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SUMMARY 

Adipogenesis is a multi-step process, with epigenetic mechanisms and dynamic 3D chromatin folding 

thought to play important regulatory roles. However, the kinetics and functional roles of promoter 

contacts during late-stage adipogenesis are unknown. Here, using multi-omics approaches, we found 

evidence for promoter switching and widespread 3D rewiring of promoter contacts, as well as 

changes in the transcriptome and epigenome in late-stage adipogenesis. We identified several 

clusters of promoter contacts with unique temporal profiles suggesting crucial roles for distal 

enhancers. By integrating transcriptomics, promoter-capture Hi-C and a siRNA screen of druggable 

genes, we identified 19 novel regulators of late-stage adipogenesis, over half of which have 

peptidase or ubiquitin-protein ligase activities. Population-based genetic analyses showed that three 

of the 19 genes (LAP3, CELA1 and GPR157) are involved in regulation of adiposity in humans. These 

findings shed new light on the epigenetic regulation of late-stage adipogenesis, advancing our 

understanding of the mechanisms that underpin the formation of functional adipocytes and 

identifying potential targets for preventing/treating obesity and related disorders. 

 

INTRODUCTION 

The increasing worldwide prevalence of obesity in recent decades has sparked a growing interest in 

understanding the mechanisms that control adipocyte differentiation and maturation. Adipogenesis 

is a multistep process, with an initial phase in which mesenchymal precursors commit to pre-

adipocytes, followed by a second phase of differentiation, which involves cell cycle arrest and 

sustained lipogenesis, to form functional, insulin-responsive mature adipocytes (Ghaben and 
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Scherer, 2019). Much of our knowledge about the molecular mechanisms driving adipogenesis 

comes from several cell culture models, such as the murine 3T3-L1 (Green and Kehinde, 1974), and 

OP9-K cell-lines (Wollins et al., 2006), which differentiate into adipocytes in response to adipogenic 

cocktails. In the case of the 3T3-L1 cell-line, differentiation takes place in three stages: early (first 

24–36 hours), intermediate (hours 36–72) and late (days 3–7) (Ntambi and Young-Cheul, 2000). 

Mouse lineage tracing models have confirmed that these in vitro models recapitulate key steps of 

adipocyte differentiation in vivo (Berry and Rodeheffer, 2013; Stefkovich et al., 2021). However, 

while we have a detailed view on the molecular events that regulate the early and intermediate 

stages of adipocyte differentiation, we know substantially less about putative regulators of late 

differentiation events (and in particular epigenetic mechanisms driving them), leading to the 

formation of fully mature adipocytes. Adipocyte cell size, turnover and number are major 

determinants of fat mass, alterations in which are strongly associated with pathology. For example, a 

number of studies have shown a strong association between large adipocytes and cardiometabolic 

disorders, including type 2 diabetes risk, as well as associations with dyslipidemia, insulin resistance 

and hypertension (Rosen and Spiegelman, 2014; Lotta et al., 2017). 

Epigenetic regulation plays a key role in cellular differentiation. Many epigenetic changes that 

modulate transcription during cell differentiation occur at enhancers, which are DNA sequences that 

activate transcription independent of their location, distance or orientation with respect to the 

promoters of genes they regulate (Ong and Corces, 2011). H3K4me1 (histone H3 monomethylated at 

lysine 4) is a key chromatin modification at many enhancers, irrespective of their activity, while 

H3K27Ac (histone H3 acetylated at lysine 27) and H3K27me3 (histone H3 trimethylated at lysine 27) 

specify whether an enhancer is active or poised for activation, respectively (Ong and Corces, 2011). 

The impact of enhancers on promoters is achieved through 3D chromatin folding that allows direct 

physical contact between them (Schoenfelder and Fraser, 2019). A recent methodological advance 

based on the classical 3C (chromosome conformation capture) assay (Dekker et al., 2002) – the so-

called promoter-capture Hi-C (PCHi-C) enabled mapping of all promoter contacts in a single 

experiment for both the mouse (Schoenfelder et al., 2015) and the human (Mifsud et al., 2015) 

genomes. The application of this technique to 3T3-L1 cells demonstrated reorganization of 

promoter-anchored chromatin loops during early and intermediate stages of adipogenesis, with 

evidence for substantial rewiring as early as four hours following the addition of the differentiation 

cocktail (Siersbæk et al., 2017). However, this methodology has not been applied to late-stage 

adipocyte differentiation. 

To address this knowledge gap, in the current study, using novel as well as publicly available data, 

we surveyed the dynamics of promoter-anchored chromatin loops by PCHi-C, TSS (transcription start 
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site) activities by CAGE (cap analysis of gene expression)-seq, histone marks by ChIP (chromatin 

immunoprecipitation)-seq and DNA methylation by whole-genome bisulfite sequencing (WGBS) 

during 3T3-L1 adipocyte differentiation. Additionally, we performed an in vitro siRNA screen of 

>2,900 druggable genes in the OP9-K cell-line, measuring changes in lipid accumulation upon 

induction of adipocyte differentiation. Through intersectional analyses of these data sets, we 

predicted novel regulators of late-stage adipogenesis, and validated selected candidate genes by 

performing in vivo siRNA knockdowns in Drosophila fat body and by mining mouse phenotyping 

(MGI – Mouse Genome Informatics, and IMPC – International Mouse Phenotyping Consortium) and 

human GWAS (genome-wide association studies) data for associations with measurements of 

obesity. Our findings expand the list of regulators of adipocyte differentiation with previously 

unrecognized molecules that influence late-stage adipogenesis.  

 

RESULTS 

In vitro adipogenesis is accompanied by extensive transcriptional changes and rewiring of 

promoter-anchored chromatin loops 

We differentiated 3T3-L1 pre-adipocytes (mouse, female sex, see Methods) (Green and Meuth, 

1974) for seven days in adipogenic media, which led to uniform accumulation of lipid droplets and 

transcriptional changes of known marker genes, such as up-regulation of Adipoq, Cebpa and Pparg 

(Mikkelsen et al., 2010) and down-regulation of Zfp521 (Kang et al., 2012) (Figure S1A). We 

measured TSS activities in undifferentiated (day zero – D0) and terminally differentiated (day seven 

– D7) cells using nAnT-iCAGE sequencing (henceforth referred to as CAGE-seq), as described 

previously (Murata et al., 2014). We identified over 118,000 peaks (see Methods), corresponding to 

TSSs, of which one fifth were differentially expressed between D0 and D7 cells (Figure 1A). These 

differentially expressed peaks correspond to ~7,800 differentially expressed genes (DEGs – Table S1), 

two-thirds of which were down-regulated during adipocyte differentiation (Figure 1A). To validate 

this dataset, we performed qRT-PCR for twelve DEGs in independent replicates and found a strong 

positive correlation between the two methods (Figure S1B). Gene ontology (GO) analysis of down-

regulated DEGs showed enrichment of biological processes related to cell cycle, cell division, 

transcription, DNA repair and cell migration (Figure 1B). Genes up-regulated during adipogenesis 

were related to biological processes such as lipid metabolism, mitochondrial function and translation 

(Figure 1B). CAGE-seq analysis also identified over 600 genes that underwent a promoter switch 

during 3T3-L1 adipogenesis, i.e., genes with at least two transcripts changing expression 

(differentially expressed peaks) in the opposite direction (Figure 1C; Table S1). This set of genes was 
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enriched in biological processes related to regulation of transcription, translation and chromatin 

organization (Figure S1C). Examples of genes that exhibited a promoter switch during adipogenesis 

include Akt2, Net1 (Figure 1D), Fhl1, Jmjd1c and Smarcd2 (Figure S1D). 

Next, using FACS, we isolated GFP+ committed pre-adipocytes from the gonadal fat of male 

Zfp423GFP reporter mice (Gupta et al., 2012), as well as matched mature adipocytes and subjected 

these cells to RNA-seq analyses. We identified 5,174 DEGs in vivo, of which ~2,500 were common 

with DEGs identified by CAGE-seq in 3T3-L1 cells when the same threshold for fold-change was used 

(Table S1). Over 85% of the common DEGs had the same direction of change during adipogenesis, 

with a strong positive correlation (Figure S1E). This analysis underlines that the in vitro 3T3-L1 model 

recapitulates well the molecular events taking place during adipogenesis in vivo. 

To obtain a 3D view on the regulatory regions that interact with all promoters and could lead to 

changes in gene expression, we then performed PCHi-C in D0 and D7 3T3-L1 cells, as described 

(Schoenfelder et al., 2015). Using GOTHiC (Schoenfelder et al., 2018), we identified 14,723 

differential interactions (DInt) at the resolution of single HindIII fragments (see Methods) (Table S2). 

Only a small proportion of DInt engaged two annotated promoters (i.e. promoter-promoter 

interactions), with >93% joining promoters with non-promoter regions (i.e. promoter-other, Figure 

1E). These DInt were associated with important changes in the pattern of specific epigenetic marks, 

both at the promoter and the distal interacting fragments. At promoters, the most dynamic 

epigenetic marks between D0 and D7 were the repressive histone marks H3K27me3 and H3K9me3, 

with more subtle changes in levels of H3K4me1 (Figure 1F). The strongest changes observed at the 

distal interacting fragments (other) were those related to enhancer activity (H3K27ac and H3K4me1) 

and transcriptional activity (H3K4me3) (Figure 1F). We designed quantitative 3C (q3C) assays 

(Dekker, 2006) and performed validation in independent D0 and D7 replicates for six predicted DInt, 

spanning linear distances between 61 Kb and 1.24 Mb. All six q3C tests demonstrated significant 

changes in the relative interaction frequencies, in the same direction measured by GOTHiC (Figures 

1G and S1F). Among these, the interaction between the promoter of Fabp4, a critical regulator of 

intermediate adipocyte differentiation (Bahrami-Nejad et al., 2022), and the intronic fragment at the 

Fabp12 locus during adipogenesis has been reported previously (Siersbæk et al., 2017; He et al., 

2018). We found that this interaction becomes significantly stronger at D7, and that at the same 

time the intronic Fabp12 region gains the epigenetic signature of an active enhancer, with 

enrichment of H3K27Ac and a putative, actively transcribed eRNA (Figure 1G). Together, these 

results show that D0 and D7 3T3-L1 cells differ dramatically in their transcriptional output, 

distribution of epigenetic marks and spatial organization of the genome. 
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Cluster analysis uncovers sets of promoters with enhancer contacts during late-stage adipogenesis  

Having established that D0 and D7 3T3-L1 cells exhibit thousands of DInt, we next used GOTHiC to 

assess the dynamics of promoter-anchored chromatin loops across distinct stages of adipocyte 

differentiation (D0, 4 hours, D2 and D7). In this aim, we integrated our PCHi-C data with that 

generated by Siersbæk et al. (Siersbæk et al., 2017) who analysed earlier stages of adipocyte 

differentiation, up to D2. K-means clustering identified 23,606 DInt in nine groups with unique 

temporal profiles, each one including hundreds to several thousands of promoters (Figure 2A; Table 

S2). Among these, clusters 1, 2, 6 and 8 contain DInt that are transitory during early or intermediate 

stages of adipocyte differentiation (Figure 2A; Table S2). Clusters 4 and 9 contain DInt that become 

significantly stronger during terminal adipogenesis, while clusters 3, 5 and 7 include DInt that 

become significantly weaker in later stages of adipocyte differentiation (Figure 2A; Table S2).  

To assess the changes of epigenetic marks at rewiring promoter-anchored chromatin loops during 

3T3-L1 adipocyte differentiation, we calculated the enrichment of four histone modifications 

(H3K27ac, H3K27me3, H3K4me1 and H3K4me3) across the promoters and distal interacting 

fragments of all nine clusters, based on previously reported ChIP-seq data at D0, D2 and D7 

(Mikkelsen et al., 2010). Additionally, we integrated DNA methylation (Park et al., 2022) and 

H3K9me3 (Matsumura et al., 2015) measurements performed in 3T3-L1 pre-adipocytes and 

adipocytes (Figures 2B and S2A). The most striking observation from these analyses was the gain in 

H3K4me1 and H3K27ac, with concomitant loss of H3K27me3 at the distal fragments of cluster 4, 

particularly between D2 and D7, suggesting enhancer activation during late stages of adipocyte 

differentiation (Figure 2B). Distal fragments of cluster 9 DInt were associated with a similar, albeit 

milder pattern of changes, while distal fragments in cluster 7 gained higher levels of H3K9me3 

during adipogenesis (Figure 2B). In contrast to the dynamic changes observed at the distal fragments 

of several DInt clusters, histone marks remained relatively stable at the promoter regions (Figure 

S2A). DNA methylation levels were different between clusters, at both distal fragments and 

promoters; however, globally they remained stable during adipocyte differentiation (Figures 2B and 

S2A). 

We then analysed the dynamics of CAGE-seq peaks, per DInt cluster, at distal interacting fragments 

and promoters. The distal fragments of cluster 4 DInt were the strongest enriched in differential 

CAGE-seq peaks up-regulated during 3T3-L1 adipogenesis, with smaller, but significant enrichments 

also observed at clusters 3, 6, 8 and 9 (Figure 2C). Promoters of clusters 4 and 9 were enriched in 

CAGE-seq peaks up-regulated during adipogenesis, while those of clusters 1, 3, 5, 6 and 7 were 
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enriched in CAGE-seq peaks down-regulated during adipogenesis (Figure 2D). Next, we analysed 

gene expression patterns in vivo, per DInt cluster and observed a significant up-regulation at mRNA 

levels in adipocytes versus pre-adipocytes for clusters 4 and 8 (Figure 2E). Notably, analysis of 

previously published data on gene expression changes during 3T3-L1 in vitro adipogenesis 

(Mikkelsen et al., 2010) showed that genes belonging to clusters 4, 8 and 9 had significant up-

regulation of mRNA levels in late stages of adipogenesis (i.e. between D2 and D7) (Figure S2B and 

Table S2).  

Using i-cisTarget (Imrichova et al., 2015), we found notable differences in the enrichment of 

transcription factor (TF) binding motifs at promoters and distal fragments of the nine DInt clusters 

(Figure S2C and Table S2). Overall, there were fewer TF binding motifs enriched at promoters than at 

distal fragments for all nine DInt clusters and many TFs enriched at distal fragments  were exclusive 

for one of the nine DInt clusters (Table S2). Among the TF binding motifs enriched exclusively at the 

distal fragments of only one of the nine clusters associating up-regulated CAGE-seq peaks were 

CEBPA, CEBPB, CEBPD and CEBPE (cluster 1), GLI1, GLI2, GLI3 (cluster 3), KLF6, KLF13 (cluster 4), 

PLAGL1 (cluster 5), PML, SIN3A and ZBTB33 (cluster 9) (Figure S2C and Table S2). In contrast, many 

TFs enriched at promoter regions were shared between several clusters, such as NRF1 (promoters 

associated with up-regulated CAGE-seq peaks of clusters 3, 4, 6, 8 and 9), E2F4 (clusters 1, 3, 6, 8 and 

9) and ELF1 (clusters 5, 6, 7 and 9) (Figure S2C). 

Pathway analyses identified clusters 4 and 9 as enriched in genes related to fat differentiation and 

lipid metabolic processes (Figures 2F and Table S2). Clusters 5, 6 and 7 had enrichment of genes 

related to response to lipid, while cluster 8 demonstrated an enrichment in genes related to lipid 

transport and localization (Figure 2F and Table S2). Clusters 1 and 3 had enrichment of genes related 

to regulation of gene expression and developmental processes, while cluster 2 was void of any 

significant GO term (Table S2). 

Overall, these findings demonstrate that the promoter-anchored chromatin loops are dynamic 

throughput all stages of adipocyte differentiation. In the case of cluster 4, the chromatin interactions 

become stronger particularly between D2 and D7, enabling physical proximity between promoters 

and distal fragments that exhibit epigenetic signatures of active enhancers, concomitant with 

transcriptional up-regulation during late-stage adipogenesis. 

 

siRNA knockdowns of genes engaged in DInt identify novel regulators of late-stage adipogenesis 
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To validate the functional role of DInt genes in adipogenesis at larger scale, we next performed a 

siRNA screen, using The Mouse siGENOME Druggable Genome Library, which contains 2,905 genes 

considered potential targets for therapeutics (Table S3). We carried out this screen in OP9-K mouse 

cells (female sex, see Methods), a robust model to rapidly study adipocyte differentiation in vitro 

(Lane et al., 2014). We used 30% as threshold for significant changes in lipid droplet formation at the 

end of the differentiation time course (see Methods and Figure S3A). Based on this criterion, the 

screen identified 981 genes that reduced and 41 genes that increased lipid accumulation, 

respectively (Figure 3A). These sets of genes include several known regulators of adipocyte 

differentiation, such as Pparg and Pdgfrb (Ghaben and Scherer, 2019) (Table S3).  

Of the total of 2,905 “druggable” genes, 1,216 (~42%) were part of the nine DInt clusters, with 432 

showing a significant impact on lipid accumulation upon siRNA knockdown, using the scoring system 

presented above (siRNA knockdown of 410 genes reduced and 22 genes increased lipid 

accumulation, respectively; Table S3). However, only cluster 4 demonstrated a significant 

enrichment in genes that enhanced lipid accumulation upon siRNA knockdown. On the contrary, 

none of the clusters were enriched in genes that reduced lipid accumulation following siRNA 

knockdown (Figure 3B). To refine a list of novel putative regulators of late-stage adipogenesis, we 

used the following criteria: 1) promoters whose interaction frequencies show the most pronounced 

changes between D2 and D7 (clusters 3, 4, 5, 7 and 9) – which included a total of n=13,778 DInt,  

engaging 7,346 promoters; 2) significant expression changes by CAGE-seq (>2 fold) between 3T3-L1 

pre-adipocytes and adipocytes (n=7,807 genes); 3) differential expression (>1.5 fold) by RNA-seq 

between primary mouse pre-adipocytes and adipocytes (n=7,596 genes); 4) genes whose depletion 

induced >30% changes in lipid droplet formation in OP9-K cells (n=1,022 genes). This intersectional 

search led to the identification of 49 gene promoters engaged in 122 DInt (Figure 3C and Table S3). 

We manually curated this list (see Methods) and identified 19 genes without any previously known 

link to adipogenesis (Figure S3B), over half of which have peptidase (Cela1, Lap3, Prss23, Clpx) or 

ubiquitin protein ligase (Znrf2, Rnf125, Rnf139, Hectd2, Fbxo17, Fbxl14, Trim21, Fbxw5) activities 

(Table S3). 

Drosophila melanogaster has been used successfully in the past to screen for genetic regulators of 

adipocyte differentiation (Pospisilik et al., 2010). Within the lists of 49 and 19 genes identified 

through the intersectional analyses presented above, we found 13 and 5 that have strong homology 

between mouse and Drosophila (FlyBase score >12/15; Table S3), respectively. We used the 

pumpless (ppl)-GAL4 driver (Colombani et al., 2003) to perform in vivo siRNA-mediated knockdown 

specifically in the fat body of Drosophila starting in the larva stage and throughout development 

(Figures S3C and S3D). The fat body is the organ that has storage and humoral functions associated 
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with nutrition, comparable to that of vertebrate adipose tissue and liver (Colombani et al., 2003). 

We selected for this in vivo analysis three genes (Figures 3D-H and S3D-G): two novel candidates 

(Clpx and Fbxl14), and one with a previously known role in adipogenesis (Psma1) (Table S3) and 

performed lipid accumulation measurements in adult flies. Knockdown of two of the three genes 

(Psma1/Prosalpha6T in Drosophila and Clpx/ClpX) led to significant changes in lipid accumulation in 

flies’ fat bodies, in the same direction with the observations made in OP9-K cells (Figures 3D–H), 

while the third gene (Fbxl14/Ppa) led to opposite effects (Figures S3E–G).  

Thus, by using two siRNA knockdown systems, one in vitro (OP9-K cells) and one in vivo (Drosophila 

fat body) we identified and validated several novel regulators of late-stage adipogenesis predicted 

by our omics analyses. 

 

Regulators of late-stage adipogenesis harbour significant associations with measurements of 

obesity in mouse and human 

To gather additional evidence for links between regulators of late-stage adipogenesis and 

measurements of obesity, we performed a search in two publicly available databases that contain 

phenotypes for thousands of mouse mutants (MGI – phenotypes available for 13,487 mutant genes 

and IMPC – 7,577 mutant genes phenotyped), as well as in the central human GWAS catalogue (see 

Methods). First, we identified three mouse phenotypes of interest: increased fat amount, decreased 

fat amount, and abnormal fat morphology (see Methods). Within the MGI dataset, which contains 

both loss-of-function and gain-of-function mutations, we observed greatest enrichment in effects 

across all three phenotypes among genes in cluster 4 (Figure 4A and Table S3). Other clusters 

exhibited less pronounced effects: increased fat amount (cluster 8), decreased fat amount (clusters 

3, 5 and 9) and abnormal fat morphology (cluster 5) (Figure 4A and Table S3). Within the IMPC 

dataset, which contains only loss-of-function mutations, we observed higher risk for decreased total 

body fat amount at cluster 5 and higher odds ratios for abnormal adipose tissue morphology at 

clusters 5 and 9 (Figure S4A and Table S3). Notably, 8/49 and 2/49 genes identified through the 

intersectional analysis showed an association with fat-related phenotypes in the MGI and IMPC 

databases, respectively (Table S3).  We also sought to determine whether there was any relationship 

between the nine DInt clusters and various measures of human adiposity identified through GWAS. 

This analysis identified DInt clusters with significant enrichment of genes associated to two specific 

adiposity-related GWAS traits, namely “adipose tissue measurement” and “obesity” in clusters 3, 5, 

8 and 9 (Figure 4B). Additionally, we found significant enrichment of genes for the two specific 
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GWAS terms, analysed separately (clusters 1, 4, 5, 8 and 9 for adipose tissue measurement; clusters 

3, 7 and 8 for obesity) (Figure S4B). 

Comparative studies between species enable identification of key regulatory regions that were 

conserved during evolution (Peters et al., 2007). Therefore, our next analysis searched for DInt 

belonging to clusters 3, 4, 5, 7 and 9 (i.e. strong changes of interaction frequencies in late stages of 

adipogenesis), in which the promoter and the distal interacting fragment maintained the synteny 

between mouse and human. We then selected those DInt that contain human GWAS obesity-related 

SNPs (single nucleotide polymorphisms) at the human region homologous to the distal mouse 

fragment. We identified four such cases. In the case of rs912056, located on human chromosome 6 

(reported gene is LY86), we observed a cluster 5 DInt between the homologous mouse fragment and 

the promoter of Rreb1, a gene that showed significant mRNA up-regulation during adipocyte 

differentiation (Figures 4C and 4D). Rreb1 was not part of our siRNA screen performed in the OP9-K 

cells. However, Rreb1 has a strongly conserved homologue in Drosophila (namely peb, FlyBase score 

of 12/15). Using the ppl-GAL4 driver described above, we performed siRNA knockdown of peb, and 

found a significant reduction of lipid accumulation in the fat body (Figure 4E). Additionally, IMPC 

data showed a significant reduction of fat content in males heterozygous for a mutant Rreb1 allele 

(Figure S4C). Based on the experimental evidence obtained, our data suggests that RREB1 is likely a 

better candidate to explain the association with the fat distribution traits (ratio of visceral to 

subcutaneous adipose tissue volume, and ratio of visceral to subcutaneous adipose tissue volume 

adjusted for BMI – body mass index) reported for rs912056 (Chu et al., 2017). A second example 

suggesting a novel candidate gene for obesity is that of rs217669, located on human chromosome 14 

(reported gene is SYT16). The homologous mouse region located on chromosome 12 is engaged in a 

cluster 7 DInt with the promoter of a nearby non-coding RNA (1700086L19Rik, homologous with the 

human non-coding gene LINC00643) (Figure S4D). In two other cases, the candidate genes identified 

using our synteny approach coincided with the previously reported causal genes. These are COL14A1 

located on human chromosome 8 (SNPs is rs10955960; the homologous mouse fragment on 

chromosome 15 is engaged in a cluster 5 DInt) and MAP2K7 located on chromosome 19 (SNPs is 

rs4804833; homologous mouse fragment on chromosome 8 is engaged in a cluster 9 DInt), thus 

strengthening the previous GWAS observations (Figure S4D).  

To evaluate further a potential link between naturally occurring alleles influencing the function of 

the 19 novel regulators of late-stage adipogenesis and measurements of obesity, we next 

interrogated phenotypic and genetic data from recently available large-scale population studies (see 

Methods). We focused on two measurements of obesity and body fat distribution, namely BMI and 

WHRadjBMI (waist-hip ratio adjusted for BMI) in sample sizes up to up to 806,834 individuals (see 
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Methods). We found that three of the 19 genes were located at less than 500kb distance from a 

genome-wide significant signal for one of these two traits (Table S3): LAP3 and CELA1 for BMI (Figure 

4F) and GPR157 for WHRadjBMI (Figure 4G). To link more directly these proximal associated genetic 

variants to the function of these candidate genes, we then undertook variant-to-gene mapping 

approaches (see Methods), including assessment of expression quantitative trait loci (eQTL) data 

and integration of activity-by-contact enhancer maps. These analyses showed that variants that 

associate with changes in BMI at the LAP3 and CELA1 loci might do so via changes in the genes’ 

transcript levels and that the signal at the GPR157 locus resides within an enhancer of this gene 

(Table S3).  

Collectively these findings demonstrate that our genetic analyses guided by DInt were able to 

confirm or reassign genes linked to GWAS SNPs associated with obesity and to identify novel genes 

that exhibit significant associations with measurements of obesity in the mouse or influence 

population-based variation in phenotypes relevant to obesity or body fat distribution in human. 

 

DISCUSSION 

Obesity poses a heterogeneous risk for cardiometabolic complications. The mechanisms that 

uncouple adiposity from its cardiometabolic comorbidities are complex and include both genetic and 

environmental factors (James et al., 2021). A deficit or an excess of fat cells (especially hypertrophic 

fat cells) are both detrimental for health (Rosen and Spiegelman, 2014). Several recent studies 

provided evidence for the existence of genetic and epigenetic determinants of limited adipose 

storage capacity (Lotta et al., 2017; Kim et al., 2023) and regional fat distribution (Huang et al., 2021; 

Agrawal et al., 2022; Akbari et al., 2022; Agrawal et al., 2023) that modulate the risk for insulin 

resistance. Collectively, these studies are consistent with a recently put forward hypothesis 

stipulating that subtle forms of lipodystrophy contribute to the risk for cardiometabolic disease at a 

population level (Mann and Savage, 2019). They also suggest the existence of molecular mechanisms 

that control late-stage adipogenesis, which, when dysfunctional, lead to the development of 

adipocytes with reduced capacity to store fat, thus increasing the risk of metabolic disease. 

Evidence that long-range chromatin interactions between gene promoters and distal regulatory 

elements play key roles in transcriptional regulation during cellular differentiation has emerged 

(Javierre et al., 2016; Rubin et al., 2017; Choy et al., 2018; Zhang et al., 2020), including during early 

and intermediate stages of in vitro adipocyte differentiation (Siersbæk et al., 2017). Based on the 

previous observations, we hypothesized that cataloguing the promoter-bound chromatin loops with 
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significant changes in their interaction frequencies at the transition between immature (D2) and 

mature (D7) adipocytes, could be an efficient way to guide the discovery of novel regulators of late-

stage adipogenesis. Our multi-omics analyses, in combination with a siRNA screen of druggable 

genes in a cellular model of adipogenesis, in vivo validation in a Drosophila model, and mining of 

mouse phenotyping and human GWAS datasets, led to the identification of 49 regulators of late-

stage adipogenesis, of which 19 have not been implicated in fat differentiation (Table S3). This set of 

19 novel regulators was enriched in genes encoding proteins with ubiquitin protein ligase activity or 

belonging to the SCF (Skp1 – cullin 1 – F-box) ubiquitin ligase complex. This included Znrf2, Rnf125, 

Rnf139, Hectd2, Fbxo17, Fbxl14, Trim21 and Fbxw5. Moreover, the list of 19 genes also included 

other members related to ubiquitination: Traf2, an essential constituent of several E3 ubiquitin-

protein ligases that regulates activation of NF-ĸB and JNK (with central roles in regulation of cell 

survival and apoptosis), and Zfand6, encoding a zinc finger protein shown to bind TRAF2 and 

involved in TRAF2-mediated NF-ĸB signalling (Chang et al., 2011). Ubiquitin ligases are the final and 

potentially the most important determinant of substrate specificity in the ubiquitination of proteins. 

Interestingly, with the exception of Znrf2, siRNA knockdown of the remaining seven genes with 

ubiquitin ligase activity reduced lipid accumulation in OP9-K cells, suggesting an important 

physiological role of the ubiquitin proteasome pathway in the final stages of adipocyte 

differentiation. Other previously unrecognized regulators of adipogenesis included several 

proteases:  CLPX, a subunit of a major mitochondrial protease complex, thought to stimulate 

mitochondrial unfolded protein response in mammalian cells; PRSS23, a secreted member of the 

trypsin family of serine proteases, with proteolytic functions linked to IGFBPs;  CELA1, a serine 

protease that hydrolyses many proteins in addition to elastin; and LAP3, a cytosol leucine 

aminopeptidase with putative roles in the control of cellular redox status via metabolism of 

glutathione and in the degradation of glutathione S-conjugates. Our data provides the first evidence 

for a role of ubiquitin protein ligases and proteases in the regulation of late-stage adipocyte 

differentiation capacity. Taken together, we found experimental support for a number of new 

”druggable” regulators of adipogenesis related to protein homeostasis (“proteostasis”), specifically 

in pathways related to the degradation of intracellular proteins (the ”proteasome”) and 

ubiquitination as a marker for regulated proteolysis.  

We validated several of the 19 novel candidates through siRNA in Drosophila fat body and mining 

population-level genetic datasets, which brought additional confirmatory evidence for Clpx, LAP3, 

CELA1 and GPR157 as potential regulators of late-stage adipogenesis. GPR157 encodes for an orphan 

receptor that is predicted to be located in the ciliary membrane, with very little known about its 

function. Primary cilia have emerged recently as pivotal signalling hubs, with key roles in 
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adipogenesis (Yamakawa et al., 2021). We also gathered additional evidence for several genes 

previously liked with adipogenesis. Of these genes, RREB1 has been associated before with increased 

visceral fat accumulation in human (Chu et al., 2017). Our findings add new members to the list of 

genes identified in previous studies as regulators of early (Fos, Jun, Myc, Cebpb and Cebpd) and 

intermediate (Pparg, Cebpa and Fabp4) stages of adipogenesis (reviewed by Ntambi and Young-

Cheul, 2000; Ghaben and Scherer, 2019). Future studies aimed at identifying additional factors that 

control late-stage adipogenesis and to understand the signalling or metabolic pathways that they 

control will be of great interest. 

Our study also provided new knowledge on the epigenetic regulation of adipocyte differentiation. 

One of the findings highlighted by the CAGE-seq analysis was the evidence for promoter switching of 

over 600 genes during 3T3-L1 adipogenesis. The usage of alternative promoters has been described 

before in the context of cell fate specification (Molyneaux et al., 2015; Edupuganti et al., 2017), 

immediate early response (Vacca et al., 2018), cell-cycle-dependent transcription regulation (Wragg 

et al., 2020), as well as a mechanism by which ubiquitously expressed genes participate in cell-

specific functions (Feng et al., 2016). The mechanisms responsible for the alternative promoter 

usage during adipogenesis require further study. However, as these genes are enriched in GO terms 

related to regulation of transcription, translation and chromatin organization, they may have a 

widespread role in guiding adipogenesis. Another important finding in our study is that some 

clusters containing DInt with the strongest changes between D2 and D7 of adipocyte differentiation 

have features of enhancers at the distal interacting fragments. This is particularly evident for clusters 

4 and 9 that gain two histone marks of active enhancers (H3K27ac and H3K4me1), have enrichment 

in up-regulated CAGE-seq peaks, suggestive of eRNAs, and are enriched in genes up-regulated during 

adipogenesis in vitro. Clusters 4 and 9 also demonstrate enrichment of genes related to fat cell 

differentiation and lipid metabolism. Conversely, distal fragments of cluster 7 become enriched in 

H3K9me3, a suppressive histone mark associated with formation of facultative heterochromatin 

during cell differentiation (Nicetto and Zaret, 2019), as well as for the genome compartmentalization 

(Nichols and Corces, 2021), suggesting a potential role in the weakening of the DInt during late-stage 

adipogenesis that we observed for this cluster. We also identified enrichment of TF binding sites at 

promoters and distal fragments engaged in DInt. In the case of the TF binding sites enriched at distal 

fragments, many exhibited specificity for a particular cluster. Interestingly, distal fragments of 

cluster 1, comprised of promoter-bound DInt that are transitory during early stages of adipocyte 

differentiation, are enriched in binding sites for several known regulators or early adipogenesis, such 

as CEBPB and CEBPD (Ntambi and Young-Cheul, 2000). Distal fragments of cluster 4, containing 

promoter-bound DInt that become strongest in late stages of adipocyte differentiation, are enriched 
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in binding sites for two known adipogenesis regulators, KLF6 (Li et al., 2005) and KLF13 (Jiang et al., 

2015). Therefore, based on the more substantial changes observed at “other ends” than at 

promoters, we propose that events that take place at distal fragments of DInt, such as changes in 

epigenetic marks, transcriptional activity (eRNAs) and binding of TFs play a major role in guiding each 

stage of adipocyte differentiation.  

We acknowledge that our study has several limitations. Studies of human adiposity traits uncovered 

the existence of depot-specific genetic determinants (Schleinitz et al., 2014; Loh et al., 2015; Agrawal 

et al., 2022), as well as an important influence of sex and age (Heid et al., 2010; Winkler et al., 2015; 

Song et al., 2018; Rask-Andersen et al., 2019; Link et al., 2020; Akbari et al., 2022). This complexity 

was not captured by the two cell lines used in this study. Detailed functional characterization of late-

stage adipogenesis regulators will require development of new in vitro models capable of capturing 

the complexity of the observations made in human studies. Finally, we acknowledge that not all DInt 

identified in 3T3-L1 cells are conserved in human, particularly the more distant ones, due to 

chromosomal rearrangements that occurred during evolution. The application of the PCHi-C assay to 

a human model of in vitro adipogenesis in future studies is warranted to uncover additional novel 

regulators of late-stage adipogenesis that may play specific roles in our species.   

In conclusion, we revealed an adipogenesis-driven promoter switch for a set of genes related to 

epigenetic regulation and demonstrated that rewiring of promoter-anchored chromatin loops takes 

place throughout all stages of adipogenesis, enabling the interaction with distal enhancer regulatory 

elements. Analysis of promoter contacts that demonstrate strong changes at the transition between 

immature and mature adipocytes is an efficient way to uncover novel regulators of late-stage 

adipogenesis, as we demonstrated through genetic screens in both in vitro and in vivo model 

systems and through population-based genetic analyses. Our approach to focus on discovering 

druggable targets raises the possibility that our findings could rapidly pave the way for novel 

approaches in the prevention and treatment of obesity and its related comorbidities. 

 

METHODS 

3T3-L1 adipocyte differentiation 

Mouse 3T3-L1 cells were grown at 37°C and 5% CO2 in Dulbecco’s Modified Eagle’s Medium (DMEM 

high glucose, Sigma-Aldrich #D6546) supplemented with 10% calf serum (Gibco #16010159), 2% 

glutamine (Sigma-Aldrich #G7513) and 1% Pen-Strep (Sigma-Aldrich #P0781). Cells were induced to 

differentiate two days post confluency (defined as day zero – D0) by addition of differentiation 
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media: DMEM high glucose supplemented with 10% fetal bovine serum (Sigma-Aldrich #F7524), 1% 

Pen-Strep, 1 μg/ml insulin (Sigma-Aldrich #I9278), 390 ng/ml dexamethasone (Sigma-Aldrich 

#D4902), 1,115 μg/ml 3-Isobutyl-1-methylxanthine (Sigma-Aldrich #I5879) and 2 μM rosiglitazone 

(Sigma-Aldrich #R2408). Two days after the induction of differentiation, fresh differentiation media 

supplemented with 1 μg/ml insulin was added. From day four and onward, cells were maintained in 

differentiation media. 

To quantify efficiency of 3T3-L1 differentiation into adipocytes, staining with Oil red O was 

performed, as previously described (Ramírez-Zacarías et al., 1992). Briefly, cells were fixed in 10% 

formaldehyde in phosphate buffer (PBS) for one hour, washed with 60% isopropanol, and stained 

with Oil Red O solution (Sigma-Aldrich #102419) for 10 minutes followed by four washing steps with 

water, counterstaining of nuclei with hematoxylin (Sigma-Aldrich #105175) and imaging with an 

optical microscope. Counting the percentage of cells containing Oil Red O positive lipid droplet was 

performed by ImageJ software (National Institutes of Health, Bethesda MD, USA). Over 90% of cells 

were Oil Red O positive after seven days of differentiation, using the above protocol.  

An additional method to quantify efficiency of 3T3-L1 differentiation into adipocytes was by 

measuring mRNA levels of known markers of adipogenesis by qRT-PCR. Total RNA was extracted 

from D0 and D7 3T3-L1 cells using an RNeasy Plus Mini Kit (Qiagen #74134). RNA concentration was 

measured by NanoDrop (Thermo Fisher Scientific) and quality was assessed in agarose gels. Reverse 

transcription was performed using the RevertAid RT Reverse Transcription Kit (Thermo Fisher 

Scientific – K1622). qRT-PCR was performed with the SYBR Green JumpStart Taq Ready Mix (Sigma – 

S4438) and custom-made primers (Table S4) using an ABI Prism 7900 system (Applied Biosystems). 

For gene expression normalization, we used two housekeeping genes (Ppia and Rplp0). Levels of 

expression were calculated using the 2-ΔΔCt method.  

 

CAGE-seq analysis of D0 and D7 3T3-L1 cells 

CAGE-seq analysis was performed using the nAnT-iCAGE method, as described (Murata et al., 2014). 

Briefly, total RNA was extracted from four D0 and four D7 biological replicates of 3T3-L1 cells, using 

an RNeasy Plus Mini Kit (Qiagen #74134). RNA concentration and quality were measured by 

NanoDrop (Thermo Fisher Scientific) and an Agilent RNA 6000 Nano Kit (Agilent #5067-1511), 

respectively. All samples had RIN>9. Library preparation was performed at the Genome Network 

Analysis Support Facility, RIKEN CLST, with 50-base single read sequencing performed on an Illumina 

HiSeq2500 instrument. Reads were mapped using TopHat, and RECLU (Ohmiya et al., 2014) was used 
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to call differentially expressed top peaks and bottom peaks corresponding to reproducible TSSs. 

Gene level expression was calculated from the RECLU output using top peaks. First, D0 peak level 

expression was obtained using the formula (2^logConc*2)/(1+2^logFC), then D7 expression values 

were calculated by D0*2^logFC. The expression values of top peaks annotated to the same gene 

were summed up for gene level expression. Genes with more than two differential top peaks, where 

the direction of change was divergent across the differential peaks, were identified as genes 

involved in promoter switch. Functional analysis was performed using DAVID (Database for 

Annotation, Visualization and Integrated Discovery; v6.8 https://david.ncifcrf.gov). Enriched gene 

ontology (GO) terms with FDR < 5% were considered significant. These terms were then clustered 

semantically using REViGO (Reduce and Visualize GO) (Supek et al., 2011), which removes 

redundancy, and ordered according to the log10 p values.  

 

RNA-seq analysis of primary pre-adipocytes and adipocytes 

Pre-adipocytes and adipocytes were isolated from epididymal fat pads of young (three months-old) 

hemizygous Zfp423GFP male mice (Gupta et al., 2012). RNA was extracted using the RNeasy Plus 

Micro Kits (Qiagen #74034) and used to prepare RNA libraries utilizing the TruSeq Stranded mRNA 

Kit (Illumina #20020595) and sequenced as single-end 50 bp reads using an Illumina HiSeq 4000 

platform.  

RNA-seq reads were mapped to GRCm39 version of the mouse reference genome sequence using 

STAR (v2.5.1b) (Dobin et al., 2013). Reads were considered mapped if the similarity was greater than 

95% over at least 90% of the read length, as previously described (Haak et al., 2018). FeatureCounts 

(v1.5) (Liao et al., 2013) was applied for the generation of count tables based on the mapping files. 

Raw counts were subjected to differential gene expression analysis via DESeq2 (Love et al., 2014) 

and normalized to CPM (counts per million). 

 

Promoter-Capture Hi-C (PCHi-C) analysis 

PCHi-C was performed in triplicate for D0 and D7 3T3-L1 cells as previously described (Schoenfelder 

et al., 2015). Briefly, 30-40 million cells/sample were fixed with 2% formaldehyde (Agar Scientific 

#AGR1026) for 10 min at room temperature, prior to harvesting from the tissue culture flasks. 

Digestion of cross-linked chromatin with HindIII (NEB #R3104), labelling with biotin-14-dATP 

(Invitrogen #19524016) and DNA Polymerase I (Large Klenow Fragment; NEB #M0210) and ligation 

(with T4 DNA ligase; Invitrogen #15224025) were all performed on nuclei kept intact. Chromatin 
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cross-linking was then reversed by incubation with proteinase K (Roche #03115879001) at 65°C 

overnight and the DNA was purified by phenol/chloroform extraction. Aliquots of the Hi-C libraries 

were used to verify efficiency of chromatin digestion and digestion using standard PCR and qPCR, 

with primers listed (Table S4). Then, biotin from un-ligated DNA ends was removed using T4 DNA 

polymerase (NEB #M0203) and the DNA was sonicated (Covaris E220) to an average size of around 

400 base pairs. Sonicated DNA was end-repaired using DNA Polymerase I (Large Klenow Fragment; 

NEB #M0210), T4 DNA polymerase (NEB #M0203) and T4 DNA polynucleotide kinase (NEB #M0201), 

then dATP was added to the 3′ ends of the DNA using Klenow exo- (NEB #M0212). The DNA was then 

subjected to double-sided SPRI bead size selection (AMPure XP beads; Beckman Coulter #A63881) 

and biotin-marked ligation products were isolated using MyOne Streptavidin C1 Dynabeads 

(Invitrogen #65002). After adapter ligation (Illumina PE PCR 1.0 and PE PCR 2.0 primers), the bead-

bound Hi-C DNA was amplified with seven PCR amplification cycles. Promoter capture Hi-C was 

performed using a custom-made RNA capture bait system (Agilent Technologies) consisting of 

39,021 individual biotinylated RNAs targeting the ends of 22,225 promoter-containing mouse HindIII 

restriction fragments, as described (Schoenfelder et al., 2015). After a post-capture PCR (four 

amplification cycles using Illumina’s PE PCR 1.0 and PE PCR 2.0 primers), the PCHi-C libraries were 

purified with AMPure XP beads (Beckman Coulter #A63881) and paired-end sequenced (HiSeq 1000, 

Illumina) at the Babraham Institute Sequencing Facility. 

Quality control of raw fastq files was performed using FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and trimming was done when 

required using TrimGalore (https:://github.com/FelixKrueger/TrimGalore). Reads (220 – 282 million 

paired-reads/sample) were mapped to the mm9 genome and filtered using the HiCUP pipeline 

(v0.5.8), which removes experimental artefacts, such as circularised reads and re-ligations, and 

duplicated reads (Wingett et al., 2015). After de-duplication, the number of valid unique di-tags 

varied between 90 – 154 million per sample (i.e., between 92.8% and 99.5% of the valid pairs). 

GOTHiC (Schoenfelder et al., 2018) was used to identify significant differential interactions (DInt) by 

comparing our own D0 and D7 data, as well as that obtained previously at D0, 4h and D2 (Siersbæk 

et al., 2017). DInt were taken forward when they overlapped in at least two replicates and log2 fold 

changes were calculated as the average between the replicates in which the interaction was 

classified as DInt. Interactions overlapping with two regions of known artefacts (chr10:106613366-

107858706 and chr10:116174799-118176364) were removed. 

 

q3C assays 
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3C (chromatin conformation capture) assays were performed in independent biological replicates of 

D0 and D7 3T3-L1 cells. Briefly, 10-15 million cells per sample (6-9 D0 samples and 7 D7 samples) 

were fixed with formaldehyde, digested with HindIII and ligated with T4 DNA ligase as described 

above, without the incorporation of biotin-14-dATP. After reversal of chromatin crosslinking, the 

purified DNA was used in qPCR reactions using 100 ng DNA as template/reaction, the SYBR Green 

JumpStart Taq Ready Mix (Sigma – S4438) and custom-made primers (Table S4) using an ABI Prism 

7900 system (Applied Biosystems). Interaction frequencies were calculated using the 2-ΔΔCt method 

and normalized against the interaction between two consecutive HindIII fragments at the Rplp0 

locus, used as internal control for efficiency of HindIII chromatin digestion and DNA ligation. 

  

Clustering of DInt 

Interactions that were significant in at least one of the three comparisons (4h vs D0, D2 vs D0, D7 vs 

D0) were used for clustering. Log2 fold changes of the interactions were collected from all three 

comparisons and grouped using k-means clustering (Hartigan and Wong, 1979). The number of 

clusters was determined using the elbow method by calculating the within group sum of squares for 

k=2 to k=15. The optimal number of clusters was 9. The profile of the log2 fold changes of differential 

interactions was visualized using ggplot2 showing the mean log2 fold changes and error bars 

indicating the standard deviation within the cluster. 

 

ChIP-seq and WGBS data processing and enrichment calculation 

ChIP-seq data for H3K27ac, H3K27me3, H3K4me1 and H3K4me3 at D0, D2 and D7 was obtained 

from Mikkelsen et al. (Mikkelsen et al., 2010). DNA methylation data was used from Park et al. (Park 

et al., 2022) and H3K9me3 from Matsumura et al. (Matsumura et al., 2015). For H3K27ac, 

H3K27me3, H3K4me1 and H3K4me3 we made use of the peaks identified by Mikkelsen et al. The 

H3K9me3 ChIP-seq data quality control was performed using FastQC, and reads were trimmed using 

TrimGalore (https:://github.com/FelixKrueger/TrimGalore). Mapping to the mm9 genome was 

achieved using BWA-MEM (arXiv:1303.3997) and broad peaks were called using MACS2 (Zhang et 

al., 2008). We overlapped histone modification peaks with promoter or distal fragments belonging 

to the nine clusters or the differential interactions between D0 and D7, and labelled each fragment 

whether it carried the mark or not. Enrichment of fragments with the mark was calculated across 

clusters/categories and was normalized for the total number of peaks found for that modification at 

that time point. For DNA methylation, average methylation level was calculated for each HindIII 
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fragment in the genome and enrichment in a cluster/category was compared to the average across 

them.  

 

Expression microarray analysis in 3T3-L1 and OP9-K cells 

OP9-K is an embryonic stromal cell-line of unspecified sex (www.cellosaurus.org). To establish the 

sex of origin of these cells, we compared gene expression levels inOP9-K cells (Lane et al., 2014) with 

those of male white adipose tissue (C3HeB/FeJ), as well as of male and female liver samples, 

retrieved using the accession numbers GSE197101 and GSE176226, respectively. Microarray data 

normalization was conducted using affy, oligo, and limma packages in R. Then, data were annotated 

using the annotation table obtained from GEO 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL6246) in order to identify the 

chromosomal location of each gene. Normalized expression values were averaged for replicates and 

expression levels in the OP9-K cells were compared to the expression in male and female tissues 

across all chromosomes and separately on the Y chromosome. These analyses revealed that OP9-K 

cells originated from a female embryo. 

3T3-L1 was reported as a spontaneously immortalized cell-line isolated from a male embryo 

(www.cellosaurus.org). However, recent karyotyping analyses revealed the presence of two X 

chromosomes (Oh et al., 2021). To establish the sex of 3T3-L1 cells, microarray expression data 

retrieved using the accession number GSE20752 was normalized with other male and female data. 

Male white adipose tissue and female mammary gland expression data were taken from GSE10246. 

All the raw expression data were normalized using affy and limma packages in R. Normalized 

expression values were averaged across the replicates. Then, the probes were annotated using the 

GPL1261 annotation table from GEO 

(https://ftp.ncbi.nlm.nih.gov/geo/platforms/GPL1nnn/GPL1261/annot/) to identify and compare the 

expression level of genes located on each chromosome and specifically on chromosome Y between 

the 3T3-L1 cell lines and the known gender tissues. Our analyses are consistent with recent findings 

suggesting origin in a female embryo.  

To compare mRNA expression levels at D0, D2 and D7 in 3T3-Le cells, data generated using GeneChip 

arrays (Affymetrix) were retrieved from Table S2 of Mikkelsen et al. (Mikkelsen et al., 2010). Data 

was sorted per DInt cluster, with a coverage between varying between 59.2% of genes (cluster 7) 

and 71.8% (cluster 4). Data was analysed per individual DInt cluster using one-way ANOVA tests 

followed by Tukey's multiple comparisons tests. 
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siRNA screen for regulators of adipocyte differentiation in the OP9-K cells 

Mouse OP9-K cells were grown at 37°C and 5% CO2 in OP9 propagation media: MEM-α (Life 

Technologies #12571-063), supplemented with 20% FBS (Sigma-Aldrich #F4135), 2mM L-glutamine 

(Sigma-Aldrich #G7513) and 1% Pen-Strep (Sigma-Aldrich #P0781). Cells were passaged at 80% 

confluence and fed every 2-3 days. The siRNA screen was performed using SMARTpool siRNAs (i.e. a 

pool of four siRNAs per gene) from the Mouse Druggable Subset consisting of 2,905 genes 

distributed on 11 384-well plates (Dharmacon #G-014675-E2, Lot 14008). The 0.1nmol lyophilised 

siRNA stock plates were re-suspended to 10µM, and then further diluted to give working stock 

plates of 3µM siRNA, which was used for transfection.  

The siRNA screen was performed in 384-well round bottom plates coated with poly-D-lysine (Sigma-

Aldrich #P7886). Briefly, 2.6µl of 3µM working siRNA was pipetted into each well, followed by 3µl of 

the transfection mix (obtained by mixing 339.6µl Lipofectamine RNAiMAX transfection reagent 

[Invitrogen #56532] + 4646µl OptiMEM [ThermoFisher Scientific #31985062]) and, after 5 minutes, 

30µl cell suspension (diluted at 133 cell/µl). To ensure even distribution of cells into the wells, plates 

were incubated undisturbed at room temperature for 15 minutes before transferring carefully to the 

incubator at 37°C and 10% CO2 (shown to give better differentiation). Non-targeting ON-TARGETplus 

pool (Dharmacon #D-001810-10-20), mouse Pparg ON-TARGETplus SMARTpool and mouse L3mbtl3 

ON-TARGETplus SMARTpool were used as controls on each 384-well plate. All pipetting was 

performed using and FXP robot and Biomek AP96 P200 pipette tips (Beckman Coulter #717252). 

Differentiation was initiated 24 hours post-transfection using freshly prepared insulin-oleate media: 

MEM-α supplemented with 0.2% FBS, 175 nM insulin, 900 µM oleate:albumin (Sigma-Aldrich 

#O3008) and 1% Pen-Strep and cells were incubated for 48 hours undisturbed to allow adipocyte 

differentiation. Following differentiation, the cells were fixed for 20 minutes by adding 6µl 24% 

formaldehyde directly to medium in each well. After washing with PBS, cells were stained for 30 

minutes with 42µl BODIPY 493/503 for lipids (1mg/ml in ethanol; ThermoFisher Scientific #D3922) 

and 42µl Hoechst 33342 for nuclei (10mg/ml; Invitrogen #H3570) and washed again in PBS.  

The plates were scanned on the ImageXpress Confocal Micro (Molecular Devices) using the 10x 

objective and the confocal pinhole setting. Cells were imaged in two channels: the Hoechst channel 

to capture nuclei and the FITC channel to capture the lipid droplets. To correct for unevenness 

across the well, three images were taken at different z planes and a maximum projection image was 

compiled and used for all future analyses. Images were analysed using the Multiwavelength Cell 
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Scoring Application Module within the MetaXpress software (Molecular Devices). Nuclei were 

defined in the Hoechst channel by size and intensity with user-defined thresholds. The cytoplasm 

was defined using the lipid stain and was thresholded by size and intensity. Cells were then classified 

as differentiated if the lipid stained cytoplasm exceeded a defined minimum stained area of 100µm2 

(Figure S3A).  Intra-plate normalisation was carried out for each of the three triplicates, then the 

median of the three values for each well was calculated. This value, termed median relative 

differentiation (i.e. values normalised to non-targeting), was used to determine hits. Cuts-off of 0.7 

(i.e. a 30% decrease in differentiation) and 1.3 (i.e. a 30% increase in differentiation) were used to 

identify genes that decrease and increase adipocyte differentiation, respectively. 

 

siRNA knockdowns in Drosophila fat body 

All fly strains were maintained in Darwin Chambers (IN084-AA-LT-DA-MP) at a temperature of 25°C. 

and 70% humidity with 12h:12h light-dark cycles, and reared on Nutri-Fly Bloomington Formulation 

food medium (Genesee Scientific #66-112). The fly lines used in this study were obtained from 

Bloomington Drosophila Stock Centre (BDSC): Ppl-Gal4 (BDSC #58768), UAS-Peb-RNAi (BDSC #33943) 

UAS-Ppa-RNAi (BDSC #31357), UAS-Prosalpha6T-RNAi (BDSC #55243) and UAS-Clpx-RNAi (BDSC 

#57577). RNAi-mediated knockdown specifically in the fat body was achieved by driving UAS-RNAi 

expression using the fat body specific driver line, Ppl-GAL4. Female flies from F1 generation bearing 

both Gal4 and UAS-RNAi constructs were used for fat body staining. F1 female progenies obtained 

from the cross between the Ppl-Gal4 and the UAS-RNAi lines with isogenic w1118 (BDSC #6326) 

wild-type flies were used as genotypic controls. 

To verify the efficiency of knockdowns, total RNA was extracted from whole bodies of flies using TRI-

reagent (Sigma #93289) and 2µg of total RNA was reverse transcribed using High-capacity cDNA 

synthesis kit (Applied Biosystems #4374967). Real-time qPCR was performed using PowerUp SYBR 

Green Master Mix (ThermoFisher #A25741) with listed primers (Table S4). Each qRT-PCR reaction 

was performed in duplicate. Rpl32 was used as an endogenous control. The cut-off for Ct values was 

<35 for testing genes and <25 for Rpl32. Relative expression analysis was done using the 2–∆∆Ct 

method. Six to eight independent biological replicates (containing 5 whole bodies each) per 

genotype were tested for each experiment. 

Subcuticular fat body staining of undissected fly abdomens was adapted from Li et al. (Li et al., 

2017). Briefly, 2-5 days-old female flies were anesthetized to remove the legs and wings. The fly 

bodies were then fixed in 4% paraformaldehyde for 20 minutes, followed by washing in phosphate-
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buffer saline (PBS). The flies were then submerged thrice in liquid Nitrogen for few seconds, each 

time followed by thawing on ice for 1 minute. A solution of 1µg/µL of BODIPY – 493/503 (1:500 

dilution, ThermoFisher, #D3922) in PBS was added to the samples and incubated under dark for 1 

hour, followed by three washes with PBS. The flies were then mounted onto a glass slide by gluing 

the thorax on the ventral side. The samples were covered with Vectashield mounting medium 

(Vector Laboratories #H-1000-10) and imaged by confocal microscopy (Nikon A1R) under the FITC 

channel. Same confocal setting was used across all samples. Maximum intensity projection images 

were analyzed and quantified in ImageJ. 

 

Manual curation of 49-gene list to identify novel regulators of late-stage adipogenesis 

This analysis was performed in two steps. First, three authors carried out an independent search on 

GWAS (https://www.ebi.ac.uk/gwas/home), OMIM (https://www.omim.org), IMPC 

(https://www.mousephenotype.org) and MGI (https://www.informatics.jax.org/) for evidence 

linking the gene of interest with obesity, lipodystrophy or other phenotypes associated with altered 

fat mass or adipocyte differentiation. This was supplemented with a search on PubMed 

(https://pubmed.ncbi.nlm.nih.gov) using a range of keywords (adipogenesis, adipocyte 

differentiation, lipodystrophy, obesity, adiposity, fat mass, body mass index) plus the gene symbol. 

The information was then verified and summarized by two other authors, leading to the 

identification of 19 genes without any prior evidence for a role in adipogenesis or related processes. 

 

Analysis of MGI and IMPC adipose tissue phenotypes 

We retrieved the phenotyping data for 13,487 genes from MGI, using the batch query function (data 

accessed on 17 May 2023). The phenotyping terms were grouped semantically in three categories: 

increased fat amount (MP:0020411 – increased abdominal adipose tissue amount, MP:0009286 – 

increased abdominal fat pad weight, MP:0014142 – increased body fat mass, MP:0009288 – 

increased epididymal fat pad weight, MP:0006094 – increased fat cell size, MP:0009285 – increased 

gonadal fat pad weight, MP:0009292 – increased inguinal fat pad weight, MP:0009298 – increased 

mesenteric fat pad weight, MP:0005458 – increased percent body fat/body weight, MP:0009302 – 

increased renal fat pad weight, MP:0009304 – increased retroperitoneal fat pad weight, 

MP:0010934 – increased subcutaneous adipose tissue amount, MP:0010024 – increased total body 

fat amount, MP:0008908 – increased total fat pad weight, MP:0000008 – increased white adipose 

tissue amount, MP:0014145 – increased white adipose tissue mass, MP:0009121 – increased white 
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fat cell lipid droplet size, MP:0009130 – increased white fat cell number, MP:0009118 – increased 

white fat cell size, and MP:0001261 – obese), decreased fat amount (MP:0008853 – decreased 

abdominal adipose tissue amount, MP:0009287 – decreased abdominal fat pad weight, MP:0014143 

– decreased body fat mass, MP:0009289 – decreased epididymal fat pad weight, MP:0009269 – 

decreased fat cell size, MP:0009283 – decreased gonadal fat pad weight, MP:0009293 – decreased 

inguinal fat pad weight, MP:0009297 – decreased mammary fat pad weight, MP:0009299 – 

decreased mesenteric fat pad weight, MP:0009301 – decreased parametrial fat pad weight, 

MP:0005459 – decreased percent body fat/body weight, MP:0009303 – decreased renal fat pad 

weight, MP:0009305 – decreased retroperitoneal fat pad weight, MP:0008844 – decreased 

subcutaneous adipose tissue amount, MP:0010025 – decreased total body fat amount, MP:0008907 

– decreased total fat pad weight, MP:0001783 – decreased white adipose tissue amount, 

MP:0014146 – decreased white adipose tissue mass, MP:0009122 – decreased white fat cell lipid 

droplet size, MP:0009131 – decreased white fat cell number, MP:0009133 – decreased white fat cell 

size, and MP:0011174 – lipodystrophy) and abnormal fat morphology (MP:0000010 – abnormal 

abdominal fat pad morphology, MP:0005452 – abnormal adipose tissue amount, MP:0011167 – 

abnormal adipose tissue development, MP:0000013 – abnormal adipose tissue distribution, 

MP:0000003 – abnormal adipose tissue morphology, MP:0012320 – abnormal body fat mass, 

MP:0006319 – abnormal epididymal fat pad morphology, MP:0011168 – abnormal fat cell 

differentiation, MP:0009115 – abnormal fat cell morphology, MP:0005334 – abnormal fat pad 

morphology, MP:0005335 – abnormal gonadal fat pad morphology, MP:0030880 – abnormal 

infrapatellar fat pad morphology, MP:0005336 – abnormal inguinal fat pad morphology, 

MP:0008904 – abnormal mammary fat pad morphology, MP:0008903 – abnormal mesenteric fat 

pad morphology, MP:0005457 – abnormal percent body fat/body weight, MP:0005337 – abnormal 

retroperitoneal fat pad morphology, MP:0001781 – abnormal white adipose tissue amount, 

MP:0014144 – abnormal white adipose tissue mass, MP:0002970 – abnormal white adipose tissue 

morphology, MP:0011169 – abnormal white fat cell differentiation, MP:0009117 – abnormal white 

fat cell morphology, MP:0009132 – abnormal white fat cell size, MP:0008901 – absent epididymal 

fat pad, and MP:0008843 – absent subcutaneous adipose tissue) (Table S3).  

In the case of IMPC, we downloaded the lists of genes related to three phenotypes of interest: 

increased total body fat amount (331 genes with significant changes out of 7,575 genes tested), 

decreased total body fat amount (261 genes with significant changes out of 7,324 genes tested), and 

abnormal adipose tissue morphology (586 genes with significant changes out of 7,577 genes tested – 

Table S3) (data release version 18.0; data accessed on 27 March 2023). Enrichment of genes with 

significant phenotypes within the nine clusters of DInt was calculated using Fisher’s exact tests and 
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represented as odds ratios ± 95% confidence intervals. To verify the specificity of our findings, we 

also performed a similar analysis for two unrelated phenotypes (namely, abnormal heart 

electrocardiography waveform feature and abnormal fear/anxiety−related behaviour), neither of 

which associated any significant enrichment in the nine clusters of DInt genes. 

 

Enrichment of adiposity-related GWAS genes in the nine clusters of DInt 

Human adiposity-related GWAS SNPs and their reported target genes (locus genes for adipose 

storage capacity) were downloaded from the GWAS catalogue (obesity:EFO_0001073; adipose tissue 

measurement:EFO_0004764). Fisher’s tests were applied to check for enrichment of these sets of 

genes within the gene lists found in each of the nine clusters. 

 

Mouse-human synteny analyses 

We have assessed synteny based on synteny blocks identified using the synteny portal (Lee et al., 

2016), and defined the exact homologous positions from the UCSC hg19-mm9 syntenic Net files. 

Differential interactions, where both fragments fall into the same synteny block, and obesity-related 

intergenic, intronic and TF binding site SNPs falling into synteny blocks were identified. Those SNPs 

that overlapped with the distal fragment of a differential interaction were mapped to the gene 

involved in that interaction. 

 

TF enrichment analysis 

Up- and down-regulated CAGE-seq peaks were overlapped with the promoter and distal fragments 

of differential interactions across the nine clusters. The positions of CAGE-seq peaks (>7bp) were 

used in i-cisTarget (Imrichova et al., 2015) to test for enrichment of known motifs and TF binding 

based on publicly available ChIP-seq data. TFs with a normalized enrichment score (NES) above 5 

were considered significant. 

 

Pathway analysis 

Genes involved in differential interactions across the nine clusters were tested for enrichment of GO 

biological processes using g:Profiler (Raudvere et al., 2019). The lists of significantly enriched (p-adj 

<0.05) GO terms were summarized and visualized with REVIGO (Supek et al., 2011).  
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Candidate genes GWAS and eQTL analyses 

The novel 19 genes encoding regulators of late adipogenesis were integrated with genome-wide 

association studies (GWAS) and related functional annotations, pertaining to expressions 

quantitative trait loci (eQTL) datasets and nearby enhancer elements. For this, we used GWAS data 

on body mass index (BMI) and waist-hip ratio (WHR) adjusted for BMI in up to 806,834 and 694,649 

individuals, respectively, available from the UK Biobank and the GIANT consortium (Pulit et al., 

2019). From these GWAS, we looked at common variants with a minor allele frequency >0.1%.  

For each of the target genes and each phenotypic trait, genes were annotated based on proximity to 

genome-wide significant signals (p<5x10-8), in 1Mb windows; 500kb up- or downstream of the genes 

start or end site. For genes with proximal GWAS signals, we calculated genomic windows of high 

linkage disequilibrium (LD; R2>0.8) for each given signal and mapped these to the locations of known 

enhancers for the target genes, using the activity-by-contact (ABC) enhancer maps (Nasser et al., 

2021). For genomic variants reaching at least a suggestive level of significance in the GWAS (p<5x10-

5), we performed SMR and HEIDI tests (v1.02, Zhu et al., 2016) using blood gene expression level 

data from the eQTLGen study (Võsa et al., 2021) and the GTEx cross-tissue meta-analysis (V7, GTEx 

Consortium, 2015 available via https://gtexportal.org and using the fixed-effects summary statistics). 

For the eQTL analyses, we considered gene expression of a gene to be influenced by the same 

genomic variation as that seen in the GWAS, if the FDR-corrected p-value for the SMR-test was 

p<0.05 and the p-value for the HEIDI test was >0.1%.  

 

Statistical analyses 

Statistical analyses was performed as described above or using GraphPad Prism 9 software. For all 

tests, P<0.05 was considered significant. 

 

Data availability 

Sequencing data w deposited in NCBI’s Gene Expression Omnibus (GEO) under the accession 

numbers GEO: GSE234744 (RNA-seq of primary pre-adipocytes and adipocytes isolated from 3 

months-old hemizygous Zfp423GFP mice), GSE234747 (PCHi-C-seq of D0 and D7 3T3-L1 cells) and 

GSE234749 (CAGE-seq of D0 and D7 3T3-L1 cells). 
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Figure 1. Transcriptional and epigenetic changes identified in the 3T3-L1 model of in vitro 

adipogenesis 
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(A) Volcano plot depicting differentially expressed peaks (i.e. transcripts) between D0 and D7 3T3-L1 

cells, as identified by CAGE-seq. Approximately 16.5% of all transcripts (23.3K) that belong to 

7,807 genes are differentially expressed as result of in vitro adipogenesis. 

(B) DAVID analysis depicting biological processes enriched in differentially expressed genes (overall 

fold change >2). Dotted line corresponds to FDR-corrected P value <0.05.   

(C) Donut chart showing the distribution of the alternative usage of transcripts relative to the 

overall level of gene expression for the 605 genes that show promoter switching during 3T3-L1 

adipogenesis. 

(D) Examples of two genes that show a promoter switching (blue – peaks that are expressed at 

higher levels at D0, red – peaks that are expressed at higher level at D7). 

(E) Differential D0/D7 promoter-anchored interactions identified by promoter-capture Hi-C and 

quantified using GOTHiC. Only a minority of these differential interactions engage other 

promoters (promoter-promoter interactions), while the most are with intergenic or intragenic 

regions (promoter-other). 

(F) Epigenetic signatures at the promoter area (top panel) and distal interacting fragment (other – 

bottom panel) that are engaged in differential D0/D7 interactions.  

(G) Top: example of a differential D0/D7 interaction engaging Fabp4 promoter with an enhancer-like 

region located 79 kb downstream, within one of the introns of Fabp12 locus (see arrow, marked 

at D7 by increased levels of H3K27ac and active transcription – CAGE-seq peaks). Interactions 

that are stronger and weaker at D7 are shown in red and blue, respectively. Bottom: Validation 

of Fabp4 mRNA changes and eRNA expression (by qRT-PCR) and Fabp4-Other interaction (by 

q3C) in independent biological replicates. Error bars are standard deviation (SD), *** P<0.001 by 

Mann-Whitney tests. 
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Figure 2. Cluster analysis of differential promoter-anchored interactions 

(A) The nine clusters of differential interactions (DInt) identified based on their dynamics during D0, 

4h, D2 and D7 stages of 3T3-L1 adipogenesis (numbers shown between parentheses indicate 

number of DInt/cluster). Interaction frequencies are shown as Log2 fold changes relative to D0 

(horizontal dotted lines). Clusters 3, 4, 5, 7 and 9 are associated with significant changes at the 

transition D2 – D7 of adipogenesis. Error bars represent SD. 
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(B) Dynamics of epigenetic marks at the distal regions (other) engaged in DInt. Cluster 4 shows 

significant increases in H3K27ac and H3K4me1 (marking active enhancers) at the transition D2-

D7, while cluster 7 associates with a marked increase of the repressive mark H3K9me3. 

Enrichment is relative to the average level of the modification across the nine clusters. 

(C) Percentages of distal fragments (other) per cluster containing differential CAGE-seq peaks. 

Clusters 3, 4, 6, 8 and 9 DInt are enriched in CAGE-seq peaks upregulated at D7, suggestive of 

enhancer activity. * P<0.05, *** P<0.001 by Fisher’s exact tests. 

(D) Percentages of promoters per cluster containing differential CAGE-seq peaks. Clusters 4 and 9 

are enriched in CAGE-seq peaks up-regulated during adipocyte differentiation, while clusters 1, 

3, 5, 6 and 7 are enriched in CAGE-seq peaks down-regulated during adipocyte differentiation. * 

P<0.05, *** P<0.001 by Fisher’s exact tests. 

(E) Genes that belong to clusters 4 and 8 have a higher mean level of expression in adipocytes 

versus pre-adipocytes in vivo, suggesting potential enrichment in regulators of adipogenesis. 

Data is shown as box plots with mean (horizontal line) and 95% confidence intervals (error bars). 

* P<0.05 by paired t tests. P: preadipocyte, A: adipocyte. 

(F) Dot plot depicting GO terms related to adipocyte differentiation and lipid metabolism enriched 

in genes that are part of DInt clusters. The colour and the size of each dot indicate the strength 

of significance and the percentage of genes in each cluster, respectively. 
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Figure 3. Validation of novel regulators of late-stage adipogenesis by siRNA knockdowns in vitro and 

in vivo 

(A) Overview of the results of a siRNA screen in OP9-K cells: light green – >30% reduction in lipid 

accumulation, dark green – >30% increase in lipid accumulation, grey – less than 30% change in 

lipid accumulation. 

(B) Proportions of genes, per cluster, that affect lipid accumulation in OP9-K cells upon siRNA 

knockdown. Cluster 4 is significantly enriched in genes that increase lipid droplet accumulation 

upon siRNA knockdown (* P<0.05 by Fisher’s exact test). 

(C) Venn diagram analysis identifies 49 candidates of late adipogenesis that fulfil the four criteria 

(see main text).  
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(D) Dynamics of Psma1 and Clpx DInt during 3T3-L1 adipocyte differentiation as quantified by 

GOTHiC.  

(E) Relative expression of Psma1 and Clpx in 3T3-L1 pre-adipocytes (D0) and adipocytes (D7) 

measured by CAGE-seq. 

(F) Relative expression of Psma1 and Clpx in primary mouse pre-adipocytes and adipocytes 

measured by RNA-seq (CPM – counts per million). Error bars are SD (standard deviation), *** 

P<0.001. 

(G) Left: representative images of OP9-K adipocytes stained with Bodipy (green, marking lipid 

droplets) + DAPI (blue, marking nuclei), upon siRNA knockdown of Psma1 and Clpx (scale bars 

are 50 µm). Right: quantification of % of differentiated cells, shown relative to controls (Ctrl), 

arbitrarily normalized to 1. Error bars are SD. 

(H) Left: representative images of Bodipy-stained Drosophila abdomens upon Prosalpha6T and ClpX 

siRNA treatment (scale bars are 200 µm). Right: quantification of Bodipy-staining intensity in the 

fat body. Error bars are SD, ** P<0.01, *** P<0.001 by unpaired t tests with Welch’s correction. 
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Figure 4. Validation of novel regulators of late-stage adipogenesis using mouse and human genetic 

analyses 

(A) MGI (Mouse Genome Informatics) data showing significant enrichment of genes per DInt cluster, 

whose mutations lead to adipose tissue-related phenotypes in vivo. Columns indicate odds ratios 
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and error bars are 95% confidence intervals. * P<0.05, ** P<0.01, *** P<0.001 by Fisher’s exact 

tests. 

(B) Clusters that are enriched in GWAS candidate genes associated with human adiposity related 

traits. Columns indicate odds ratios and error bars are 95% confidence intervals. * P<0.05, ** 

P<0.01, *** P<0.001 by Fisher’s exact tests. 

(C) Synteny analysis between a region on human chromosome 6 (containing rs912056 linked to fat 

distribution traits by GWAS and implicating LY86 as causative gene) and the homologous region 

on mouse chromosome 13 (showing a cluster 5 DInt that becomes weaker at D7 – blue colour – 

and links the promoter of Rreb1, instead of Ly86, with the region syntenic with the rs912056 

location).  

(D) Left: quantification of Rreb1-other DInt by GOTHiC, shown relative to D0. Middle: Rreb1 up-

regulation during in vitro adipogenesis in 3T3-L1 cells (as quantified by CAGE-seq). Right: Rreb1 

up-regulation during in vivo adipogenesis (as measured by RNA-seq). Error bars are SD, ** 

P<0.01. 

(E) siRNA knockdown of Peb (the Drosophila homologue gene of Rreb1) leads to reduced lipid 

accumulation in the fat body. Left: representative images of Bodipy-stained Drosophila 

abdomens upon siRNA treatment (scale bars are 200 µm). Right: quantification of BODIPY-

staining intensity in the fat body. Error bars are SD, * P<0.05 by an unpaired t test with Welch’s 

correction. 

(F) Regional association plot of GWAS hits near LAP3 (rs35852935) and GPR157 (rs6688233) 

identified as regulators of BMI. 

(G) Regional association plot of a GWAS hit near GPR157 (rs6688233) identified as regulator of BMI-

adjusted WHR (waist-hip ratio). For panels (F) and (G) the strength of association (r2) is colour-

coded. The genetic variant and the associated gene are in linkage disequilibrium, as indicated by 

the recombination rates. 
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