gene. Three promoters (P1, P6, P7) correspond to annotated start 

sites for the –RA, –RB, and –RC isoforms, respectively. Four promoters (P2–P5) are new. 

 

 

 

  



Figure 3 

 

 
 
Figure 3. Integration of RE EST, CAGE, and RACE data and classification of promoter shape. 

TSS distributions within nine promoter regions are ordered by increasing shape index (SI): (A–

C) peaked promoters, (D–F ) unclassified promoters, and (G–I ) broad promoters. For each 

promoter, the RE EST, CAGE, RACE, and composite TSS distributions are shown. SI values of 

the composite distributions and gene associations are indicated. 

 

 

 

 

  



Figure 4 

 

 
 

Figure 4. Comparison of promoter regions and TSS distributions determined by RE EST, CAGE, 

and RACE data. (A) The numbers of clusters in overlapping subsets of CAGE peaks, RACE 

clusters, and RE EST clusters are indicated. Validated promoters (V ) are defined by at least two 

of the three assays; supported promoters (S) are defined by one assay only but overlap an 

annotated promoter or 5’ UTR; unsupported CAGE-only (C) and RACE-only (R) clusters do not 

overlap annotated promoters or 5’ UTRs. (B) The relative offsets of TSS locations by pairwise 

comparisons of the three assays. The mean pairwise offset is 1.7 nt.  

 

 

 

 

 

  



Figure 5 

 

 
 
Figure 5. Promoter architecture of the Drosophila embryo. Promoters are ordered by shape index, 

and each row corresponds to the average of a bin of 50 promoters. Shape index (A), promoter 

width (B), and number of tags per promoter (C ) are plotted. (D) Promoter classification into 

peaked (P, purple), unclassified (U, gray), and broad (B, green) are indicated. (E ) Core promoter 

motifs are differentially enriched between peaked and broad promoters. 

 

 

 

  



Figure 6 

 

 
 
Figure 6. Comparison of the CAGE and RACE assays by motif analysis in peaked promoters. 

Motif occurrence frequencies of positionally enriched motifs are plotted. The most abundant TSS 

within a promoter was used to define position +1. (A) Motif positions in peaked promoters 

relative to the most abundant TSS defined by CAGE. (B) Motif positions in peaked promoters 

relative to the most abundant TSS defined by RACE. 

 

 

 

  



Figure 7 

 

 
 
Figure 7. Correlation of temporal and spatial gene expression patterns with peaked and broad 

promoters. (A) Temporal expression profiles of 100 genes whose promoters have the highest SI 

scores (peaked promoters) are highly variable across a time course of embryonic development, 

with reads per kilobase per million (RPKM) values fluctuating between <1 (yellow) and >100 

(red). The average RPKM value among these genes with peaked promoter is 0.3 at the 0–2-h 

time point and gradually increases to 10 at the 22–24-h time point. Expression profiles of genes 

with peaked promoters were also highly variable in the time course, ranging over an order of 

magnitude between the first and third quartiles (box plots). (B) Temporal expression profiles of 

100 genes whose promoters have the lowest SI scores (broad promoters). The average RPKM is 

60 across all time points. The first and third quartile RPKMs of genes with broad promoters were 

within one order of magnitude of the average RPKM, or between 10 and 80 across all time 

points. (C ) Distribution of the shape index (SI) for spatially restricted genes (red) and 

ubiquitously expressed genes (black). (D) Representative embryonic gene expression patterns in 

whole-mount embryos, stages 4–5, restricted (upper two panels) and ubiquitous (lower two 

panels). 


