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Abstract

Background: Intracellular Wolbachia bacteria are obligate, maternally-inherited, endosymbionts

found frequently in insects and other invertebrates. The success of Wolbachia can be attributed in

part to an ability to alter host reproduction via mechanisms including cytoplasmic incompatibility

(CI), parthenogenesis, feminization and male killing. Despite substantial scientific effort, the

molecular mechanisms underlying the Wolbachia/host interaction are unknown.

Results: Here, an in vitro Wolbachia infection was generated in the Drosophila S2 cell line, and

transcription profiles of infected and uninfected cells were compared by microarray. Differentially-

expressed patterns related to reproduction, immune response and heat stress response are

observed, including multiple genes that have been previously reported to be involved in the

Wolbachia/host interaction. Subsequent in vivo characterization of differentially-expressed products

in gonads demonstrates that Angiotensin Converting Enzyme (Ance) varies between Wolbachia

infected and uninfected flies and that the variation occurs in a sex-specific manner. Consistent with

expectations for the conserved CI mechanism, the observed Ance expression pattern is repeatable

in different Drosophila species and with different Wolbachia types. To examine Ance involvement in

the CI phenotype, compatible and incompatible crosses of Ance mutant flies were conducted.

Significant differences are observed in the egg hatch rate resulting from incompatible crosses,

providing support for additional experiments examining for an interaction of Ance with the CI

mechanism.

Conclusion: Wolbachia infection is shown to affect the expression of multiple host genes, including

Ance. Evidence for potential Ance involvement in the CI mechanism is described, including the prior

report of Ance in spermatid differentiation, Wolbachia-induced sex-specific effects on Ance

expression and an Ance mutation effect on CI levels. The results support the use of Wolbachia

infected cell cultures as an appropriate model for predicting in vivo host/Wolbachia interactions.
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Background
Maternally transmitted Wolbachia are alpha proteobacte-
ria that infect a wide range of invertebrates, including
nematodes, mites, spiders, and an estimated >20% of
insect species [1,2]. The ability of Wolbachia infections to
spread and persist within this broad range of hosts can be
attributed in part to its induction of multiple reproductive
abnormalities including cytoplasmic incompatibility
(CI), parthenogenesis, feminization and male killing. CI
is the most commonly reported phenotype and induces
developmental arrest of embryos resulting from matings
between females and males that are infected with different
Wolbachia types [3,4]. There is substantial interest in
defining the molecular basis of the Wolbachia/host inter-
action, including the mechanisms of Wolbachia intracellu-
lar maintenance within host cells and mechanisms by
which Wolbachia manipulate host reproduction [5,6]. In
addition to basic scientific interest, applied researchers are
also interested in Wolbachia as a potential tool for novel
applied strategies including population replacement and
suppression [7,8].

Similar to Rickettsia prowazekii, the Wolbachia genome con-
tains genes encoding components of the Type IV secretion
system (T4SS) [5,9], a pathogenic bacterial protein secre-
tary pathway known to secrete various effector molecules
affecting cell host physiology [10]. Presence of T4SS in
Wolbachia genome suggests a potential alteration of host
cell expression as a means of facilitating its intracellular
survival and dissemination, as observed for other intracel-
lular bacteria [11]. However, characterization of Wol-
bachia interaction in vivo is complicated by dynamic
infection levels that are affected by host genotype and
nutrition, variable tissue tropism, and Wolbachia expres-
sion patterns that differ with host age [12,13]. Thus, a sim-
plified model system, such as an in vitro Wolbachia
infection within a well characterized cell culture, could
potentially provide a useful tool for studying mechanisms
of the Wolbachia/host interaction.

Drosophila S2 cells are derived from embryonic phagocytic
cells [14] and previously have been demonstrated to serve
as a valid in vitro model for examining intracellular infec-
tions and as a system for gene expression studies using
microarrays and RNAi technology [15-19]. In addition to
characterizing cross talk between Wolbachia and host cells,
in vitro Wolbachia infections are also being used for screens
to identify novel drugs that impact obligate Wolbachia
infections within medically important filarial nematodes
[20-22]. The latter studies will benefit from validation of
the in vitro system as a predictor of in vivo events and from
an improved understanding of the Wolbachia/host interac-
tion in vitro.

Here, we used Wolbachia infected S2 cells as a model sys-
tem for studying the molecular mechanisms that deter-
mine the Wolbachia/host interaction. Initially,
microarrays were used to examine for differential expres-
sion between uninfected and Wolbachia infected S2 cell
cultures. To determine the utility of the S2 system as a pre-
dictor of in vivo differential expression, one differentially
expressed transcript (Angiotensin converting enzyme;
Ance) was subsequently examined in testes and ovaries of
D. simulans and D. melanogaster. Ance acts as a peptidyld-
ipeptidase or endopeptidase removing the C-terminal
peptide from its substrate and is required for sperma-
togenesis in Drosophila [23]. Quantitative Reverse Tran-
scriptase PCR (qRT-PCR) indicate that Ance is
differentially expressed in infected and uninfected flies,
consistent with results in the S2 in vitro system. Signifi-
cantly higher Ance expression is observed in Wolbachia-
infected ovaries relative to uninfected ovaries. In contrast,
lower expression is observed in infected testes relative to
uninfected testes.

Ance mutant flies were used to examine for potential
involvement of Ance in the CI phenotype. The Ance
mutant fly, designated l(2)34Eb2, was derived from EMS
mutagenesis. Since both homozygotes and hemizygotes
(34Eb2 and a deficiency) are male sterile [23,24], hetero-
zygotes were employed in crosses. Comparison of crosses
using Ance mutant flies and wild type flies revealed a sig-
nificant difference in the egg hatch rate, consistent with a
hypothesized interaction between Ance and the CI pheno-
type.

In addition to Ance, differential expression is observed
with multiple transcripts related to sexual reproduction,
immune response and heat stress response. The latter
include genes that have been previously reported to be
involved in the Wolbachia/host interaction. The results are
discussed as a validation of the in vitro model and as sup-
port for examining additional genes which have been
identified as variable between infected and uninfected
cells.

Results
Drosophila S2 cell line infection

Quantitative PCR was used to measure the relative infec-
tion level in the S2I cell line following an initial shell vial
introduction (Fig. 1). After the first Wolbachia introduc-
tion, the infection level in the cell line was about 105 times
lower than in the DSR adult female. Therefore, the shell
vial introduction was repeated sequentially as shown in
Figure 1. Following five sequential Wolbachia introduc-
tions, the resulting Wolbachia infection level was increased
5.6 fold in the S2I cell line. To generate the uninfected S2U

line, the S2I cell line was split and treated with tetracycline
(Fig. 1). For transcriptomic comparison, the S2U cell line
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was used instead of the naive S2 line due to concerns that
the genetic background of the S2 cell line might have been
altered during the repeated transfection procedure. To
avoid the potential complication caused by transcrip-
tional differences induced by the tetracycline treatment,
the microarray analysis was not conducted until six pas-
sages after antibiotic treatment. The absence of Wolbachia
infection in the S2U line was confirmed by PCR with wsp
primers (440F/691R) at passages 21 and 22 (Fig 1).

Differential in vitro expression

The Genechip contains 13,966 probe sets, of which 7,197
were found to be uninformative (signal was absent in all
eight replicates). The frequency of uninformative probes
is not unexpected considering the use of cells derived from
embryos (Genechip includes development stage and sex-
specific probe sets) and results of prior studies (use of the
same platform results in 4992 probe sets with signals
below the detectable threshold; [25]). Of the remaining
probes, 263 sets were different between S2I and S2U cells
(P < 0.05 and ≥ 1.2 fold change) (Fig. 2). A complete set
of microarray data results is available at Gene Expression
Omnibus [26].

To facilitate integration of the results with currently avail-
able information about the Wolbachia/Drosophila interac-
tion, transcripts are described relative to the biological
process using Gene Ontology (GO) analysis. Of the differ-
entially transcribed probe sets, fifty are categorized as
genes with unknown functions and are not discussed sub-
sequently. The remaining 213 probe sets are identified as
belonging to a particular biological process ontology,
with 73 down-regulated and 140 up-regulated. After all
the differentially expressed genes were enriched into GO
terms, the GO terms were ranked based on Z value. The
top five non-redundant Gene Ontology (GO) terms are
shown in Table 1. A complete set of GO data is available
in the support information (Additional File 1 and 2).

In vivo characterization of angiotensin converting enzyme 

(Ance)

Among the probe sets on the chip, 153728_at (Ance) is the
only gene that is differentially transcribed at the Bonfer-
roni corrected level (Fig. 2). Therefore, Ance was selected
for in vivo expression characterization. qRT-PCR was used
to assay Ance mRNA levels in D. simulans and D. mela-
nogaster ovaries and testis dissected from infected and
uninfected flies. As shown in Figure 3, the average Ance

Diagram illustrating the in vitro infection strategy, tetracycline clearing and microarray analysis of infected (S2I) and uninfected (S2U) cell linesFigure 1
Diagram illustrating the in vitro infection strategy, tetracycline clearing and microarray analysis of infected (S2I) and uninfected 
(S2U) cell lines. The line illustrates an estimated infection level based upon periodic qPCR assays (indicated by hollow circles). 
The number provides a relative measure, not the absolute number of Wolbachia. The "waves" in the left half of the graph 
resulted from removal of the infection by host and enrichment of infection by shell vial introduction. Arrows indicate shell vial 
introduction of Wolbachia infection. At passage 17 (marked with asterisk), the cell line was split and one subline was tetracy-
cline treated. At passage 23 (grey shading) the cell line was examined via microarray.
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expression is 2.1 fold higher in infected D. simulans ova-
ries relative to uninfected ovaries. In contrast, Ance expres-
sion was 1.5 fold lower in testes of Wolbachia infected D.
simulans flies relative to infected testes. Similar results are
observed with both the wild type (DMC) and the Ance
mutant D. melanogaster flies (Fig. 3).

To examine for an interaction of Ance and Wolbachia-
induced CI, crosses were conducted between wild type
and Ance-mutant D. melanogaster strains that were either
infected or uninfected. As shown in Table 2, no significant

difference in hatch rate was observed in comparisons of
the eight compatible cross types. In contrast, a compari-
son of the incompatible crosses revealed a higher egg
hatch rate in crosses of infected wild-type males mated
with uninfected Ance mutant females (40% hatch) relative
to other incompatible crosses (26–30% hatch).

Additional differentially-expressed transcripts

In addition to Ance, microarray analysis revealed nineteen
differentially transcribed probe sets representing genes
previously reported to be associated with reproduction
(Table 3). Among these, the majority function in the dif-
ferent process of oogenesis, including ovarian follicle cell
development, pole plasm assembly and nurse cell to
oocyte cell transport. l(2)gl, which has been recently
hypothesized as involved in the CI mechanism [6], is also
up-regulated. Enrichment and sorting of the differentially-
expressed probe sets into their corresponding GO term
with GeneFinder revealed "response to unfolded pro-
teins" to be the term most frequently down-regulated
(Table 1). From a total of 27 heat shock proteins in Dro-
sophila, eleven (41%) were lower in the Wolbachia infected
cell culture. Up-regulation was not observed in this cate-
gory (Fig. 4). "Antimicrobial humoral response" was iden-
tified as the most common up-regulated GO term
following enrichment and sorting (Table 1). As shown in
Figure 5, most of the genes in this GO term play a role in
the immune signaling pathway, including Toll and Imd.
Among these, two important regulatory proteins: Relish
(Rel) and Dorsal (Dl), belong to the NF-κB family, and
higher expression was observed in Wolbachia infected S2
cells. Five downstream antimicrobial peptides were also
up-regulated, including attacin (A, B, C and D) and dip-
tericin B (Fig. 5). In contrast, ird5 and peroxiredoxin 2540
were down-regulated.

Table 1: The top five non-redundant Gene Ontology (GO) terms in biological process which contain the most differentially expressed 

genes. Up or down, up- or down-regulation after infection, respectively; T, number of genes assigned to this the GO term; M, the 

subset of T genes that are represented on the microarray; C, the subset of M genes observed to vary in the analysis; Z, significance 

score

GO Term T M C Z

Up Antimicrobial humoral response (sensu Protostomia) 70 20 6 7.4

Negative regulation of cell proliferation 42 10 3 5.3

Ion homeostasis 40 10 3 5.3

Larvae development (sensu Insecta) 54 14 3 4.3

Dorsal appendage formation 39 15 3 4.1

Down Response to unfolded protein 50 15 6 12.6

Response to chemical stimulus 248 77 6 4.7

Tissue morphogenesis 78 16 2 3.7

RNA splicing 101 40 3 3.2

Positive regulation of transcription, DNA-dependent 102 34 2 2.2

Distribution of the relative expression of 6,769 genes in the infected S2I versus uninfected S2U cell linesFigure 2
Distribution of the relative expression of 6,769 genes in the 
infected S2I versus uninfected S2U cell lines. Genes with dif-
ferential expression are defined as those with P < 0.05 and a 
± 1.2 fold change.
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Discussion
A genome-wide analysis of the Wolbachia/host interaction
has been conducted in vitro using the Drosophila S2 cell
line. As a simplified model system, the results are likely to
under-represent in vivo events (Type II error), for reasons

including a relatively low Wolbachia infection level and
the reduced complexity of the embryonic cell environ-
ment in the S2 cell line. However, the use of a simplified
system is not an inappropriate approach given the dearth
of information currently available for the Wolbachia-host
interaction. An important motivation for subsequent in
vivo transcriptional assays was to address the concern that
the microarray results may represent an experimental arti-
fact. Specifically, in vivo characterization of Ance expres-
sion via qRT-PCR was used to examine the validity of the
in vitro system as a predictor of Ance in vivo expression. The
selection of Ance was based primarily upon the observed
level of differential expression and prior studies describ-
ing the potential involvement of Ance in spermatid differ-
entiation [23], suggesting a possible role for Wolbachia/
Ance interaction. Specifically, Wolbachia has been
observed to be associated with differentiating sperm [27],
providing a potential role of sperm modification in CI
[28,29].

The location of Ance mutation has been mapped to
34E3–5 on the second chromosome [24]. The recessive
lethality associate with the mutation due to the loss of
function could be rescued by expression of Ance in the P-
transformation assay and genetic complementation test
[24]. Homozygote Ance males are sterile. Their testes lack
individualized sperm and have very few actin-based indi-
vidualization complexes [23,50]. Therefore, premised
upon the described involvement of Ance in spermatid dif-
ferentiation, additional experiments were conducted to
examine a model in which Wolbachia modifies the sperm
via a pathway involving Ance expression. The latter exper-
iments included characterization of Ance mRNA levels in
testes and ovaries and examining egg hatch resulting from
CI crosses of Ance flies.

Table 2: CI Cross Assay Results

Expected CI Type Cross * Percent Egg Hatch † Egg Counted ANOVA**

Compatible DMCT × DMCT 68.6 ± 5.3%; 13 197 a

DMC × DMC 66.4 ± 2.1%; 38 595

AnceU × AnceU 73.8 ± 3.1%; 10 248

AnceW × AnceW 76.1 ± 3.4%; 10 184

AnceW × DMC 71.7 ± 1.9%; 61 1173

DMC × DMCT 66.7 ± 4.3%; 15 168

DMC × AnceW 66.9 ± 4.0%; 9 118

DMC × AnceU 61.5 ± 1.5%; 10 127

Incompatible DMCT × DMC 28.4 ± 1.8%; 39 440 b

DMCT × AnceW 30.4 ± 2.1%; 40 529 b

AnceU × DMC 40.1 ± 3.4%; 46 928 c

AnceU × AnceW 26.4 ± 1.4%; 30 795 b

*Female × Male
† Average ± Standard Error; Number of Crosses
** Hatch rate was subjected to arcsine transformation before performing ANOVA, P < 0.05

In vivo qRT-PCR assay of differential Ance expression in Wol-bachia infected and uninfected D simulans (DSR:DSRT), D. melanogaster wild type (DMC:DMCT) and D. melanogaster Ance mutant (AnceW:AnceU) fliesFigure 3
In vivo qRT-PCR assay of differential Ance expression in Wol-
bachia infected and uninfected D. simulans (DSR:DSRT), D. 
melanogaster wild type (DMC:DMCT) and D. melanogaster 
Ance mutant (AnceW:AnceU) flies. Wolbachia infection is 
consistently associated with higher Ance expression in ova-
ries and lower Ance expression in testes.
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The qRT-PCR assays demonstrate higher Ance expression
in infected ovaries relative to uninfected ovaries. The latter
observation is consistent with the higher Ance expression
that is observed in the Wolbachia infected S2 cell line,
which was derived from embryos. Future experiments
should address whether the observed differential Ance
expression originates within oocytes, maternally-derived
ovary tissues, or both. Wolbachia infection was also asso-
ciated with differential Ance expression in testes, but the
variation was the reverse of that observed in ovaries.
Lower Ance expression was observed in Wolbachia-
infected testes relative to testes from uninfected flies. A
similar pattern is observed in D. simulans and D. mela-

nogaster. It is useful to note that the results with uninfected
D. melanogaster are similar to prior reports in which higher
Ance expression is observed in testes relative to ovaries
(>1.6 fold increase in testes; [31,32]). However, the Wol-
bachia infection status in the prior reports is not known.

In crossing experiments, no significant differences are
observed in comparisons of the compatible crosses (Table
2). However, comparison of the hatch rate resulting from
the four incompatible cross types revealed a significantly
higher egg hatch rate in crosses of uninfected Ance females
and infected wild type males relative to the other incom-
patible crosses. It is important to note that only hetero-
zygous Ance flies could be used in this experiment.
Therefore, only dominant Ance effects would be observed.
Furthermore, the possibility cannot be excluded that addi-
tional other sub-lethal mutations are co-segregating with
the Ance mutation.

A model to describe the observed cross results would
require an interaction of Ance with both the rescue and
modification mechanisms [33]. Specifically, the Ance/CI
model requires that: the Ance mutation in uninfected
females results in partially offsetting the Wolbachia-
induced modification to sperm, such that a higher fre-
quency of modified sperm are able to escape developmen-
tal arrest, resulting in a greater number of viable larvae;
and a second Ance/CI interaction occurs in males, which
is the origin for the sperm modification. The Ance/CI
interaction in males negates the Ance/CI interaction in
females, such that the partial offset of CI is not apparent
in crosses between uninfected Ance females and infected
Ance males. Since the CI modification and rescue mecha-
nisms and the in vivo Ance substrate are currently
unknown [33], this precludes an ability to propose a spe-
cific mechanism to explain the above CI/Ance interaction
model. However, observations of Ance expression are not
inconsistent with the model proposed above. Specifically,
Ance expression differs between Wolbachia-infected and
uninfected Drosophila and that the observed variation in
expression occurs in opposite directions in female or male
flies. The results presented here support additional exper-
iments to test the Ance/CI interaction model.

We note that a broad range of egg hatch rates have been
previously reported in Drosophila crosses examining CI,
and the egg hatch reported here is at the lower end of the
reported range. Egg hatch can be affected by the experi-
mental conditions under which females are held, and the
hatch rates observed here are similar to a prior study in
which females were made to oviposit in isolation [34].

In addition to Ance, the microarray assay identifies multi-
ple genes that vary in expression level between infected
and uninfected cells. In the following text, these are

Regulation pattern of heat shock protein (Hsp) in Wolbachia infected S2 cellsFigure 4
Regulation pattern of heat shock protein (Hsp) in Wolbachia 
infected S2 cells. All heat shock proteins in Drosophila are 
shown. Down-regulation (green) occurs in 41% (11 of 27) of 
known Hsps. The fold change is shown for each gene.
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Induction of immune response to Wolbachia infection in S2 cellsFigure 5
Induction of immune response to Wolbachia infection in S2 cells. Activation of both Toll and Imd pathways result in up-regula-
tion of Dorsal and Relish, which might lead to a specific antimicrobial expression profile against Wolbachia. Negative cross talk 
between Imd and JNK pathway is also observed [48].
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grouped based upon their involvement in oogenesis/sex
determination, heat shock proteins, and genes involved in
immunity.

Wolbachia has been reported to affect host oogenesis [35].
Multiple differentially-expressed genes were observed that
have been previously shown to be involved in different
processes of oogenesis, a majority of which are related to
ovarian follicle cell development (Table 3). The latter is
not unexpected due to the critical role of oogenesis in the
maternal inheritance of Wolbachia and the somatic stem
cell tropism of Wolbachia in Drosophila [36]. Over-expres-
sion of l(2)gl and zipper have been previously shown to
mimic CI [6], leading a hypothesis that l(2)gl and zipper
play a role in the CI mechanism. Consistent with this
hypothesis, the results presented here show an up-regula-
tion of l(2)gl in the infected cell.

Additional variation was observed in sex lethal (Sxl),
which acts in Drosophila sex determination. Previously,
Wolbachia has been shown to suppress sterility in D. mel-
anogaster mutant females with protein-coding lesions in
Sxl [37]. The results of the prior studies suggested that
"Wolbachia does not bypass or reduce the requirement for
Sxl in the germline in a general way, nor increase overall
germline Sxl expression" [37]. Here, microarray data sug-
gests that Wolbachia down-regulates Sxl expression. An
additional component in the sex determination/sexual
behavior cascade is transformer 2 (Tra-2) [38]. Tra-2 is
suppressed (p < 0.05) in the infected cell line. However,
Tra-2 was not included in Tables 1 or 3 since the observed
1.15 fold reduction does not satisfy designated criteria of
a ± 1.2 fold change.

Multiple transcripts encoding proteins involved in heat-
shock were observed to be down regulated in Wolbachia-
infected S2 cells. A common function of heat shock pro-
teins (Hsp) is as molecular chaperones that act to reduce

inappropriate inter-protein interaction [39]. Prior studies
have shown an ability of heat-shock to abate CI, and dis-
tinct Hsp isoforms have been reported in comparisons of
infected and uninfected Drosophila [40]. Consistent with
the prior study, our results indicate a down-regulation of
Hsp in Wolbachia-infected cells. Thus, heat-shock may act
to negate the impact of reduced Hsp expression in Wol-
bachia-infected flies.

Wolbachia infection in S2 cells is associated with the
induction of antibacterial peptides. Prior studies observed
that Wolbachia did not alter the expression of defensin, dip-
tericin and cecropin in D. simulans or A. albopictus [41].
Consistent with the prior results, the microarray assays
reported here did not detect changes in the expression of
these three antimicrobial peptides. In contrast, Wolbachia-
infected cells show higher expression with multiple genes
involved in the Toll and Imd immune signaling pathways
(Fig. 5). Relish (Rel) and Dorsal (Dl) are regulatory pro-
teins in Drosophila that belong to the NF-κB family of tran-
scription factors and play an important role in innate
immunity [42]. Drosophila Rel is critical in Imd signaling
pathways and is transcriptionally up-regulated in
response to gram negative bacteria challenge [43]. An acti-
vation of the Toll and Imd immune pathways by gram-neg-
ative Wolbachia bacteria could be related to structurally
characterized peptidoglycans in Wolbachia [44] that bind
to the extracellular peptidoglycan recognition protein
(PRGP) and stimulate the Drosophila innate immune sign-
aling pathway [45].

An inhibition of additional expression products involved
in immunity is also observed in the microarray assay. The
expression of ird5, the Drosophila homolog of IKK, is
down-regulated. Prior studies show that the activation of
Relish requires ird5 [46] and that Escherichia coli survive
100 times better in ird5 mutant lines relative to wild-type
Drosophila [47]. Components in the JNK pathway, dJun

Table 3: Classification of differentially expressed genes related to sexual reproduction based on the Gene Ontology (GO) term.

Relative Expression Level*

GO term Up Down

Oogenesis Ovarian follicle cell development (sensu Insecta) spir mip130 puc ttk brn

Jra loco argos sty

Pole plasm assembly (sensu Insecta) osk spir enc

Nurse cell to oocyte cell transport (sensu Insecta) loco spin jagn

Oocyte dorsal/ventral axis determination spz enc

others gig sxl

Other Fertilization noi

Germ cell migration wun mod(mdg4)

Male gamete generation Ance

* Up or down regulated indicates higher or low expression in Wolbachia infected cells, respectively.
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and Puc, were also observed to be higher in infected cells.
Prior studies show negative cross talk between the JNK
and Imd signaling pathways [48]. Peroxiredoxin 2540
expression was also lower in infected cells. Inhibition of
superoxide production has been demonstrated to be
important to survival of Anaplasma phagocytophila, which
is another intracellular bacterium and close relative to
Wolbachia [11]. Together, the latter suggest an ability of
Wolbachia to evade the host immune responses.

Eighteen passages after the final shell vial transfection,
Wolbachia infection in S2I could not be detected by PCR
(Fig. 1). The disappearance of Wolbachia from the cell is
consistent with microarray data showing activation of the
host immune response. In previous studies, when Wol-
bachia was transferred by microinjection from D. simulans
to D. melanogaster, the latter showed lower densities of
Wolbachia than the naturally infected D. simulans and did
not express high levels of CI [49]. Future experiments
should examine the role of immune response in the estab-
lishment and maintenance of Wolbachia infection. For
example, RNAi technology may be used to interrupt spe-
cific immune pathways in S2 cells [19]. The latter cells
may then be examined for an ability to sustain Wolbachia
infection.

Conclusion
In summary, the results presented here show the S2 in vitro
system to be a useful tool for examining the Wolbachia/
host interactions that affect host range and CI phenotype
and for defining the host immune response to Wolbachia
infection and Wolbachia immune evasion mechanisms.
Differences observed in the S2 cell culture system are con-
sistent with prior studies examining the Wolbachia interac-
tion within insect hosts. The utility of the in vitro system is
further supported by results of the in vivo characterization
of Ance expression and CI phenotype assays. The results
provide support for the future examination of Ance, Hsp
and immune related genes in the Wolbachia/host interac-
tion. The microarray results also provide rationale for
examining additional gene products that have not yet
been assigned a function, but that are shown to vary
between infected and uninfected cells.

Methods
Drosophila strains and Crosses

Flies used in this study include Wolbachia-infected and
uninfected Drosophila simulans Riverside flies (DSR and
DSRT, respectively) and D. melanogaster Canton (DMC
and DMCT, respectively). To generate Wolbachia infected
Ance flies (named 'AnceW'), male D. melanogaster
('AnceU'; Wolbachia uninfected; genotype: ance [34Eb-2]
Adh [D] pr[1] cn[1]/CyO, Adh [nB]; Bloomington Stock
Center #3584) were mated with a Wolbachia-infected D.
melanogaster strain with the CyO balancer chromosome

(genotype: wg [Sp-1]/CyO; ry [506] Sb[1] P{ry [+t7.2] =
Delta2–3}99B/TM6; Bloomington Stock Center #2535).
Due to maternal inheritance, progeny from the above
cross are Wolbachia infected. Subsequently, the infected
Ance mutant line is maintained over the CyO balancer
background by selecting for flies with cinnabar eye color
and curly wing mutations. All flies were maintained at
25°C using standard Drosophila rearing conditions [50].

For the CI assay, one-day-old males were mated with
three-day-old females for 12 hours in an apple juice plate
container. Females were then isolated individually on a
yeast coated apple juice plate to collect eggs. CI was deter-
mined as the proportion of hatching eggs, as previous
reported [51]. Hatch rate was subjected to arcsine trans-
formation before performing ANOVA.

Establishment of Wolbachia infected (S2I) and uninfected 

(S2U) cell lines

Drosophila S2 cells were grown in Schneider's Drosophila
medium supplemented with 10% heat-inactivated fetal
bovine serum (Invitrogen). Cells were maintained as
described previously [52,53].Wolbachia infection in the S2
cell line was established using a previously described shell
vial technique [53]. In brief, DSR eggs were collected by
standard procedures [54], homogenized and introduced
into S2 cells. To increase the infection level, the shell vial
technique was repeated five times sequentially at an inter-
val of every third passage (Fig. 1). The resulting Wolbachia-
infected S2 cell line is subsequently referred to as S2I. The
uninfected S2U cell line was generated by dividing S2I at
passage 17 into two sub-lines and tetracycline-treating
one sub-line (10 μg/ml final concentration) [53] as dia-
grammed in Figure 1.

Microarray analysis

The S2I and S2U cell lines were each divided at passage 23
(Fig. 1) into four independent cultures. Each culture was
allowed to grow to confluency and then total RNA was
extracted from 5 × 106 Drosophila cells from each of the
four replicate preparations using the RNeasy Mini Kit
(Qiagen), following the manufacturers instructions. Eight
Affymetrix Drosophila genome chips (1.0) were used, with
four chips for each of the infected and uninfected treat-
ments. Synthesis of cRNA, labeling, hybridization, stain-
ing, washing and detection were performed according to
the GeneChip Expression Analysis Technical Manual
(Affymetrix). Image data was quantified using the gene-
chip analysis microarray suite 5.0 (MAS 5.0; Affymetrix).

If all eight replicates for a particular probe set were
assigned an "absent" value, the probe set was removed
from further consideration. The transcript level of the
remaining 6,769 probe sets were normalized (divided by
the corresponding chip median) and log transformed
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[55]. ANOVA was performed for each probe set in SAS
(SAS Institute, Cary, NC) [24]. A Bonferroni significance
level was used as an initial criterion for rejecting the null
hypothesis of a significant treatment effect (0.05/6769). A
second arbitrary nominal threshold of α < 0.05 was used
because the Bonferroni correction is overly conservative as
tests are correlated [56,57]. A FDR calculation for each p
was performed with QVALUE (V1.0) [58]. This threshold
(P = 0.05) corresponded to a false discovery rate (FDR) of
0.46. The change was calculated as the average of four rep-
licates. The following criteria were used to define the dif-
ferential expression caused by treatment: P value < 0.05
and ≥ 1.2 fold change.

Gene ontology analysis

MAPPFinder [59] was used to enrich, rank and classify the
differentially expressed genes based on Gene Ontology
(GO) [60] information of each gene. To visualize the dif-
ferential expression pattern, before Z value ranking, all
gene ontology terms were further filtered manually with
the criteria: the number of changed genes: >2; the number
of measured genes: >10; the percent of changed genes:
>5%; the percent of gene presented on the chip: >20%. If
the annotation for interested genes were missed in the
gene database of GenMapp, they were examined in
Affymetrix NetAffya analysis center [61]. The map for heat
shock protein (Hsp) was built by MAPPBuilder [59] based
on the information from GO and the Flybase[62]. The
map for Drosophila immune response pathway was built
by GeneMAPP based on the previous reports [63,64].

Quantitative PCR and quantitative RT-PCR

Quantitative PCR (qPCR) was performed to characterize
the relative Wolbachia infection level in the S2 cell lines
and flies. The protocol was similar to prior qPCR amplifi-
cation using the single-copy wsp and su(fk)C genes of bac-
terial and host origin, respectively [65]. S2 cells were
quantified using a hemocytometer to obtain 106 cells. The
S2 cells or DSR females were homogenized in 100 μl STE
with 0.4 mg/ml proteinase K to extract DNA as previously
described [66].

For qRT-PCR, RNA extractions were performed on groups
of 10 ovaries or 10 testes dissected from one-day post
eclosion infected and uninfected Drosophila adults using
the RNeasy Mini Kit (Qiagen). DNA contamination was
removed with RNase-Free DNase Set (Qiagen). RNA qual-
ity and quantity was checked with NanoDrop ND-100
spectrophotometer (NanoDrop Technologies, Inc.). Syn-
thesis of cDNA was performed with Superscript II Reverse
Transcriptase (Invitrogen) using specific primer for Ance
(AnceQ F 5'-CGGTCACGTTCGATTGGTTG-3' and AnceQ
R 5'-CTTCGGTTTCCACGTTGGTTC-3') and Actin gene
(ActinQ F 5'-GCTGACCGTATGCAAAAGG-3' and ActinQ
R 5'-GCTTGGAGATCCACATCTG-3'). Primers were

designed based upon D. simulans genbank sequences for
Ance and Actin (genbank accession number: NM_057696
and NM_079486, respectively]. qRT-PCR was performed
separately with the AnceQ F/R and ActinQ F/R primer
pairs using a Miniopticon system (BioRad) with a Plati-
num SYBR Green qPCR superMix (Invitrogen). qRT-PCR
reactions were conducted using a 2 minute step at 50°C,
2 minute step at 95°C and 40 cycles of 15 seconds at 95°C
and 30 seconds at 56°C. A fluorescence measurement was
made at the end of each cycle. A melting curve analysis
was performed at the end of the amplification program to
examine for primer-dimers or nonspecific amplification.
Assays were performed on two (D. simulans and D. mela-
nogaster wild type) or three (D. melanogaster Ance
mutants) independent experiment replicates for each sex
and infection type. As an examination for variability,
duplicate qRT-PCR reactions were performed for each set
of ovaries or testes with both the Ance and Actin primers.
Relative expression of Ance gene was calibrated against
Actin using the ΔΔCT calculation method [67] with:

ΔΔCT = (CT,Ance - CT,Actin)infected - (CT,Ance - CT,Actin)uninfected

For comparisons of males and females, the above was
modified as follows:

ΔΔCT = (CT,Ance - CT,Actin)male - (CT,Ance - CT,Actin)female

List of Abbreviations used
Ance, Angiotensin Converting Enzyme; CI, Cytoplasmic
Incompatibility; DMC, Drosophila melanogaster Canton;
DMCT, Drosophila melanogaster Canton Treated; DSR, Dro-
sophila simulans Riverside; DSRT, Drosophila simulans Riv-
erside Treated; GO, Gene Ontology; qRT-PCR,
Quantitative Reverse Transcriptase PCR; T4SS, Type IV
Secretion System.
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