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Abstract

Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/
progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown.
Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid
leukaemia (AML) using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate
regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus
motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2
expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in
leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of
leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML.
Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy
controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and
widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify
critical factors responsible for transcriptional reprogramming in human cancer.
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Introduction

Mutations in transcriptional and epigenetic regulators are a

recurring theme in acute leukaemias. These mutations arise in

haematopoietic stem/progenitor cells (HSPCs) and are thought to

promote leukaemia by deregulating transcriptional programs

controlling proliferation, differentiation and cell death [1,2]. In

about half of all acute leukaemia patients, specific chromosomal

translocations are found that lead either to the creation of aberrant

fusion-proteins with oncogenic potential or to the ectopic expression

of proto-oncogenes [3,4]. The majority of leukaemogenic translo-

cations in acute myeloid leukaemia (AML) affect genes involved in

transcriptional regulation or chromatin modification, thus high-

lighting the importance of deregulated transcriptional programs.

Mouse model systems using retroviral transduction of oncogenic

fusion proteins recapitulate many aspects of the human disease

and therefore represent valuable tools to dissect the molecular

mechanisms causing AML [5]. Mixed Lineage Leukaemia (MLL) and

Monocytic Leukaemia Zinc Finger (MOZ) fusion proteins have both

been shown to subvert HSPCs into AML leukaemia cells in

retroviral transplant mouse models [6,7,8]. Both proteins interact

with the cellular epigenetic machinery, conferring either histone

methyl transferase [9] or histone acetyl transferase activity [10].

MLL- and MOZ-fusion proteins are both thought to promote the

leukaemic phenotype at least in part by mediating ectopic

expression of abdominal HoxA-genes [11,12,13,14,15]. MLL

fusion proteins are considered potent oncogenes and MLL-ENL

causes leukaemia with relatively short latency in retroviral bone

marrow transplant models [6]. AML caused by MOZ-TIF2 is also

associated with a poor prognosis; however, the retroviral models

have a longer latency [7] suggesting some differences within the

mechanisms that drive transcriptional reprogramming.

Although, much has been learnt about the role of single

transcription factors in both normal haematopoiesis and leukae-

mogenesis [16,17], only the recent advent of array- and

sequencing-based high-throughput technologies has enabled

functional investigations on a genome-wide scale. For example,

binding sites have been mapped for the stem cell regulator Scl in

normal HSPCs [18] as well as the PML-RARA oncoprotein in

promyelocytic leukaemia cells [19]. However, to improve our

understanding of how specific leukaemogenic mutations corrupt

entire transcriptional programmes, genome-wide studies need to

PLoS ONE | www.plosone.org 1 January 2011 | Volume 6 | Issue 1 | e16330



be applied to developmental time-courses of leukaemogenesis. Of

note, retroviral transduction models generate leukaemias with

essentially identical immunophenotypes following initial transduc-

tion of either haematopoietic stem-cells (HSCs), common myeloid

progenitors (CMPs) or granulocytic/monocytic-restricted progen-

itors (GMPs) [6]. This suggests that genome-wide comparisons of

gene expression and ChIP-sequencing profiles between normal

HSPCs and leukaemic cells might provide novel hypotheses about

globally acting processes that underlie leukaemogenic transcrip-

tional reprogramming.

In this study, we used this approach to assess and compare

transcriptional reprogramming in two leukaemia progression

models, based on established MLL-ENL [6] and MOZ-TIF2

[7,20] AML mouse model systems. The experiments were

designed to allow us to answer the following questions: (i) To

what extent are leukaemia initiation programmes induced by

MLL-ENL and MOZ-TIF2 distinct? (ii) Is progression to frank

leukaemia for both oncogenes accompanied by convergence

towards a shared transcriptional program? (iii) What are the

advantages of combining profiling for gene-expression with ChIP-

Seq compared to gene-expression alone? (iv) Does histone

acetylation ChIP-Seq represent a useful tool to reliably identify

alterations in candidate regulatory regions associated with

transcriptional reprogramming at genome-wide scale? (v) Does

bioinformatic motif analysis of altered candidate regulatory

regions represent a potential avenue into identifying the regulatory

processes that underlie transcriptional reprogramming?

Results

Mouse model systems to study transcriptional
reprogramming during AML development
To study the genome-wide dynamics of leukaemogenic tran-

scriptional reprogramming, we used two established transplantable

AML mouse models based on retroviral transduction of normal

bone-marrow progenitor cells with MLL-ENL or MOZ-TIF2

fusion proteins, respectively. Both mouse models are characterized

by an initially longer latency, which is rapidly shortened following

re-transplantation of the resultant AML-cells into secondary and

tertiary recipients [6,7]. Importantly, primary transduced pre-

leukaemic cells can be cultured in vitro as interleukin 3 (IL3)

dependent cell lines. These in vitro cultured cells maintain the initial

long-latency when transplanted into irradiated recipients and thus

represent a surrogate model for the pre-leukaemic ‘‘initiation’’

phase of AML [7]. By contrast, frank leukaemic cells maintain their

short latency, even if exposed to periods of IL3-culturing prior to

transplantation [7] which allowed us to standardise sampling

conditions by overnight culture in IL3.

To serve as baseline comparators for our analysis of leukaemia

progression, we elected to sample two controls: (i) the lineage

negative/c-kit positive (lin-/kit+) compartment of wild-type bone-

marrow mononuclear cells (WT) representing the target cells

transduced by the leukaemogenic retroviruses [6], and (ii) the Factor-

Dependent Cells Patterson-Mix (FDCP-mix) cell-line, a non-transformed

IL3 dependent murine progenitor cell-line, capable of haematopoi-

etic multi-lineage differentiation and, importantly, lacking leukae-

mogenic potential [21]. We reasoned that use of the FDCP-mix cell-

line as an additional baseline control would allow us to correct for

expression changes associated with in vitro culture in IL3 used for

‘‘pre-leukaemic’’ and ‘‘leukaemic’’ cells. As summarized in

Figure 1A, transcriptional programmes were therefore monitored

at three different time points: at ‘baseline’ (for WT and FDCP-mix),

following ‘initiation’ (ME-I and MT-I) and after ‘progression to the

frank leukaemic state (ME-L and MT-L).

Pre-leukaemic MOZ-TIF2 gene-expression profiles cluster
with non-leukaemic, whereas MLL-ENL is more similar to
leukaemic samples
To monitor global expression changes during leukaemia

progression for both MLL-ENL and MOZ-TIF1, we performed

gene expression profiling for three biological replicates each of the

lin-/kit+ bone marrow (WT), FDCP-mix (FDCP), MLL-ENL

initiation (ME-I), MOZ-TIF2 initiation (MT-I), MLL-ENL pro-

gression (ME-L) and MOZ-TIF2 progression (MT-L) samples.

20,759 of the 45,281 probes present on the array were expressed in

at least one of our samples (Figure 1B). As expected, unsupervised

hierarchical clustering and Gene Expression Dynamics Inspector (GEDI)

maps of all expressed transcripts showed a clear separation of the

two baselines and the two leukaemia samples (Figure 1D).

Interestingly though, the gene-expression profile of MOZ-TIF2-

inititation (MT-I) was closer to the non-leukaemic baseline samples

WT and FDCP, whereas MLL-ENL-initiation (ME-I) was highly

similar to the leukaemic samples MLL-ENL-L (ME-L) and MOZ-

TIF2-L (MT-L). Further analysis of differential expression in six

relevant pair-wise comparisons (summarised in Table S1 in

Supporting Information S1) revealed more changes upon initiation

but less at progression in MLL-ENL, compared to MOZ-TIF2

(Figure 1C), consistent with the differential clustering of the two pre-

leukaemic samples.

To validate in silico the biological significance of the leukaemic

clustering of ME-I, ME-L and MT-L, we performed Gene Set

Enrichment Analysis (GSEA), based on a comparison with the two

baselines (WT and FDCP-mix). Significant enrichments (FDR

,10%) were found for curated gene-sets known to be associated

with leukaemogenesis, such as up-regulated in HoxA9 and MLL-

fusions or modified by Retinoid Acid Receptor Alpha (RARA) [22,23,24]

(Figure S1 A,B and C in Supporting Information S1). Taken

together, comprehensive gene-expression profiling analysis implies

that leukaemogenic transcriptional reprogramming occurs faster

with MLL-ENL than MOZ-TIF2. Moreover, while the transcrip-

tional status of the ‘initiation’ phase is distinct for the two different

oncogenes, leukaemic progression of MOZ-TIF2 samples results in

a transcriptional profile much closer to the MLL-ENL samples.

Transcriptional downregulation is a common feature of
MLL-ENL and MOZ-TIF2 leukaemia models
Both fusion-proteins MLL-ENL and MOZ-TIF2 are thought to

induce leukaemogenic transformation at least in part by activating

abdominalHoxA-cluster genes. However, delayed acquisition of a full

leukaemic expression profile seen with MOZ-TIF2 suggests that

additional down-stream effectors/collaborators are required and

occur early or late with the MLL-ENL and MOZ-TIF2 oncogenes,

respectively. Of note, simultaneous availability of timecourse datasets

for both MLL-ENL and MOZ-TIF2 provided an opportunity to

identify some of these putative effectors by intersecting the dif-

ferentially expressed genes of the ‘‘baseline’’/‘‘initiation’’ compari-

son for MLL-ENL with the ‘‘initiation’’/‘‘progression’’ comparison

for MOZ-TIF2. This allowed us to identify 49 upregulated and 111

downregulated probes (corresponding to 40 and 88 genes), which

represent to a novel candidate gene set associated with development

of full leukaemia in these two AML mouse models (Figures S3, S4

and Table S2 in Supporting Information S1).

Common downregulation in the ME-I, ME-L and MT-L

samples was also readily observed in the GEDI maps (see

arrowheads in Figure 1D). 17 out of 23 genes in the repressed

GEDI region overlapped with the shared repressed gene-set derived

from the analysis of differentially expressed genes, thus underlining

the consistency of our results using two independent bioinformatic

Global Transcriptional Reprogramming in AML
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Figure 1. Gene-expression dynamics during MLL-ENL and MOZ-TIF2 mediated reprogramming. A). Diagram outlining how samples
collected for expression profiling and ChIP-sequencing constitute a leukaemia progression model. B) Flow chart of gene-expression analysis. 20,759
of the 45,281 probes represented on the array (45.8%) were found to be expressed in at least one sample (detection p-value .0.01). Differential
expression analysis was performed for six representative pair-wise comparisons, as summarized in Table S1 in Supporting Information S1. Non-
redundant, differentially expressed probes (nr-de) were determined as outlined in Figure S2 in Supporting Information S1: 857 probes for MLL-ENL
(ME-nr-de probes) and 2,608 for MOZ-TIF2 (MT-nr-de probes) corresponded to 3,075 non-redundant probes differentially expressed in at least one of
the transitions (all-nr-de probes). C) Bar-charts of differentially expressed probes in six relevant pair-wise comparisons. Y-axis shows the total number
of differentially expressed probes, as outlined in Table S1 in Supporting Information S1, for the ‘‘Initiation’’ (WT/FDCP vs ME-I/MT-I) and the
‘‘Progression’’ to overt leukaemia (ME-I/MT-I vs ME-L/MT-L). D) Unsupervised hierarchical clustering (UHC) correlates with Gene Expression Dynamics
Inspector (GEDI) maps. All 20,759 expressed probes were clustered, as shown in the dendrogram on the top of the figure, and dynamic expression
changes visualized with GEDI maps. Mean expression values of probes with similar dynamic patterns are condensed by self organizing maps in
expressed (red) and repressed (blue) tiles and proximity of adjacent tiles indicates similar dynamics [60]. UHC and GEDI identified a ‘non-leukaemic’
cluster, containing the WT, FDCP and MT-I samples, and a ‘leukaemic’ cluster, comprising the ME-I, ME-L and the MT-L samples. A group of co-
ordinately downregulated probes seen in the ME-I, ME-L and MT-L samples is indicated by white arrowheads.
doi:10.1371/journal.pone.0016330.g001
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approaches. The commonly activated and repressed probes, as well

as probes derived from the shared repressed GEDI region are

displayed in clustered heat-maps (Figure S4 in Supporting

Information S1) and listed as 40, 88 and 23 unique genes,

respectively (Table S2 in Supporting Information S1). Interestingly,

key haematopoietic transcription factors such as Gata2, Gfi1b and

Zfpm1/Fog, were found in this commonly repressed gene-set. In

summary, global analysis provided evidence that transcriptional

downregulation is a common feature associated with full leukaemic

transition in both AML mouse models.

Dynamic transcriptional regulation of hematopoietic
stem/progenitor cell transcription factors during
leukaemogenic progression
Our finding of downregulated expression of Gata2, Gfi1b and

Zfpm1/Fog during leukaemic progression prompted us to

investigate in more detail transcription factor gene expression

patterns to identify candidate regulators of leukaemogenic

transcriptional reprogramming. 121 genes functionally annotated

as DNA-binding transcription factors were differentially expressed

in comparisons involving MLL-ENL and/or MOZ-TIF2 time

courses. These included several HoxA genes as well as 19

transcription factors known to function as regulators of HSPCs

[25]. Unsupervised hierarchical clustering using these 19 genes

generated the same partition observed above into ‘non-leukaemic’

and ‘leukaemic’ clusters with HSPC-TFs subdivided into gene-

clusters of repression and activation (Figure 2A). The repression

cluster could be further separated into genes repressed in both

MLL-ENL and MOZ-TIF2 after progression to frank leukaemia

(Klf1, Gata2, Gfi1b, Zfpm1/Fog), repression in MOZ-TIF2 only

(Cebpe, Fli1), repression in MLL-ENL only (Tal1, Eto2, Runx1)

and more variable patterns (Cebpa, Ets1, Meis1, Pbx1). The

cluster of activation (Lmo2, Ets2, Klf2, Gfi1, Lyl1, Sfpi1/Pu.1)

showed fairly homogenous activation separating the WT/FDCP/

MT-I from the ME-I/ME-L/MT-L samples.

Having generated genome-wide histone acetylation datasets by

ChIP-Seq in parallel to our gene-expression profiles, we next

investigated whether alterations in steady state mRNA levels were

accompanied by corresponding changes in levels of histone

acetylation. As we and others have previously reported, cell-type

specific regulatory regions can be identified by differential

enrichment of H3K9ac [26,27]. Activation of the abdominal

HoxA-cluster genes is known to contribute to the leukaemogenic

phenotype in our AML models. Increased expression of HoxA

genes was paralleled by increased H3K9ac marks as shown in

Figure 2B. Beyond the specific example of the HoxA locus,

dynamic changes of histone acetylation closely followed the

dynamics of transcriptional changes (see Figures S5, S6 and S7

in Supporting Information S1 for example plots of HSPC-TF loci).

Changing levels of acetylation marks were not only seen in

promoter-regions but also observed at known and potentially new

distal cis-regulatory elements, as exemplified for Gata2 and Klf2 in

Figure 2C and 2D. Taken together, we hypothesize that

leukaemogenic progression in MLL-ENL and MOZ-TIF2 AML

models is associated with altered expression of HSPC-TFs which,

in turn, is accompanied by corresponding changes in H3K9ac

profiles at their candidate regulatory regions.

Over-representation of consensus binding motifs for
differentially expressed HSPC transcription factors within
the most variable H3K9ac candidate regulatory regions
We next asked whether global motif content analysis of dif-

ferentially acetylated regions would allow us to draw conclusions

about which transcription factors might be relevant for genome-

wide transcriptional reprogramming. To this end, peaks of enriched

H3K9ac were identified for all 12 ChIP-Seq samples (2 biological

replicates for each of our samples) resulting in a total number of

128,354 candidate regulatory regions that were identified in at least

one sample. This is in line with the approximately 100,000 regions

of open chromatin thought to be characteristic for mammalian cell

types [28]. We next determined the relative number of CHIP-Seq

reads for each of these 128,354 regions in each sample, which

demonstrated high reproducibility of biological replicates (see

Figure 3A). By contrast, when comparing samples corresponding

to different stages such as baseline and leukaemia initiation stages

(FDCP v. ME-I), substantial numbers of peaks showed altered levels

of histone acetylation (Figure 3B).

To identify those regions with statistically significant changes of

histone acetylation that parallel our gene expression analysis, we

partitioned the ChIP-Seq peak datasets into WT, FDCP and MT-

I on the one hand and ME-I, ME-L and MT-L on the other hand,

in line with the major partition identified by clustering analysis of

gene expression profiles. Peak-regions with significant changes in

H3K9ac were determined by high-dimensional T-test analysis,

defining the most variable candidate regulatory regions. Of note,

many more peaks showed reduced levels of histone acetylation

than an increase (Fig 3C) consistent with the predominance of

downregulation observed in the gene expression profiling analysis.

To identify transcription factors that may be involved in this

global reorganization of chromatin, we next explored the

distribution of consensus binding motifs for differentially expressed

HSPC-TFs across the most variable H3K9ac peak-regions (see

Material and Methods). We focused this analysis on motifs for

Gata2 and Gfi1/Lyl1/Sfpi1 which were down- and up-regulated

respectively across the major partition (WT/FDCP/MT-I v ME-

I/ME-l/MT-L) and also included motifs for Cebpa and Meis1 as

controls because expression of those two factors did not correlate

with this partition (Figure 3D). When we determined the expected

and observed motif-occurrences for these six factors within

differentially acetylated regions defined above, consensus sites for

the two controls Cebpa and Meis1 occurred in expected

frequencies. By contrast, motifs for all differentially expressed

factors except Lyl1 showed highly significant over and/or under-

representation (Figure 3E). Of particular interest, the consensus

motifs for Gata2 and Sfpi1/Pu.1 were significantly over-/under-

represented respectively in regions with reduced histone acetyla-

tion, which was completely consistent with the sharp downregu-

lation of Gata2 and upregulation Sfpi1/Pu.1 expression at this

transition. Taken together, the distribution of consensus binding

motifs within candidate regulatory regions with significant changes

of histone acetylation revealed that differentially expressed HSPC

TFs such as Gata2 and Sfpi1/Pu.1 may play a role in

transcriptional reprogramming.

Gata2 over-expression inhibits expansion of MLL-ENL
transduced cells
Integrated analysis of gene-expression and ChIP-Seq profiling

datasets suggested a role for Gata2 downregulation during the

development of AML in our mouse model system. To identify a

potential functional role for Gata2 downregulation, we re-

expressed Gata2 in MLL-ENL transduced cells. Expression

vectors with IRES-dependent GFP-expression were used to

monitor the proportion of GFP-positive cells in competitive

proliferation assays performed in liquid and semi-solid conditions.

We compared the effect of the empty vector Mscv-PIG (PIG) with

full length Gata2 (Gata2) and a Gata2 deletion mutant (DGata2)

(see Figure S8A in Supporting Information S1), which only

Global Transcriptional Reprogramming in AML
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Figure 2. Dynamic changes of HSPC transcription factors during MLL-ENL and MOZ-TIF2 induced reprogramming. A) Hierarchical
clustering of 19 dynamically expressed HSPC transcription factors. For comparison, dynamic expression changes of 5 abdominal HoxA-cluster genes
are depicted as a heatmap at the bottom of the figure but were not included for the clustering analysis. Clusters of repression and activation could be
distinguished and are separated by a horizontal dotted red line. B) Dynamic changes of histone H3K9 acetylation (H3K9ac) at the HoxA-cluster gene-
locus. ChIP-Seq traces are displayed on the UCSC genome browser for one representative biological replicate of the six conditions under
investigation (WT, FDCP, MT-I, MT-L, ME-I, ME-L). C) Dynamic changes of H3K9ac at the Gata2 gene-locus. Down-regulation of Gata2 expression is

Global Transcriptional Reprogramming in AML
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contains the 294 N-terminal amino-acids and thus lacks the two

zinc-fingers required for DNA-binding (see Figure S8B in

Supporting Information S1). Both constructs produced the

expected RNA and protein products see Figure S8C, D and E

in Supporting Information S1).

In liquid-culture, GFP-positive cells over-expressing Gata2

demonstrated a competitive disadvantage by comparison with

the GFP-negative cell fraction and showed highly reduced growth-

kinetics when compared with cells transduced with the empty

vector and the DGata2 constructs (Figures 4A and B). In

paralleled by reduced acetylation marks. D) Dynamic changes of H3K9ac at the Klf2 gene-locus. Up-regulation of Klf2 expression is paralleled by
increased acetylation marks.
doi:10.1371/journal.pone.0016330.g002

Figure 3. Over-representation of consensus binding motifs from differentially expressed HSPC transcription factors within most
variable H3K9ac candidate regulatory regions. A) Kernel Density Estimation Plots (heat-maps) of relative H3K9ac peak-scores from biological
replicates used for analysis of leukaemogenic progression in MLL-ENL. Peak scores are depicted as colour-coded heat-maps for the two FDCP
biological replicates. Most datapoints lie on a diagonal suggesting good correlation between biological replicates. B) Heat-maps of relative H3K9ac
peak-scores for the FDCP/ME-I ‘Initiation’ comparison as well as depiction of ‘‘stable’’ and ‘‘variable’’ regions (T-test: p#0.05). Variable regions were
clearly divided into enriched (above 45u axis) and deprived (below 45u axis) regions. C) Summary of dynamically changing H3K9ac candidate
regulatory regions for the wt/FDCP/MT-I v. ME-I/ME-L/MT-L comparison. D) Expression profile for selected HSPC TFs across the wt/FDCP/MT-I v. ME-I/
ME-L/MT-L comparison (derived from Fig. 2A). E) Observed and expected frequencies of 6 consensus-motifs in most variable H3K9ac candidate
regulatory regions from C). Significantly increased and reduced peak-regions were used for the detection of differentially distributed motifs using
bootstrap analysis with 1000 sets of background sequences (see methods). Significant under/over-representation was defined by a Z-score of#23 or
$+3 (indicated by a *).
doi:10.1371/journal.pone.0016330.g003
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Figure 4. Gata2 over-expression interferes with cell-cycling and is incompatible with sustained proliferation of MLL-ENL
transduced cells. A) Fraction of GFP-positive cells monitored in a competitive proliferation assay performed in liquid culture over a time-course of 9
days. ME-I cells were transduced with pMSCV-Pgk-Puro-IRES-GFP (PIG), pMSCV-Gata2-Pgk-Puro-IRES-GFP (Gata2) and pMSCV-DGata2-Pgk-Puro-IRES-GFP
(DGata2). Vector constructs are outlined in Figure S9A and B in Supporting Information S1. X-axis depicts days after transduction, y-axis the GFP-
positive cell-fraction (% of total viable cells). GFP-positive and GFP-negative cells of each sample were analysed together without prior FACS-sorting.
Results from two independent experiments (mean 6 SD) are shown. Subsequent analysis (Figure 4D) was performed 36 hours after transduction
(indicated by the dotted line). B) Growth curves show that Gata2 overexpression is incompatible with sustained proliferation of ME-I cells. X-axis
depicts days after transduction, y-axis the total GFP-positive cell-number (in millions) determined from the GFP-positive fraction and the total number

Global Transcriptional Reprogramming in AML
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concordance with this result, Gata2 over-expressing cells displayed

a near complete failure of colony formation in semi-solid

conditions, whereas the number of GFP positive and negative

colonies was comparable for the negative controls (Figure 4C and

E). To investigate the proliferation defect mediated by Gata2 in

more detail, we performed cell-cycle and apoptosis analysis

36 hours after transduction. By analyzing GFP-positive and

GFP-negative cells from the same sample in parallel, we were

able to perform comparative analysis both within and across

different samples. Consistent with the proliferation assays, Gata2

over-expressing samples showed an increase of cells in G0/G1-

and a corresponding decrease in S/G2/M-phase, compared to the

internal and external controls (Figure 4D). Importantly, 293T cells

showed no obvious differences in growth or appearance when

transfected with the same Gata2 expression or the two control

constructs (PIG and DGata2). We have therefore no reasons to

assume that high-level expression of Gata2 is non-specifically toxic

to transduced cells. Moreover, we did not observe any significant

effect on apoptosis by AnnexinV staining and no increase of

quiescence by Ki67-staining 36 hours after infection of MLL-ENL

cells (see Figure S9 in Supporting Information S1). In summary,

over-expression of Gata2 is incompatible with sustained prolifer-

ation of MLL-ENL transduced cells consistent with a model

whereby downregulation of Gata2 plays a role during the early

stages of leukaemogenic reprogramming.

Downregulation of GATA2 in human AML
Any potential involvement of GATA2 downregulation in the

development of haematological disorders remains as yet unclear

[29,30]. However, when we analysed published gene-expression

datasets, two collections of 285 and 33 AML patients showed

higher levels of GATA2 gene-expression in CD34+ cells from

healthy controls compared with AML blast cells [31,32]

(Figure 4F). Similar levels of GATA2 were found in all subtypes

of AML and analysis of two additional datasets [33,34]

demonstrated that AML with minimal differentiation (FAB

AML-M0) showed the lowest levels of GATA2 (Figure 4G). This

latter observation suggests that while GATA2 expression is

downregulated during normal myeloid differentiation, low GATA2

expression in AML cells is unlikely to be simply related those

myeloid differentiation steps that can still occur in leukaemic cells

as it already occurs in the phenotypically most immature AML

samples. Publicly available gene-expression datasets therefore

corroborate a potential role for GATA2 downregulation in the

development of human AML.

Discussion

New genome-wide experimental approaches are widely reported

as the ‘next generation’ of technologies that will revolutionise our

understanding of cancers such as acute leukaemia. However, this

goal is substantially complicated by the fact that acute leukaemias

are caused by heterogeneous genetic and epigenetic events, which

can occur at multiple levels during the dynamic progression from a

premalignant state to frank leukaemia. For example, while genome-

wide mapping of MLL-AF4 binding events identified stem cell

regulators as prevalent target genes [35], little is known about the

dynamic nature of global transcriptional reprogramming required

for initiation and subsequent progression to the full leukaemic

phenotype. Importantly, a focus on transcriptional reprogramming

has the potential to identify shared aspects of transcriptional

dysregulation and thus reduce the complexity and heterogeneity of

diverse oncogenic events to a small number of specific pathways for

exploration as novel disease classifiers and/or potential drug targets.

Studying the initiation or early progression of diseases such as

AML is not feasible in human patients. However, mouse models of

AML not only represent a valuable model for end-stage disease

but also possess several qualities that make them amenable for

studying disease initiation and progression. Firstly, the time point

of the primary hit responsible for initiation of the disease can be

strictly controlled and subsequent changes monitored. Secondly,

monitoring changes within AML progression models has the

potential advantage to identify new effectors/collaborators, which

usually remain undetectable by approaches focussing only on frank

leukaemia. Thirdly, different AML mouse model systems are

available, which rely on transduction of distinct oncogenes with

varying latency periods, and hence provide a suitable platform to

identify shared pathways of general relevance for leukaemogenesis.

Mouse models therefore represent powerful tools to study

mechanisms of leukaemogenesis. Nevertheless, molecular targets

identified in mouse model systems need to be further validated in

human cells and xenotransplantation models to demonstrate

potential clinical applicability [36].

In this study, we specifically focussed on two broadly accepted

AML mouse models based on transplantation of stem/progenitor

cells retrovirally transduced with the oncogenic fusion-proteins MLL-

ENL and MOZ-TIF2, respectively [6,7,20]. The cell of origin for

leukaemic transformation is still a matter of ongoing debate. Our

selection of lin-/kit+ as control sample is in line with current evidence

where transduction of either self-renewing HSC or short-lived CMP

or GMP generated leukaemic cells with a similar immunophenotype

[6]. All three of these starting populations are highly enriched in our

of viable cells. Results from two independent experiments (mean 6 SD) are shown. C) Representative pictures of colony-formation in a competitive
proliferation assay performed in semi-solid culture. ME-I cells were transduced with PIG, Gata2 and DGata2 and 104 cells transferred to
methylcellulose after 36 hours. Images were taken after 4 days under bright-field (BF) and with GFP fluorescent light (GFP) and merged with 10x
magnifications (except section III, which was taken at 20x magnification). D) Cell-cycle analysis of GFP-positive and GFP-negative cells 36 hours after
transduction. The upper panel depicts a representative cell-cycle plot of GFP-positive and GFP-negative ME-I cells after transduction with PIG, Gata2
and DGata2. Note that GFP-positive and GFP-negative cells of each sample were analysed together without prior FACS-sorting, providing an internal
control for gating and settings of the instrument. X-axis shows PI fluorescence intensities, y-axis % of maximal counts. The lower panel depicts % of
total counts in sub-G0/G1 (sub), G0/G1, S and G2/M-phase as determined by the cell-cycle plot for GFP-positive and GFP-negative cells. Results from
two independent experiments (mean 6 SD) demonstrated statistically significant alterations for the Gata2 transduced cells (sub, p = 0.97; G0/G1,
p = 0.033; S, p = 0.068; G2M, p = 0.041; two-tailed t-test). E) Bar-chart of numbers of GFP-positive and GFP-negative colonies from C). Results from two
independent experiments (mean 6 SD) are shown. F) Comparison of GATA2 expression from published human AML microarray datasets performed
with Oncomine (http://www.oncomine.org) [62]. Boxes display median expression values and contain data from the 25th to 75th percentiles with the
bars representing the 10th and 90th percentiles respectively. Y-axis show log2 median centered ratios. The Valk et al dataset (GEO accession number:
GSE1159) [31] shown on the left shows relatively high GATA2 expression in CD34+ control cells when compared with bone marrow samples from 285
AML-patients (probe H00625, note that 10th percentile of the CD34 samples is higher than the 90th percentile of the AML samples, thus indicating a
significant difference in expression levels). The Heuser et al dataset (GEO accession number: GSE4137) [32] on the right similarly shows significantly
higher levels of GATA2 in CD34+ cells from two healthy controls compared to blood and bone marrow samples from 33 AML-patients prior induction
chemotherapy. G) Oncomine analysis of three independent gene expression datasets (GEO accession numbers: GSE1729, GSE425, GSE1159)
[31,33,34] demonstrates that GATA2 expression levels are not higher in AML subtypes characterised by minimal differentiation (FAB AML-M0).
doi:10.1371/journal.pone.0016330.g004
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lin-/kit+ control population. Moreover, expression analysis of HSPC

TFs (such as HoxA9, Tal1, Scl, Lmo2) and myelomonocytic markers

(such as GM-Csfr, M-Csfr and G-Csfr) paralleled those described by

Cozzio et al [6] (see Figure S10 in Supporting Information S1). This

observation underlines the similarity of our model system with

previously published results and further validates the suitability of the

lin-/c-kit+ control population.

We and others have previously reported that promoters and

regulatory elements are enriched for H3K9ac marks [26,27].

Distinct histone marks, sometimes combined with DNA binding

proteins, have been used to identify potential regulatory regions

[37,38]. However, as long as regulatory elements are incompletely

identified and characterized, there is no single epigenetic mark ‘of

choice’ that can be considered the most appropriate to highlight

regulatory regions [39,40]. In both AML models, we observed

upregulation of abdominal HoxA-gene expression as expected.

Moreover, this was paralleled by substantially increased levels of

histone acetylation and therefore validated our experimental

approach of using regions of altered histone acetylation to

interrogate transcriptional control mechanisms that may underlie

leukaemia development. However, downstream effectors and/or

or parallel contributors other than a deregulated Hox-program are

required for leukaemia development [11,41]. The integrated

genome-wide approach used here provided a potential strategy to

identify some of these additional transcriptional events. Inference

of transcriptional control mechanisms from microarray expression

profiling data alone has been attempted in the past using

bioinformatic tools that typically search promoter regions or

collections of evolutionarily conserved sequence blocks for

overrepresented sequence motifs. When we examined our list of

differentially expressed genes using two of the most widely used

tools for this type of in silico analysis, oPOSSUM [42] only identified

the binding site for one of the 19 factors shown in Figure 3A (i.e.

Cebpa) and Webmotifs [43] failed to identify any significant motifs

at all (see Figure S11 in Supporting Information S1). By contrast,

our direct measurements of differential levels of histone acetylation

allowed us to select an experimentally informed set of candidate

regulatory regions that showed differential distribution of the

binding sites for 3 of the 4 differentially expressed factors including

the binding site for Gata2, the potential relevance of which we

went on to validate experimentally. Consistent with arguments put

forward in a recent review [40], integrated genomic approaches,

such as expression and ChIP-Seq profiling used here, provide a

much less arbitrary way to select regions for sequence motif

analysis than pure in silico approaches and should therefore be

widely applicable to study transcriptional dysregulation in disease.

In all current AML models, leukaemic cells display a somewhat

more mature surface marker phenotype compared with the cells

originally transduced, suggesting that expression changes alone

can not be taken as evidence for functional significance but need to

be followed up with specific experimentation. Integrated expres-

sion and ChIP-Seq profiling implicated downregulation of Gata2

as an important step during MLL-ENL and MOZ-TIF2 driven

leukaemogenesis. Gata2 is a major regulator of haematopoietic

stem cells during ontogeny [44] and a key component of wider

HSC regulatory networks [45,46,47]. High expression levels of

Gata2 are found in HSPC and down-regulation is required during

normal haematopoietic differentiation [48]. Interestingly, enforced

expression of Gata2 blocks normal haematopoiesis [49] and

induces quiescence in HSCs [50]. Gata2 therefore represents a

major regulator of HSPC homeostasis. Our finding that down-

regulation of Gata2 is a common feature for two AMLmouse model

systems suggests that abrogation of a Gata2-dependent transcrip-

tional program may contribute to leukaemogenic transformation

which is supported further by low GATA2 expression found in

large-scale human AML datasets. Acute lymphoid leukaemia

patient samples show overlapping, yet on average even lower levels

of GATA2 than AML (data not shown) suggesting that the

incompatibility of high GATA2 expression with leukaemia

development may extend beyond AML. Additionally, two

GATA-2 mutations (D341–346 and L359V), affecting the second

zinc-finger domain (see Figure S8B in Supporting Information S1)

and conferring either reduced or increased transcriptional activity,

respectively, have recently been described in patients progressing

from chronic to acute myeloid leukaemia.[51]. These findings are in

line with our conclusion that deregulated Gata2 expression is

involved in leukaemogenic progression, although, the exact

mechanisms remain still to be elucidated. Of note, high-level

ectopic expression of Gata2 in the murine myeloid cell line 416B did

not inhibit proliferation, but instead allowed the derivation of clonal

cell lines with a propensity for megakaryocytic differentiation [52],

thus suggesting that Gata2-mediated inhibition of proliferation is

context dependent. Importantly, our observation that MLL-ENL

transduced cells remain susceptible to Gata2 mediated induction of

cell-cycle arrest reveals a potential Achilles heel that could be

characteristic for MLL-ENL leukaemic cells and that warrants

further investigation.

Taken together, gene-expression and ChIP-Seq profiling

coupled with bioinformatic analysis and functional validation

allowed us to identify a potentially important, yet previously

unknown regulatory process, that operates during transcriptional

reprogramming in two mouse models of AML. Our results suggest

that down-regulation of Gata2 may contribute to leukaemogenic

transformation and that reactivation of Gata2 could be a novel

treatment strategy in patients with acute leukaemias. Moreover,

further analysis of the transcriptional repression program associ-

ated with the leukaemic phenotype may provide new mechanistic

insights into the efficacy of de-repressive epigenetic therapies such

as inhibition of histone deacetylases and DNA-methyltransferases

[53,54]. Finally, the integrated genome-wide approach employed

in this study should be readily adaptable to study transcrip-

tional reprogramming in other leukaemias as well as many solid

tumours.

Materials and Methods

Ethics statement
All animal experiments were performed under strict adherence

to UK home office regulations, licensed by the UK home office

under Project Licence PPL80/1900 and approved by the local

Cambridge University Licence Review Committee (LRC).

Cell samples
Wild-type bone marrow cells from Bl/6 mice were lineage

depleted following red blood cell lysis and purified using Fluorescent

Activated Cell Sorting (FACS) after staining with c-kit. The Factor-

Dependent Cells Patterson-Mix (FDCP-mix) were cultured as originally

described [21]. Previously described plasmids for MLL-ENL and

MOZ-TIF2 fusions with Neomycin selection marker or GFP were

used for in vitro replating experiments and in vivo transplantation

experiments [7,14,55]. Retroviral transduction of murine bone

marrow cells, serial replating and transplantation assays were

performed as previously described [7,14]. Factor-dependent cells

capable of sustained growth in liquid medium supplemented with

recombinant IL3 were generated by serial replating. ‘Leukaemic’

sample material was GFP-positive splenocytes collected from

secondary recipient mice upon frank leukaemia development.
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Gene-expression and ChIP sequencing
Biotin-labelled cRNA from three biological replicates was

generated from 250 ng of total RNA, hybridized onto Mou-

seWG-6 version 2 Expression Bead Chips (Illumina, San Diego,

CA) and data processed with the lumi Bioconductor package [56]

including variance-stabilizing transformation and quantile nor-

malization [57]. The human/mouse probesets for analysing

GATA2 gene expression were H00625 and ILMN_2612283

respectively. Two biological replicates per condition were used for

ChIP-Sequencing (ChIP-Seq) as previously described [18][58]

using polyclonal rabbit anti-acetyl histone H3K9 (Upstate).

Unique sequencing reads were mapped to the reference genome

build mm8 (February 2006), extended strand-specifically to

200 bp and displayed as density-plots using the UCSC genome-

browser.

Bioinformatic analysis
Gene expression data were deposited at the NCBI Gene

Expression Omnibus (accession number GSE25539). Differentially

expressed transcripts were determined using the limma Bioconductor

package at a False Discovery Rate (FDR) of #0.001 [59].

Unsupervised hierarchical clustering was performed using the

GenePattern platform (genepattern.broad.mit.edu) by applying

complete-linkage with Euclidian distances for samples and Pearson

correlations for probes. Gene Expression Dynamics Inspector (GEDI)

was used to visualize expression dynamics[60], Gene Set Enrichment

Analysis (GSEA) to identify enrichment for curated gene-sets (www.

broadinstitute.org/gsea/) [61] and Oncomine (www.oncomine.org)

to analyse Gata2 expression in leukaemia datasets [62].

ChIP-Seq peaks were identified using Findpeaks 3.1 at FDR

#0.05 [63] and used to define 400 bp-regions centered around the

highest point of significant peaks. Non-redundant regions were

scored by counting all 200 bp-extended reads within the region

and normalized to the total number of sequence-reads of the

corresponding sample. Significant changes of histone acetylation

between pair-wise comparisons of different conditions were

identified with the Cyber-T-test R-module by using all biological

replicates [64] and graphically displayed in kernel density

estimation plots. Significance thresholds were set at p,0.05 for

the most variable regions, which were further subdivided into

enriched and deprived regions. Motif analysis was performed using

TFBSsearch [65] with consensus motifs derived from the UniP-

robe and Jaspar databases. Expected frequencies were obtained by

applying a standard boot-strapping procedure (1000 random

samples) from the total number of peak-regions, providing a

random distribution of expected occurrences for each consensus-

motif for subsequent Z-score analysis.

Re-transduction of pre-leukaemic cells and competitive
proliferation assays in liquid or semi-solid culture
Full length Gata2 cDNA (MSCV-Gata2) and a 39-deletion

(MSCV-DGata2; 294 N-terminal amino-acids) were inserted into

pMSCV-Pgk-Puro-IRES-GFP (MSCV-PIG). Ecotropic viral super-

natants were produced and MLL-ENL pre-leukaemic cells

retransduced as previously described [7]. Competitive prolifera-

tion assays in liquid culture were performed by monitoring the

GFP-positive cell-fraction of the re-transduced MLL-ENL cells by

FACS-analysis over a 9-day time-course. Semi-solid assays were

performed by seeding 16104 retransduced MLL-ENL cells in

Methocult GF M3434 (StemCell Technologies) 36 hours after

infection. GFP-positive and negative colonies were counted after

four days with a Zeiss inverted 200M fluorescent microscope (Carls

Zeiss Ltd, Hertfordshire, UK), representative pictures taken with a

Hamamatsu Orca ER camera (Hamamatsu Photonics Ltd, Hertford-

shire, UK) and images processed with Improvision Openlab software

5.5.0 (Perkin Elmer, Waltham, Massachusetts).

Cell-Cycle and morphological analysis, AnnexinV and
Ki-67 staining
Cell cycle analysis and AnnexinV staining were performed as

previously described [66] and without prior sorting. FACS-analysis

was run in parallel for the GFP- positive and -negative cells and data

visualized by FlowJo (Tree Star Inc., Ashland, OR). Ki-67 staining

was performed 36 hours after infection on sorted, GFP-positive and -

negative cells following the manufacturers’ instructions (BD, 556026).

Supporting Information

Supporting Information S1 Supporting materials for the

manuscript "Genome-wide Analysis of Transcriptional Repro-

gramming in Mouse Models of Acute Myeloid Leukaemia" by

Bonadies et al, including the following: Supporting Figures S1 to

S11 and Supporting Tables S1 and S2.

(PDF)
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