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Genome-wide analysis of self-reported risk-
taking behaviour and cross-disorder
genetic correlations in the UK Biobank
cohort
Rona J. Strawbridge 1,2, Joey Ward1, Breda Cullen1, Elizabeth M. Tunbridge3,4, Sarah Hartz 5, Laura Bierut5,

Amy Horton 5,6, Mark E. S. Bailey 7, Nicholas Graham1, Amy Ferguson1, Donald M. Lyall1, Daniel Mackay1,

Laura M. Pidgeon1, Jonathan Cavanagh1, Jill P. Pell1, Michael O’Donovan 8, Valentina Escott-Price 8,

Paul J. Harrison 3,4 and Daniel J. Smith 1

Abstract
Risk-taking behaviour is a key component of several psychiatric disorders and could influence lifestyle choices such as

smoking, alcohol use, and diet. As a phenotype, risk-taking behaviour therefore fits within a Research Domain Criteria

(RDoC) approach, whereby identifying genetic determinants of this trait has the potential to improve our

understanding across different psychiatric disorders. Here we report a genome-wide association study in 116,255 UK

Biobank participants who responded yes/no to the question “Would you consider yourself a risk taker?” Risk takers

(compared with controls) were more likely to be men, smokers, and have a history of psychiatric disorder. Genetic loci

associated with risk-taking behaviour were identified on chromosomes 3 (rs13084531) and 6 (rs9379971). The effects of

both lead SNPs were comparable between men and women. The chromosome 3 locus highlights CADM2, previously

implicated in cognitive and executive functions, but the chromosome 6 locus is challenging to interpret due to the

complexity of the HLA region. Risk-taking behaviour shared significant genetic risk with schizophrenia, bipolar disorder,

attention-deficit hyperactivity disorder, and post-traumatic stress disorder, as well as with smoking and total obesity.

Despite being based on only a single question, this study furthers our understanding of the biology of risk-taking

behaviour, a trait that has a major impact on a range of common physical and mental health disorders.

Introduction
Risk-taking behaviour is an important aspect of several

psychiatric disorders, including attention-deficit hyper-

activity disorder (ADHD)1,2 and bipolar disorder (BD)3,

as well as problem behaviours such as smoking and drug

and alcohol misuse4,5. The link between risk-taking

behaviour and schizophrenia (SCZ) is more complex,

with difficulties in conditional reasoning6, problems with

delayed gratification and poor impulse control occurring

alongside more conservative risk assessment7. Physical

health problems such as obesity might also be considered

to be related to increased propensity towards risk taking:

obesity includes aspects of aberrant reward processing,

response inhibition, and decision making8. The Research

Domain Criteria (RDoC) approach suggests that studying

dimensional psychopathological traits (rather than dis-

crete diagnostic categories), as well as relevant traits

across the whole spectrum (“normal” through to patho-

logical) of the population may be a more useful strategy
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for identifying biology, which cuts across psychiatric

diagnoses9. In this respect, risk-taking behaviour is an

important phenotype for investigation. It may also be

useful for investigating the overlap between psychiatric

disorders and conditions such as obesity and smoking.

To date, an association between a locus on chromosome

3 and risk-taking behaviour has been published10,11, but

no genome-wide genetic study with a primary focus on

risk-taking behaviour has been conducted. Genome-wide

association studies (GWAS) of related phenotypes, such

as impulsivity and behavioural disinhibition, have so far

been underpowered for detecting associations at a

genome-wide level. Here we conduct a primary GWAS of

self-reported risk-taking behaviour in 116,255 participants

from the UK Biobank cohort. We use expression quan-

titative trait loci analysis to highlight plausible candidate

genes and we assess the extent to which there is a genetic

correlation between risk-taking and several mental and

physical health disorders, including ADHD, SCZ, BD,

major depressive disorder (MDD), anxiety, post-traumatic

stress disorder (PTSD), smoking status (ever smoker),

lifetime cannabis use, fluid intelligence, years of educa-

tion, obesity, and alcohol use disorder.

Materials and methods
Sample

UK Biobank is a large population cohort, which aims to

investigate a diverse range of factors influencing risk of

diseases, which are common in middle and older age.

Between 2006 and 2010, >502,000 participants (age range

from 40 and 69 years) were recruited from 22 centres

across the United Kingdom (UK)12. Comprehensive

baseline assessments included social circumstances, cog-

nitive abilities, lifestyle, and measures of physical health

status. The present study used the first release of genetic

data on approximately one-third of the UK Biobank

cohort. In order to maximise homogeneity, we included

only participants of (self-reported) white UK ancestry.

Informed consent was obtained by UK Biobank from all

participants. This study was carried out under the generic

approval from the NHS National Research Ethics Service

(approval letter dated 13 May 2016, ref 16/NW/0274) and

under UK Biobank approval for application #6553 “Gen-

ome-wide association studies of mental health” (PI Daniel

Smith).

Genotyping, imputation, and quality control

The first release of genotypic data from UK Biobank, in

June 2015, included 152,729 UK Biobank participants.

Samples were genotyped with either the Affymetrix UK

Biobank Axiom array (Santa Clara, CA, USA; approxi-

mately 67%) or the Affymetrix UK BiLEVE Axiom array

(33%), which share at least 95% of content. Autosomal

data only were available.

Imputation of the data has previously been described in

the UK Biobank interim release documentation13. In brief,

single-nucleotide polymorphisms (SNPs) were excluded

prior to imputation if they were multiallelic or had minor

allele frequency (MAF) <1%. A modified version of

SHAPEIT2 was used for phasing and IMPUTE2 (imple-

mented on a C++ platform) was used for the imputa-

tion14,15. A merged reference panel of 87,696,888 biallelic

variants on 12,570 haplotypes constituted from the 1000

Genomes Phase 3 and UK10K haplotype panels16 was

used as the basis for the imputation. Imputed variants

with MAF< 0.001% were filtered out of the data set used

for subsequent analysis.

The Wellcome Trust Centre for Human Genetics

applied stringent quality control, as described in UK

Biobank documentation17, before release of the

genotypic data set. UK Biobank genomic analysis exclu-

sions were applied (Biobank Data Dictionary item

#22010). Participants were excluded from analyses

due to relatedness (#22012: genetic relatedness factor;

one member of each set of individuals with KING-

estimated kinship coefficient >0.0442 was removed

at random), sex mismatch (reported compared with

genetic) (#22001: genetic sex), non-Caucasian ancestry

(#22006: ethnic grouping; self-reported and based on

principal component (PC) analysis of genetic data), and

quality control failure (#22050: UK BiLEVE Affymetrix

quality control for samples and #22051: UK BiLEVE

genotype quality control for samples). SNPs were

removed due to deviation from Hardy–Weinberg equili-

brium at p< 1× 10−6, MAF< 0.01, imputation quality

score <0.4 and >10% missingness in the sample after

excluding genotype calls made with <90% posterior

probability.

The second release of genetic data from the UK Biobank

(July 2017) included a further 349,935 samples. Geno-

typing platforms, quality control, and pre-imputation

procedures were consistent with the first data release.

Imputation of genotypes at additional SNP loci for all

participants (n= 502,664) was carried out using the

Haplotype Reference Consortium (HRC) reference panel,

and post-imputation quality control was consistent with

that of the first data release.

Risk-taking phenotype

The baseline assessment (2006–2010) of UK Biobank

participants included the question “Would you describe

yourself as someone who takes risks?” (data field #2040),

to which participants replied yes or no. Individuals who

responded “yes” to the risk-taking question are here

referred to as “risk takers” and those who responded “no”

are here referred to as “not risk takers or controls”. For a

subset of participants, the same question (“Would you

describe yourself as someone who takes risks?”) was asked
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at follow-up (2012–2013), enabling an assessment of

response consistency.

Discovery analyses

A total of 116,255 individuals and 8,781,003 variants

(first data release) were included in the discovery analysis.

A total of 29,703 participants were classed as risk takers

and 86,552 were controls. Association analysis was con-

ducted in PLINK18 using logistic regression, assuming a

model of additive allelic effects and models were adjusted

for sex, age, genotyping array, and the first eight genetic

PCs (Biobank Data Dictionary items #22009.01 to

#22009.08) to control for hidden population stratification.

The threshold for GWAS significance was set at p< 5×

10–8. Demographics of the discovery sample set are pre-

sented in Table 1. For quality control purposes, a GWAS

of the individuals included in the discovery analysis was

run with the second release genetic data (HRC-imputed)

and using the updated genetic exclusions and covariates

used. Using the updated exclusions resulted in a slight

increase in the number of individuals included in the

analysis: n= 117,755, of whom n= 30,013 were risk

takers and n= 87,742 were non-risk takers. The sex dis-

tribution and demographics of this data set were com-

parable with those included in the discovery analysis

based on the first genetic release (Supplementary Table 1).

Replication analysis

Approximately half of the participants only present in

the second data release were included in the replication

analysis, thus after quality control and recommended

exclusions, 139,474 white British participants were

included. Demographics of the replication sample set are

presented in Table 1.

The lead SNPs in the CADM2 and Chr6 loci were

selected for replication. Consistent with the discovery

analysis, replication analysis was conducted in PLINK18

using logistic regression, assuming a model of additive

allelic effects and models were adjusted for sex, age,

genotyping array, and the first eight genetic PCs

(PCA1–8) to control for hidden population stratification.

As two SNP were investigated, p< 0.025 was considered

significant. Results were meta-analysed using METAL19.

Polygenic risk scores (PRS)

In order to assess the variance explained by the genetic

loci identified here, polygenic risk scores (PRSs) were

calculated in the remaining 50% of the second genetic

data release. Demographics of the PRS sample set are

presented in Table 1. After quality control and recom-

mended exclusions, 139,731 white British participants

were included in this analysis.

PRS were calculated using p-value thresholds of p< 1×

10−5, p< 0.001, and p< 0.05. A score of only GWAS

significant SNPs was not conducted, as a 2 SNP score

(after linkage disequilibrium (LD)-based pruning) would

be underpowered. LD pruning was performed via PLINK

on a random sample of 10,000 individuals using an r2>

0.05 in a 250 kb window. The SNP with the lowest p-value

was selected from each of the LD-clumped SNP sets.

Where two or more SNPs from a set had the same

p-value, the SNP with the larger beta coefficient was used.

The scores were calculated in PLINK to produce a per-

allele weighted score (without mean imputation). Using

STATA, deciles of scores were computed and modelling

the effect of the PRS on risk was adjusted for age, sex, chip

and PCs 1–8.

Data mining

SNPs associated (at genome-wide significance) with

risk-taking behaviour were further investigated for influ-

ence on nearby genes (variant effect predictor, VEP20) and

for reported associations with relevant traits (GWAS

catalogue21). Descriptions and known or predicted func-

tions of implicated genes were compiled (GeneCards

www.genecards.org and Entrez Gene www.ncbi.nlm.nih.

gov/entrez/query.fcgi?db=gene) and global patterns of

tissue expression were assessed (GTEx22). Exploratory

analyses of the impact of significant loci on the expression

of nearby genes were carried out using the GTEx Portal

“Test your own eQTL” function22. In the 13 brain regions

available in the GTEx data set, we tested for associations

between rs13084531 and CADM2 expression, and

between rs9379971 and the expression of POM121L2,

PRSS16, ZNF204P and VN1R10P.

SNP heritability and genetic correlation analyses

LD score regression (LDSR)23 was applied to the GWAS

summary statistics to estimate the risk-taking SNP her-

itability (h2SNP). LDSR was also used to assess genetic

correlations between risk-taking behaviour and relevant

psychiatric, cognitive and behavioural traits, namely:

ADHD, SCZ, BD, MDD, anxiety, PTSD, smoking status

(ever smoked), lifetime cannabis use, fluid intelligence,

years of education, obesity, and alcohol use disorder.

The importance of the brain in regulation of obesity has

been demonstrated24, with reward circuits being impli-

cated. The prevalence of obesity in psychiatric illness and

the possibility of over-eating being a problem behaviour

suggest that there might be a connection between obesity

and risk-taking behaviour. Thus, two measures of obesity

were included: body mass index (BMI) as a measure of

total obesity24 and waist-to-hip ratio adjusted for BMI

(WHRadjBMI), reflecting metabolically detrimental cen-

tral obesity25.

For the ADHD, SCZ, BD, MDD, anxiety, PTSD,

and smoking status, we used GWAS summary statistics

provided by the Psychiatric Genomics Consortium
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(http://www.med.unc.edu/pgc/)26–32. For the two obesity

phenotypes, GWAS summary statistics for BMI24 and

WHRadjBMI25 were taken from the consortium for the

Genetic Investigation of Anthropometric Traits (http://

portals.broadinstitute.org/collaboration/giant). Summary

statistics for years of education33 and fluid intelligence34

were downloaded as instructed in the respective pub-

lications. Summary statistics for the GWAS of lifetime

cannabis use were provided by the International Cannabis

Consortium35. Summary statistics for GWAS of alcohol

consumption36 and brain structure volumes37 were pro-

vided by the authors. Alcohol use disorder was defined

using DSM-5 criteria38. For this phenotype, a GWAS

meta-analysis on genotypes imputed to 1000 Genomes

was run with five data sets: COGEND, COGEND2,

COGEND-23andMe, COGA, and FSCD. In total, there

were N= 2983 cases with alcohol use disorder and

N= 1169 controls. Descriptions of the data sets are in the

Supplementary information.

Results
Demographic characteristics

A subset of 20,335 participants had repeated assessment

of risk-taking behaviour. Reproducibility was good, with

Table 1 Description of UK Biobank participants included in the discovery risk-taking GWAS, replication and PRS

analyses

Discovery (1000 genomes) Replication (HRC) PRS (HRC)

Not risk takers Risk takersa Not risk takers Risk takersa Not risk takers Risk takersa

N 86,552 29,703 104,263 35,210 104,533 35,198

N men 36,679 (0.42) 18,554 (0.63) 41,988 (0.40) 21,453 (0.61) 42,161 (0.40) 21,427 (0.61)

Age (years) 57.2 (7.8) 56.1 (8.1) 57.2 (7.9) 55.9 (8.2) 57.3 (7.9) 56.0 (8.2)

BMI (kg/m2) 27.4 (4.9) 27.9 (4.7) 27.2 (4.7) 27.7 (4.7) 27.2 (4.7) 27.7 (4.6)

Current smoker 28,575 (0.33) 11,123 (0.38) 35,804 (0.34) 13,568 (0.39) 36,219 (0.35) 13,684 (0.39)

Ever smoker 37,782 (0.44) 16,052 (0.54) 43,929 (0.42) 18,265 (0.52) 44,316 (0.43) 18,221 (0.52)

Age completed educationb 16.6 (2.1) 16.6 (2.3) 17.0 (2.1) 16.7 (2.4) 16.6 (2.1) 16.7 (2.4)

Has a degree 24,442 (0.29) 10,235 (0.35) 30,456 (0.29) 12,830 (0.37) 30,672 (0.30) 12,731 (0.36)

Townsend deprivation index −1.6 (2.9) −1.3 (3.1) −1.7 (2.8) −1.4 (3.0) −1.7 (2.9) −1.4 (3.0)

Unstable mood¤ 37,429 (0.44) 14,258 (0.49) 44,659 (0.44) 16,852 (0.49) 44,697 (0.44) 16,722 (0.48)

Comparison groupc 17,024 (0.74) 5418 (0.69) 20,519 (0.74) 6350 (0.69) 20,844 (0.74) 6211 (0.69)

BD* 190 (0.01) 177 (0.02) 215 (0.01) 177 (0.02) 206 (0.01) 189 (0.02)

Single episode depressionc 1615 (0.08) 519 (0.07) 1860 (0.07) 645 (0.07) 1838 (0.07) 659 (0.07)

Moderate depressionc 2816 (0.12) 1034 (0.13) 3351 (0.12) 1289 (0.14) 3414 (0.12) 1207 (0.13)

Severe depressionc 1486 (0.06) 678 (0.08) 1727 (0.06) 797 (0.09) 1733 (0.06) 796 (0.09)

Any depression 5917 (0.26) 2231 (0.29) 6938 (0.25) 2731 (0.29) 6985 (0.25) 2662 (0.29)

Mental health questionnaire 27,494 9479 34,011 11,654 34,060 11,574

BD 330 (0.01) 232 (0.02) 369 (0.01) 290 (0.03) 348 (0.01) 277 (0.02)

MDD 6450 (0.28) 2407 (0.30) 7716 (0.27) 2951 (0.30) 7896 (0.28) 2906 (0.30)

GAD 1893 (0.10) 695 (0.11) 2215 (0.09) 898 (0.11) 2431 (0.10) 831 (0.10)

Any addiction 1491 (0.05) 918 (0.10) 1521 (0.05) 919 (0.08) 1543 (0.05) 955 (0.08)

Alcoholism 569 (0.02) 368 (0.04) 598 (0.02) 381 (0.03) 576 (0.02) 387 (0.03)

Illicit drug addiction 93 (0.003) 101 (0.01) 70 (0.003) 70 (0.01) 78 (0.002) 92 (0.01)

OTC/prescr~t addiction 229 (0.01) 96 (0.01) 22 6 (0.01) 125 (0.01) 239 (0.01) 132 (0.01)

Ever cannabis 4788 (0.17) 2780 (0.29) 6038 (0.18) 3432 (0.29) 5941 (0.17) 3356 (0.29)

BD bipolar disorder, MDD major depressive disorder, GAD general anxiety disorder
aParticipants who answered “yes” to “do you consider yourself a risk taker?”; for continuous variables, data are presented as mean (standard deviation). For categorical
variables, data are presented as n (proportion of group (i.e., risk takers or not risk takers))
bBased on a subset of 80,229 subjects; ¤ participants who answered yes to ““Does your mood often go up and down?”
cDefinitions as per Smith et al.39, based on a subset of 29,929 subjects. Addiction phenotypes based upon self-report
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consistent responses in 81% of all participants (incon-

sistent 13%, missing 6%, Supplementary Table 2). Parti-

cipants with probable mood disorders39,40 showed

comparable reproducibility compared with those without

(consistent 80% vs 82%, inconsistent 15% vs 12%, missing

5% vs 5%, respectively).

For all analyses (discovery, replication, and PRS), small

but consistent differences were observed between controls

and risk takers with regard to age and BMI (Table 1), but

striking differences were observed for sex distribution,

smoking, and history of mood disorders: risk takers

(compared with non-risk takers) were more often men,

more likely to be current or ever-smokers and more likely

to suffer from depression, report an addiction or to have

used cannabis. Risk takers were also more likely to have a

university/college degree.

GWAS of risk-taking behaviour

GWAS results for risk taking are summarised in Fig. 1

(Manhattan plot), Fig. 1 inset (QQ plot) and Supple-

mentary Table 3. The GWAS data test statistics showed

modest deviation from the null (λGC= 1.13). Considering

the sample size, the deviation was negligible (λGC 1000=

1.002). LDSR suggested that deviation from the null was

due to a polygenic architecture in which h2SNP accounted

for approximately 4% of the population variance in risk-

taking behaviour (observed scale h2SNP= 0.058 (SE

0.006)), rather than inflation due to unconstrained

population structure (LD regression intercept= 1.003 (SE

0.008)).

Two loci were associated with risk-taking behaviour at

genome-wide significance, on chromosome 3 and chro-

mosome 6 (Fig. 1 and Supplementary Table 3). The index

SNP on chromosome (chr) 3, rs13084531, lies within the

CADM2 gene, however, LD suggests that the signal also

encompasses miR5688, and borders a CADM2 anti-sense

transcript (CADM2-AS2, Fig. 2a). The minor allele of

rs13084531 was associated with increased risk-taking

(G allele, MAF 0.23, odds ratio (OR) 1.07, confidence

interval (CI) 1.04–1.09, p 8.75× 10–9). Conditional ana-

lysis of the chr3 locus (including rs13084531 as a cov-

ariate) is suggestive of a second signal (index SNP

rs62250716, MAF 0.36, OR 0.96, CI 0.94–0.98, p 8.53×

10–5, LD r2= 0.16 with rs13084531, Fig. 2b and Supple-

mentary Table 3). The LD structure across the chr3 locus

supports the possibility of two distinct signals (Supple-

mentary Figure 1).

The chr6 locus lies within the gene-rich human leuko-

cyte antigen (HLA) region (Fig. 2c), where index SNP

rs9379971 demonstrated an association between the

minor allele and decreased risk-taking (A allele, MAF

0.35, OR 0.95, CI 0.93–0.97, p 2.31× 10–9). Conditional

analysis (including rs9379971 as a covariate) and assess-

ment of the LD structure across this locus indicated

that the associated region probably includes only one

signal (Fig. 2d, Supplementary Table 3 and Supplementary

Figure 2).

Rerunning the GWAS with the second genetic data

release (Supplementary Figure 3) gave similar results, with

a modest deviation from the null (λGC= 1.10, adjusted for

sample size λGC 1000= 1.002). Consistent with the 1000

Genomes analysis, LDSR suggested that deviation from

the null was due to a polygenic architecture with h2SNP

accounting for approximately 5% of the population var-

iance in risk-taking behaviour (observed scale h2SNP=

0.055 (SE 0.006)). The same CADM2 locus was GWAS

significant (rs62250713, beta 0.0614, SE 0.01, p= 8.289×

10–10, minor allele A, MAF 0.36) but the locus on chro-

mosome 6 did not meet the threshold for significance.

Replication analysis

Both the CADM2 and chr6 loci demonstrated sig-

nificant (p< 0.025) associations with risk-taking beha-

viour in the replication analyses (Supplementary Table 4).

The CADM2 locus demonstrated effect sizes comparable

with those for the discovery analysis (rs13084531 beta

0.067 for discovery and beta 0.054 SE 0.011 replication).

In contrast, the Chr6 locus demonstrated two- to sixfold

weaker effects (rs9379971, discovery beta −0.063, repli-

cation beta −0.010). The CADM2 locus met the threshold

for GWAS significance in the meta-analysis (Supple-

mentary Table 4) but the Chr6 locus did not. The sig-

nificant p-value for heterogeneity suggests that this

association is a false-positive finding.

PRS analysis

The PRS were significant predictors of risk-taking

behaviour, at all p thresholds and the variance explained

by the model including the PRS was between 0.034 (PRS

p< 1× 10-5) and 0.037 (PRS p< 0.05) (Supplementary

Table 5).

Data mining

As with the majority of SNPs identified by GWAS, the

genome-wide significant SNPs in both loci are non-

coding. Current prediction models ascribe only non-

coding modifier functions to the 81 genome-wide sig-

nificant SNPs (VEP20, Supplementary Table 6). Expres-

sion quantitative trait analysis directly tests association of

the index SNPs with expression of nearby transcripts. The

chr3 index SNP (rs13084531) lies within the CADM2 gene

and adjacent to a micro RNA, miR5688, and CADM2-AS2

(Fig. 2 and Supplementary Table 7). Currently, most

miRs are predicted (but not reliably proven) to influence

transcription of hundreds or thousands of genes.

Furthermore, analysing transcription levels of miRs is

challenging. Similarly, the importance of anti-sense tran-

scripts such as CADM2-AS2 is unclear and difficult to
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assess. CADM2, which encodes cell adhesion molecule 2

(also known as synaptic cell adhesion molecule, Syn-

CAM2), is a plausible target gene as it is predominantly

expressed in the brain (Supplementary Figure 4A). The

risk allele at rs13084531 was associated with increased

CADM2 mRNA levels in several regions of the brain

(including the caudate basal ganglia and putamen basal

ganglia, hippocampus and hypothalamus, Supplementary

Figure 5). CADM1, a related cell adhesion molecule,

demonstrates overlapping and co-regulated (albeit inver-

sely) expression patterns41. It is worth noting that

CADM1 shows a similar, albeit less brain-specific,

expression pattern (Supplementary Figure 4B) and that

genetic deletion of Cadm1 in mice results in behavioural

abnormalities, including anxiety42.

Excitement-seeking is a behavioural trait closely related

to risk-taking behaviour43, however, the locus reported for

excitement seeking was nonsignificant in this study (Chr2,

rs11126769, LD R2 with the reported rs7600563= 0.862,

major T allele, Beta 0.016, SE 0.011, p= 0.1167). Other

potentially problematic behaviours, which can be related

to risk-taking propensity, have identified the CADM2

locus (Supplementary Table 8): a recent GWAS of alcohol

consumption44 identified a significant signal in the

CADM2 locus, where the G allele of rs9841829 was

associated with increased alcohol consumption. The same

SNP demonstrates genome-wide significance with

increased risk-taking behaviour in this study (G, Beta

0.0635, SE 0.012 p= 3.34× 10−8, Supplementary Table

3), whereas conditional analysis (Supplementary Table 3)

indicates that the signal for alcohol consumption and risk-

taking is the same. A GWAS of lifetime cannabis use also

highlighted the CADM2 locus (gene-based rather than

SNP-based)35. Cognitive function plays a role in traits

such as risk-taking, therefore it is worth noting that a

GWAS of executive functioning and information pro-

cessing speed in non-demented older adults from the

CHARGE (Cohorts for Heart and Aging Research in

Genomic Epidemiology) consortium found that genetic

variation in the CADM2 gene was associated with indi-

vidual differences in information processing speed45. The

allele of rs17518584 (LD r2= 0.45 with rs13084531, LD r2

= 0.34 with rs62250716) associated with increased pro-

cessing speed was associated with reduced (self-reported)

risk-taking in the current study (Supplementary Table 8,

p= 1.17× 10−7). Furthermore, a GWAS of educational

attainment in the UK Biobank cohort demonstrated a

significant signal in CADM246. The effect allele of

rs56262138 (LD r2= 0.00 with rs13084531, LD r2= 0.00

with rs62250716) for increased educational attainment

Fig. 1 Results of a genome-wide association study of self-reported risk-taking behaviour (1000 Genome imputation). SNPs are plotted along the X axis

by chromosome and position, with strength of association with self-reported risk-taking behaviour plotted on the Y axis. The red line indicates the

threshold for GWAS significance (p≤ 5e−8). Inset: QQ plot demonstrates deviation from null expectation (solid red line) of the GWAS results (black

data points)
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showed a negative effect on risk-taking behaviour (Sup-

plementary Table 8, p= 0.0210).

Day et al. reported an association between the CADM2

locus and age of reproductive onset in UK Biobank. In a

secondary analysis, they also report an association

between the same locus, CADM2, and risk-taking beha-

viour (the same phenotype as was used here). However,

differences in quality control procedures mean that the

lead SNP reported by Day et al. was not available in our

analysis. During the revision of this paper, Boutwell

et al.10 replicated the association between the CADM2

locus and a number of personality traits including risk-

taking (“do you feel comfortable or uncomfortable with

taking risks?”), in an independent data set (n ~ 140,000).

The CADM2 locus has also been tentatively associated

with longevity47 ((Supplementary Table 8) rs9841144, LD

r2= 0.99 with rs13084531, LD r2= 0.16 with rs62250716),

but associations between CADM2 SNPs and longevity,

survival and attaining 100 years of age in that study were

inconsistent, limiting the interpretation of these signals in

the context of risk-taking behaviour.

Genetic correlations

Looking up the risk-taking SNPs in the GWAS results

of psychiatric conditions demonstrated little or no effect

of the CADM2 SNPs in ADHD, SCZ, PTSD, BPD, or

MDD (Supplementary Table 9). In contrast, when con-

sidering the entire genome, we found significant positive

genetic correlations between the risk-taking phenotype

and ADHD (rg= 0.31, SE= 0.13, p= 0.01), SCZ (rg=

0.27, SE= 0.04, p= 4.54× 10−11), BD (rg= 0.26, SE=

0.07, p= 1.73× 10−4), PTSD (rg= 0.51, SE= 0.17,

p= 0.0018), lifetime cannabis use (rg= 0.41, SE= 0.11,

p= 0.0001), and smoking (rg= 0.17, SE= 0.07, p= 0.01)

and a negative genetic correlation with fluid intelligence

(rg=−0.15, SE= 0.05, p= 0.0013, Table 2). We found

no significant genetic correlation between risk-taking and

MDD, anxiety, or years of education (Table 2). There was

Fig. 2 Regional plots for risk-taking-associated loci. a Chr3 main analysis results; b results of analysis conditioned on Chr3 rs13084531; c Chr6 main

analysis results; d results of analysis conditioned on Chr6 rs9379971. The index SNP is shown as a purple diamond
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also a significant genetic correlation between risk-taking

and BMI (rg= 0.10, SE= 0.03, p= 0.003), but a similar

correlation was not found for WHRadjBMI. The non-

significant genetic correlation with alcohol use disorder

was interesting because of the strength of the coefficient

(rg= 0.22, SE0.31, p= 0.47), however, was likely under-

powered due to the modest size of the GWAS (n= 4 171)

and we draw no conclusions about this correlation.

Discussion
There is a growing emphasis on the importance of using

phenotypic traits, which cut across traditional diagnostic

groups to investigate the biological basis of psychiatric

disorders. Risk-taking behaviour is one such trans-

nosological characteristic, recognised clinically as a fea-

ture of several disorders, including ADHD, SCZ, and BD.

In this study, we identified two loci, on 3p12.1 and 6p22.1,

which were associated with self-reported risk-taking

behaviour. Replication in an independent set of samples

and meta-analysis confirmed the association between

risk-taking behaviour and the CADM2 locus on Chr3 but

not the Chr6 locus. The PRS were significant predictors of

risk-taking behaviour in a further independent sample set.

The chr6 locus falls within the HLA region, which

encodes a large number of genes and is extremely com-

plicated genetically. The false-positive association detec-

ted could be because the first data release were selected

based on (extremes of) lung function measurements48.

Considering the potential inflammatory component of

lung function and the role of the HLA region in inflam-

matory responses, it is perhaps not surprising that the

discovery analysis demonstrated stronger effect sizes for

this locus than the randomly selected general population

samples included in the replication analysis.

A key finding of our study was the positive association

between Chr3 SNP, rs13084531, and risk-taking beha-

viour, as well as CADM2 expression levels. Here, the allele

associated with increased self-reported risk-taking beha-

viour was also associated with increased CADM2

expression. It is of interest that lack of Cadm1 in mice was

associated with anxiety-related behaviour42 and that both

CADM1 and CADM2 were identified as BMI-associated

loci24 suggesting that CADM2 and related family mem-

bers may be involved in balancing appetitive and avoidant

behaviours.

Day and colleagues recently identified 38 genome-wide

significant loci for age at first sexual intercourse within

the UK Biobank cohort2 and two of these loci were within

the 3p12.1 region, close to CADM2 (rs12714592 and

rs57401290). The association between rs57401290 (and

SNPs in LD) and age at first sexual intercourse was also

observed for a number of behavioural traits, including

number of sexual partners, number of children, and risk-

taking propensity (the same phenotype as was used in this

study). In addition, CADM2 also showed association with

information processing speed45 and educational attain-

ment46, highlighting the complexity of relationships

between cognitive performance and risk taking. Taken

together, this evidence suggests that CADM2 plays a

fundamental role in risk-taking behaviours, and may be a

gene involved in the nexus of cognitive and reward-

related processes that underlie them.

A perhaps surprising observation was the increased

frequency of having a university degree in self-reported

risk takers, compared with controls, despite the negative

(albeit nonsignificant) association between years of edu-

cation and risk-taking behaviour. It is important to note

that risk-taking behaviour includes a number of different

aspects, including delayed gratification, assessment of

positive and negative consequences of risk, impulse con-

trol, reward signalling. It is possible that risk-taking

behaviour assessed in a clinical mental health setting

could reflect a different aspect of these processes

compared with self-reported risk-taking behaviour. Risk-

taking behaviour assessed in a clinical mental health

Table 2 Genetic correlation between risk-taking and

traits relevant to psychiatric disorders

Phenotype rg SE p

ADHD 0.378 0.054 1.80 × 10−12

SCZ 0.265 0.040 4.54 × 10−11

BD 0.261 0.070 1.73 × 10−4

MDD 0.069 0.084 0.4120

PTSD 0.513 0.165 0.0018

Anxiety (case control) −0.090 0.132 0.4963

Anxiety (quantitative) −0.123 0.156 0.4289

Ever smoker 0.174 0.068 0.0102

Alcohol (heavy vs light) 0.249 0.234 0.2873

Alcohol (quantitative) 0.248 0.082 0.0026

Alcohol use disorder 0.221 0.306 0.4700

Lifetime cannabis use 0.406 0.107 1.00 × 10−4

Caudate volume 0.049 0.078 0.5268

Accumbens volumes 0.195 0.143 0.1710

Fluid intelligence −0.151 0.047 0.0013

Years of education −0.023 0.033 0.4873

BMI 0.102 0.034 0.0028

WHRadjBMI 0.087 0.047 0.0655

Bold indicates significant p values
MDD major depressive disorder, BD bipolar disorder; SCZ schizophrenia, ADHD
attention-deficit hyperactivity disorder, BMI body mass index, WHRadjBMI waist:
hip ratio adjusted for BMI. Alcohol dependence DSM-5 criteria: rg, regression
coefficient, se, standard error of the regression coefficient
p, p-value for the regression analysis
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setting might demonstrate significantly different associa-

tions with education, compared with self-reported risk-

taking behaviour. These observations underscore the

complexity between risk-taking and educational attain-

ment, and highlight differences between genetic and

phenotypic relationships. They may also be indicative of

selection bias within the UK Biobank cohort towards

more highly educated individuals.

Another key finding was genetic correlation between

self-reported risk taking and obesity. Although there are

likely to be a range of potential mechanisms linking risk-

taking behaviour with obesity, evidence of a shared

genetic component is in keeping with work that has

highlighted the importance of the central nervous system

in the regulation of obesity (BMI), particularly brain

regions involved in cognition, learning, and reward24. In

contrast, central fat accumulation (WHRadjBMI) is pri-

marily regulated by adipose tissue25, which fits with the

lower, nonsignificant genetic correlation between risk-

taking behaviour and this measure. Two SNPs

(rs13078807 and rs13078960) in the CADM2 locus have

previously been associated with BMI24,49,50, but while

these SNPs tag each other (LD r2= 0.99), the LD between

the risk-taking index SNP or possible secondary signal is

low (LD r2= 0.31 and 0.01 for rs13084531 and

rs62250716, respectively), suggesting that these are dis-

tinct signals.

It is perhaps unsurprising that we identified genetic

correlations between risk taking and smoking. Similarly,

risk taking and impulsive behaviour is a core feature of

ADHD and BD, suggesting substantial genetic overlap

between variants predisposing to risk-taking behaviour

and these disorders. The genetic correlation between risk

taking and SCZ is of interest because SCZ is commonly

comorbid with substance abuse disorders51. The correla-

tion between risk taking and PTSD is perhaps plausible if

we accept that risk takers may be more likely to find

themselves in high-risk situations with the potential to

cause psychological trauma. Overall, these correlations

suggest that studying dimensional traits such as risk-

taking has the potential to inform the biology of complex

psychiatric disorders.

Strengths and limitations

We acknowledge that Day et al. have previously repor-

ted an association for risk taking within the CADM2

locus. Strengths of our study include the use of a more

conservative and standardised methodology and reporting

of results across the entire genome. A risk-taking locus

was identified in the CADM2 locus and we have shown

that CADM2 may contain a second signal. Furthermore,

we have investigated the possibility of a sex-specific effect

of these loci, provided evidence highlighting possible

candidate genes at both loci and confirmed the

importance of this phenotype in relation to psychiatric

illness. In short, our report provides a fuller under-

standing of the genetic basis of risk-taking behaviour.

Despite this, we highlight some limitations. The risk-

taking phenotype used was a self-reported measure, based

on response to a single question, and is therefore open to

responder bias. It is also plausible that there are distinct

subtypes of risk-taking behaviour (for example disinhibi-

tion, sensation seeking, and calculated risks). Whether the

single question used in our analyses captures all, or only

some, of these is not clear. Having identified genetic loci

associated with other traits related to risk taking and other

problem behaviours (such as alcohol consumption and

cannabis use) provides added support for the validity of

this phenotype. It would be of interest to investigate

whether the loci identified here are also associated with

more quantitative and objective measures of risk taking;

however, such measures were not available in the UK

Biobank data set.

Conclusion
In summary, we have identified a polygenic basis for

self-reported risk-taking behaviour and the CADM2 locus,

which contains variants likely to play a role in predis-

position to this complex but important phenotype. The

identification of significant genetic correlations between

risk taking and several psychiatric disorders, as well as

with smoking and obesity, suggest that future work on

this trait may clarify mechanisms underlying several

common psychopathological and physical health condi-

tions, which are important for public health and well-

being.
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