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ORIGINAL ARTICLE

Genome-wide analysis reveals the ancient and recent
admixture history of East African Shorthorn Zebu from
Western Kenya

MN Mbole-Kariuki1, T Sonstegard2, A Orth3, SM Thumbi4, BMdeC Bronsvoort5, H Kiara3, P Toye3,
I Conradie6, A Jennings5, K Coetzer6, MEJ Woolhouse4, O Hanotte1 and M Tapio7

The Kenyan East African zebu cattle are valuable and widely used genetic resources. Previous studies using microsatellite loci

revealed the complex history of these populations with the presence of taurine and zebu genetic backgrounds. Here, we

estimate at genome-wide level the genetic composition and population structure of the East African Shorthorn Zebu (EASZ) of

western Kenya. A total of 548 EASZ from 20 sub-locations were genotyped using the Illumina BovineSNP50 v. 1 beadchip.

STRUCTURE analysis reveals admixture with Asian zebu, African and European taurine cattle. The EASZ were separated into

three categories: substantial (X12.5%), moderate (1.56%oXo12.5%) and non-introgressed (p1.56%) according to the

European taurine genetic proportion. The non-European taurine introgressed animals (n¼425) show an unfluctuating zebu and

taurine ancestry of 0.84±0.009 s.d. and 0.16±0.009 s.d., respectively, with significant differences in African taurine (AT)

and Asian zebu backgrounds across chromosomes (Po0.0001). In contrast, no such differences are observed for the European

taurine ancestry (P¼0.1357). Excluding European introgressed animals, low and nonsignificant genetic differentiation and

isolation by distance are observed among sub-locations (Fst¼0.0033, P¼0.09; r¼0.155, P¼0.07). Following a short

population expansion, a major reduction in effective population size (Ne) is observed from approximately 240 years ago to

present time. Our results support ancient zebu�AT admixture in the EASZ population, subsequently shaped by selection and/or

genetic drift, followed by a more recent exotic European cattle introgression.

Heredity advance online publication, 16 April 2014; doi:10.1038/hdy.2014.31

INTRODUCTION

The East African cattle group is a valuable genetic resource with a

complex origin. The first African cattle were of taurine type Bos taurus

(Gifford-Gonzalez and Hanotte, 2011). According to latest mitochon-

drial DNA results they originated from the geographic center of cattle

domestication in the Near East and separated from the other taurine

types approximately 7000 years ago (Bonfiglio et al., 2012). These

taurine cattle entered Africa through its North-Eastern part via

present day Egypt (Epstein, 1971; Blench and MacDonald, 2000;

Gifford-Gonzalez and Hanotte, 2011). Zebu cattle (Bos indicus)

originated in the Indian subcontinent and migrated into Africa more

recently (Gifford-Gonzalez and Hanotte, 2011). The earliest undis-

puted evidences of zebu cattle dated from the first mid-millennium

AD (Gifford-Gonzalez and Hanotte, 2011). They may have subse-

quently penetrated Africa in two waves (Hanotte et al., 2002), with

the second wave possibly facilitated by the rinderpest epidemic

(Blench, 1993; Paynes and Hodges, 1997). Contemporary cattle from

the eastern part of Africa are predominantly phenotypically classified

as zebu (Rege and Tawah, 1999; DAGRIS, 2007). As to whether or

not the African aurochs B. primigenius africanus (now extinct)

contributed to the genetic stock of African domestic cattle remains

unknown (Gifford-Gonzalez and Hanotte, 2011).

Currently, Africa is home to over 150 recognized cattle breeds that

comprise of a mosaic of zebu, taurine and crossbreeds (indicine and

taurine), the latter sometimes referred to as sanga (Rege and Tawah,

1999). In Kenya, owing to the effect of tribal boundaries and

socioeconomic cultures, different strains of the East African Shorthorn

Zebu (EASZ) are recognized (Rege, 1999). These include the Kavir-

ondo zebu reared by the Luo and Luhya communities, and the Teso

zebu reared by the Teso community who mainly inhabit western Kenya

(DAGRIS, 2007). Genetic studies carried out using microsatellite

markers (Rege et al., 2001) show that Kenyan zebu populations are

zebu–taurine hybrids with a major zebu genetic component. Further

studies with Y-chromosomal markers (Hanotte et al., 2000) and

mitochondrial DNA markers (Bradley et al., 1996) are in agreement

with a male-mediated zebu introgression of the taurine animals.
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In more recent times, a wave of ‘exotic’ taurine cattle introductions

has set off following governmental and international livestock

development agendas aimed at improving livestock productivity

(Hanotte et al., 2002). These cattle are of European taurine genetic

backgrounds and include breeds such as Holstein–Friesian and Jersey

as reported in Kenya (Weir et al., 2009) and Ethiopia (Haile et al.,

2011). The rapidly changing socioeconomic and cultural environment

of rural farming is favoring these introductions. This shift of focus is

to a perceived economically beneficial animal as opposed to an

ecologically fit one, leading to active breed replacement or cross-

breeding programs within Eastern Africa, particularly in the highlands

and peri-urban areas (Bebe et al., 2003).

Today, indigenous zebu cattle are the commonest cattle type across

most parts of Eastern Africa (Rege and Tawah, 1999). Their wide

distribution is a possible consequence of their environmental adaptive

traits not found in exotic taurine breeds. These include resistance or

tolerance to tropical diseases and their vectors (Latif et al., 1991a, b;

Mattioli et al., 1993; Lawrence et al., 1996; Wambura et al., 1998;

Hanotte et al., 2003), survival on poor quality forages/pastures

(Bonsma, 1973; Turner, 1980) and thermal stress tolerance

(Carvalho et al., 1995; Hammond et al., 1996; Gaughan et al., 1999;

Hansen, 2004). In addition, African zebu cattle are still a reliable

source of draught power (Rege et al., 2001).

African taurine (AT) are on the verge of extinction in East Africa

(Rege, 1999), but their environmental genetic adaptation (for

example, infectious disease tolerance) may have survived in East

African zebu and their crossbreeds. However, despite being well

adapted to the harsh tropical environment, African zebu and taurine

cattle remain poor producers in comparison with exotic breeds raised

in the temperate environments (Rege et al., 2001). A medium to long-

term solution for sustainable improvement of productivity in the

tropics may be to combine ecologically adaptive zebu traits and

economically important exotic cattle traits in crossbreed animals.

The recent availability of genome-wide scan tools are offering new

opportunities for genetic characterization (Gautier et al., 2009, 2010;

McTavish et al., 2013), genome-wide association studies (Van Tassell

et al., 2008; Matukumalli et al., 2009; Settles et al., 2009; Pant et al.,

2010), the detection of signatures of selection for productivity

(Barendse et al., 2009) and genomic evaluation (Wiggans et al., 2008,

2010) of cattle populations. Most of these studies have been carried out

predominantly on European dairy and beef cattle breeds (The Bovine

HapMap Consortium, 2009; Melka and Schenkel, 2012) with the

exception of Gautier et al. (2009) and Gautier and Naves (2011) who

worked on West African and Caribbean Creole cattle, respectively.

In this study, we characterize at genome-wide level the genetic

diversity and architecture of 548 EASZ, an indigenous cattle popula-

tion from Kenya. We present evidences for ancient zebu� taurine

admixture, population bottleneck and expansion as well as the

presence of recent and ongoing exotic taurine introgression. No

significant genetic differentiation in non-European introgressed ani-

mals is observed across the studied sites. Moreover, our study further

provides insight in the usefulness and limitations of low-density single-

nucleotide polymorphisms (SNPs) chips toward understanding the

genomic architecture and history of indigenous African tropical cattle.

MATERIALS AND METHODS
Study cohort and sampling site
A total of 548 calves were sampled from 20 different randomly selected sub-

locations that traverse four distinct ecological zones in Western and Nyanza

provinces of Kenya (Supplementary Figure S1). Upon recruitment, blood

samples were drawn from the jugular vein using a 10ml sterile syringe. Five ml

of blood was mixed in sodium EDTA tubes in a 1:1 ratio with ‘magic buffer’

(which acted as an anti-coagulant, anti-fungus, anti-bacterial and

preservative—Biogen Diagnostica, Villaviciosa De Odon, Spain). The tubes

were labeled with their respective bar-coded tags before being stored at 4 1C at

the International Livestock Research Institute—ILRI (Nairobi, Kenya) biobank.

DNA was extracted using the Nucleon Genomic DNA extraction kit (Tepnel

Life Sciences, Manchester, UK).

Genotyping and quality control
The Illumina BovineSNP50 v. 1 beadchip (Illumina Inc., San Diego, CA, USA)

includes 56 947 SNPs comprising 54 436 autosomal SNPs, 1341X chromosome

SNPs and 1170 unmapped SNPs (the mapping of the genomic positions was

done using the University of Maryland genome assembly v 3.0; www.cbcb.um-

d.edu/research/bos_taurus_assembly.shtml). Genotyping of the 548 calves was

carried out at the USDA-ARS bovine functional (Beltsville, MD, USA) and

GeneSeek (http://www.neogen.com/geneseek/) laboratories. An additional 158

reference animals representing two European taurine breeds (Holstein n¼ 64

and Jersey n¼ 28), one AT breed (N’dama n¼ 25), one Asian zebu breed

(Nelore n¼ 21) and one East African admixed breed (Sheko n¼ 20, Ethiopia)

breeds were drawn from the Bovine HapMap Consortium (2009).

Quality control was carried out using GenABEL program (Aulchenko et al.,

2007) in R (R Development Core Team, 2009). The check.marker function was

used to prune individual calves that failed to pass the inclusion criterion of

successful genotypes per calf of 490% and an average identical by state

threshold of 490% (excluding both animals).

Only mapped autosomal SNPs (n¼ 54 436) were screened. Autosomal SNPs

with call rates of o90% were excluded. Unless stated, no minor allele

frequency threshold (to avoid exclusion of SNPs that maybe informative in

a single breed or population) and Hardy and Weinberg Equilibrium (as

introgression may result in loci not in Hardy and Weinberg equilibrium)

criteria, were applied. A total of 6151 SNPs failed the inclusion criterion,

leaving a total 48 285 SNP for analysis. A random subset of 45 000 SNPs was

used for STRUCTURE, principal component analysis, genetic relatedness and

genetic differentiation analyses. No random sampling of SNPs was performed

for linkage disequilibrium (LD) and effective population size calculations.

Genotyping data has been deposited in Dryad (Murray et al., 2013a).

Admixture analysis
The extent of admixture and the origin of the different genetic proportions

were investigated, using a Bayesian clustering method implemented in the

STRUCTURE program (Pritchard et al., 2000, 2007). Five independent

replicates of an admixed model with independent allele frequencies were run

for a burn-in period of 50 000 iterations and 100 000 Markov Chain Monte

Carlo steps for K¼ 1 to K¼ 7. The mean output files from CLUster Matching

and Permutation Program—CLUMPP v 1.1.2 (Jackobsson and Rosenberg,

2007) were used as input files to graphically display the population structure

barplots using the barplot function in R (R Development Core Team, 2009).

The population structure analyses using 45K markers were run on three calf

sample sets: (i) full study population (n¼ 548) and reference breeds (n¼ 158)

totaling 706 animals (data set 1), (ii) non-European introgressed calves

(n¼ 425) and reference breeds (n¼ 158) giving a total of 583 animals (data

set 2) and (iii) non-European introgressed calves (n¼ 425) (data set 3). The

Ward clustering method (Ward, 1963) using the hclust function in R

(R Development Core Team, 2009) was used to identity discontinuities in

the distribution of the European taurine ancestry within data set 1. Multiple

methods were used to evaluate the optimal number of genome backgrounds

within the study population (Falush et al., 2003; Evanno et al., 2005; Pritchard

et al., 2007).

Principal component analysis
Principal component analyses were applied on the full study population and

reference breeds (data set 1) and the non-European introgressed calves (data

set 3) using adegenet v 1.3.1 (Jombart, 2008) to read the data files into R and

ade4 genetic package to calculate the principal components and eigenvalues

(Dray and Dufour, 2007). Both packages are found in R (R Development Core

Team, 2009).
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Genetic relatedness and genetic differentiation
Global and pairwise Fst statistics were calculated using the R-based hierfstat

0.04–6 package (Goudet, 2005). The assessment of the influence of physical

geographic distance on genetic distance between calf pairs within and between

the sub-locations (data set 3) was tested with the Mantel test. The analysis

was carried out with adegenet v 1.3.1 (Jombart, 2008) genetic package in R

(R Development Core Team, 2009). The geographic coordinates were

converted to kilometers using conversion units based on the World Geodetic

System 1984 (WGS84) spheroid. The functions dist and mantel.randtest were

used to calculate the pairwise geographic distances and the Mantel test statistic,

respectively. The pairwise rescaled Fst estimates (Fst/(1�Fst) were used for the

estimation of genetic differentiation between sub-locations in relation to

geographic distance (Rousset, 1997).

LD and effective population size in pure EASZ
Pairwise LD, measured as squared correlation coefficient r2 (Hill and

Robertson, 1968), was calculated in GenABEL (Aulchenko et al., 2007) for

the non-introgressed European calves (data set 3). The decrease of LD as a

function of distance between markers was evaluated for pairs up to 4Mb apart

using markers with minor allele frequency above 0.01. The expected value was

predicted with Loess local regression of second degree using the 5% of the data

closest to the estimation point in the local regression as implemented in R

(R Development Core Team, 2009). For estimating the effective population

size, 11 bins (o0.1, 0.1–0.2, 0.2–0.3, 0.3–0.5, 0.5–1.0, 1.0–1.5, 1.5–2.0, 2.0–2.5,

2.5–3.0, 3.0–3.5 and 43.5Mb) were used, and the mean for each bin used to

obtain the expected r2.

Estimation of the ancestral effective population size was calculated using the

Weir and Hill (1980) adjusted formula, E (r2)¼ [1/(1þ 4Nec)]þ (1/n). Where

E (r2) is the expected LD, Ne is the effective population size, c is the

recombination frequency, n is the chromosome size or twice the sample size,

c was calculated using the Haldane’s mapping function (Haldane, 1919), with

the average marker distance between adjacent SNPs expressed in Morgans,

assuming 1Mb¼ 1 cM (de Roos et al., 2008). The estimate for a bin relates to

the Ne for the generation t¼ 1/2c (Hayes et al., 2003) counted backwards from

the genotyped generation. A generation length of 6 years was assumed

(Mahadevan, 1955).

Performance and ascertainment bias of the Illumina BovineSNP50
v.1 beadchip in Kenyan EASZ
To assess the Illumina BovineSNP50 v.1 beadchip performance as a tool of

estimating zebu and taurine admixture proportions. STRUCTURE analyses at

K¼ 3 were performed using data sets of randomly selected sets of SNPs

(n¼ 5000, 10 000, 15 000, 25 000, 35 000 and 45000) drawn from the cleaned

data set of 48 285 markers. These particular analyses were run using the

moderate and substantial calf categories consisting of 123 calves and 158

animals representing the five reference breeds (total number 281). Ancestral

genome proportions were generated from the STRUCTURE runs and used in

the subsequent linear correlation analyses carried out between markers sets in

R (R Development Core Team, 2009).

RESULTS

Out of 48 285 autosomal SNPs remaining in the data set following

quality control, 11 269 markers were monomorphic across the EASZ

population. The mean observed heterozygozity (Ho) within EASZ

calves (n¼ 548) and reference breeds are indicated in Table 1.

EASZ population shows an average Ho of 0.25±0.02 s.d. with no

significant differences across sub-locations (P40.001).

STRUCTURE runs from K¼ 2 to K¼ 5 using 45000 random SNPs

are presented in Figure 1. Applying the Evanno et al. (2005) method

suggests K¼ 2 as the optimal partition (Supplementary Figure S2),

which is the uppermost relevant hierarchy reflecting the taurine and

indicine cattle split. A clear but less drastic improvement in the fit of

the model is visible by increasing K to 3, revealing previously

documented findings that highlight a further taurine split to African

and European taurines (The Bovine HapMap Consortium, 2009).

The increase from 3 to 4 genetic clusters is minimal and does not lead

to a new individual breed cluster. However, a notable improvement is

observed when increasing K to 5, revealing a finer resolution

separating the two European taurine breeds (Supplementary Figure

S2). Above K¼ 5, the increase in goodness of fit with larger K values

are only incremental, suggesting that they do not reveal significant

phylogenetic structure (Falush et al., 2003, Prichard et al., 2007).

STRUCTURE results of K¼ 3 are in agreement with prior

information about the main genetic architecture of the cattle on the

African continent being of three different ancestries using micro-

satellite loci; Asian zebu B. indicus, AT B. taurus and European taurine

B. taurus (Hanotte et al., 2002; The Bovine HapMap Consortium,

2009). Of interest, a subset of the EASZ calves has European taurine

ancestry, while the other East African cattle breed studied, the Sheko,

shows no European taurine introgression (Supplementary Table S1).

In addition, at K¼ 3, the Jersey breed presents a shared genetic

background (mean ancestral proportion �0.12, Supplementary Table

S1) with the N’dama breed. However, this is not observed at K¼ 5

(Figure 1). Possible AT membership is also observed in some

Holstein–Friesian animals up to a proportion of 0.10–0.11 (n¼ 3)

(Supplementary Table S1). Principal component analysis on the same

data set shows that PC1, explaining 65% of the variation, separates

the indicine and taurine breeds; whereas PC2, explaining 14% of the

variation, separates the AT breed (represented here by the N’dama of

West Africa) from the European breeds (Figure 2). For K¼ 4, the

proportion of European taurine in EASZ remains the same, but not

the inferred ancestral proportion of zebu and AT background

(Figure 1). In addition, there is hardly any genetic background shared

between the EASZ and the West African cattle (N’dama). However, a

substantial proportion of the EASZ genome remains shared with the

Nelore (Asian zebu). The largest proportion of genome ancestry

present in EASZ is now nearly unique to the EASZ and Sheko with

only traces of it found within the Nelore (Figure 1). K¼ 5 divides the

inferred European ancestry between the two European breeds (Jersey

and Holstein–Friesian) (Figure 1).

Using the Ward clustering method (Ward, 1963), we further

analyzed the proportion of European taurine background in the

EASZ (Figure 3a) based on the K¼ 3 model. Based on three observed

clusters, we defined three categories of calves: calves with X12.5%

European taurine background (category 1 representing animals with

‘substantial’ European introgression n¼ 29), calves with between 1.56

and 12.5% European taurine introgression (category 2 representing

the ‘moderate’ European taurine introgressed sample set n¼ 94) and

calves with p1.56% European taurine background (category 3

representing the ‘non-European’ introgressed sample set n¼ 425).

The 123 introgressed calves, representing the moderate and substan-

tial categories, are found within 12 sub-locations in the northern and

central regions of the study area (Supplementary Table S1). A

geospatial analysis of the substantial category reveals two main

hotspots of European taurine introgression (Figure 3b), whereas the

Table 1 Heterozygozity estimates of EASZ and four reference breeds

Breed Observed heterozygozity (Ho)

EASZ 0.25±0.02 s.d.

Holstein–Friesian 0.33±0.01 s.d.

Jersey 0.25±0.03 s.d.

N’dama 0.17±0.08 s.d.

Ethiopian Sheko 0.26±0.003 s.d.

Abbreviation: EASZ, East African Shorthorn Zebu.
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moderate category shows a north to south decrease of European

taurine introgression (r¼ 0.82, Po0.0001; Figure 3b).

STRUCTURE analysis (K¼ 3) of data set 2 reveals a homogenous

admixed EASZ population (Supplementary Figure S3) with average

genetic proportions of 0.84±0.009 s.d. and 0.16±0.009 s.d. of AT

and Asian zebu ancestries, respectively. Significant genome-wide

difference of AT or zebu ancestry across calves (Po0.0001) was also

observed.

Interestingly, the chromosome-wise analyses reveal that some of the

‘non-introgressed’ calves (Supplementary Figure S4a) have moderate

proportion of European taurine ancestry on a small subset of

chromosomes, similarly within the Sheko population. There are

highly significant differences (Po0.0001, Supplementary Figure S4b

and Supplementary Table S2) among chromosomes in the amount of

AT ancestry in both introgressed and non-introgressed EASZ calves.

However, for the same genetic ancestry (AT) in the Sheko population,

no significant differences were observed (P40.05; Supplementary

Table S2). For the European taurine and Asian zebu ancestries, highly

significant differences between chromosomes are observed in the non-

introgressed calves’ cohort unlike in the Sheko population (P40.05;

Supplementary Table S2), as illustrated in Supplementary Figures S4a

and c, respectively. Differences among calves are highly significant for

European taurine ancestry in both introgressed and non-introgressed

calves, as well as for Asian zebu ancestry in introgressed calves

(Supplementary Figures S4a and c). In contrast, there are no

differences in the AT ancestry among all the calves’ cohorts and

Sheko population (Supplementary Figure S4b).

Strong positive correlations for the AT and Asian zebu ancestry

between EASZ and Sheko are observed across chromosomes (r¼ 0.89,

Po0.0001 and r¼ 0.94, Po0.0001). Considering only EASZ calves

with moderate and substantial European taurine introgression, no

significant difference is observed in European taurine ancestry

proportion across chromosomes (P¼ 0.136).

Data set 3 allows addressing the possible presence of sub-structur-

ing within the non-European taurine introgressed EASZ population.

PC1 and PC2 explain 4% and 3% of the percentage of the total

Figure 1 STRUCTURE bar plots of genetic membership proportions (K¼2 to K¼5). Each animal is represented by a vertical line divided into K colors.

Breed names and locations are indicated at the top and bottom of the bar plots, respectively.
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variance, respectively (Supplementary Figure S5a). Three genetic

clusters are observed of which the largest includes 415 calves, while

the second and third clusters include 4 and 6 calves from Bukati and

Luanda sub-locations, respectively (Supplementary Figure S5a). This

result is further illustrated with the STRUCTURE results (K¼ 3),

which distinguishes the same calves (Supplementary Figure S5b).

No genetic differentiation is observed between sub-locations

(Fst¼ 0.0033, P¼ 0.09) after removing the moderate and substantial

European introgressed calves. Mantel test between pairwise sub-

locations genetic differentiation (calculated as (Fst/(1�Fst)) and

geographic distances was not significant (r¼ 0.155, P¼ 0.07) for the

pure calves category (Supplementary Figure S6).

The extent of LD over genome regions is related to effective

population size. In the pure EASZ population, the LD decreased

quickly (Supplementary Figure S7). The expected value was estimated

with Loess curve based on a total of 2 368 859 comparisons between

markers. At the minimum distance, the expected r2 is 0.32. It

decreases to 0.2 at 55.4 kb, to 0.1 at 200.3 kb and to 0.05 at

486.0 kb distance. LD begins to asymptote at the background level

of r2¼ 0.013 around 2MB. The LD results were used to estimate the

effective population size.

The effective population size is characterized by a population

decline over time (Figure 4). However, a short stint of increasing

population size, starting around 126 generations ago (B756 years

ago), is observed before a drastic population decrease starting around

40 generations ago (B240 years ago) and continuing to present day

(Figure 4).

We assessed the effect of the number of markers for the estimation

of genome ancestry in our population assuming three ancestral

populations (indigenous AT, European taurine and Asian zebu) and

using only calves with moderate and substantial European taurine

introgression. We use linear correlation between sets of randomly

selected number of markers using STRUCTURE’s output of inferred

genetic membership proportions at K¼ 3. The analyses indicate that

the estimation of the proportion of genome ancestry varied with the

number of markers included, and that it depends on the genetic

background being estimated (Supplementary Figures S8a–c).

As expected, the more markers the better the correlation. More

particularly, a correlation coefficient of r¼ 0.99 (Po0.0001) was

obtained for the 15–25K pairwise marker comparison for the

European background (Supplementary Figure S8a), and for the

25–35K pairwise marker comparison for the Asian zebu ancestry

(Supplementary Figure S8b). However, for the estimation of the

AT ancestral background a correlation coefficient of only r¼ 0.92

(Po0.0001) was obtained for the 35–45K pairwise marker

comparisons (Supplementary Figure S8c).

Pruning neighboring markers in strong LD (r2 over 0.1–0.5) has

been suggested as a way to reduce data redundancy in STRUCTURE

analysis and ascertainment bias in the estimation of diversity.

Approximately 44% of the neighboring marker pairs linkage were

above the lower limit (r2¼ 0.1) and only 11% above the higher

limit (r2¼ 0.5) within the non-introgressed calves cohort. The

proportion of marker pairs in LD approximates the genome coverage

of the chip, for example, in mapping applications. Taking into

account the marker gaps, these proportions equal to coverage of

40 and 8%, with the respective r2 limits. The median for neighboring

marker pairs was 0.075. Therefore, no LD-based pruning was

undertaken.

DISCUSSION

This study aimed at unraveling the population history and genetic

structure of an indigenous population of EASZ of western Kenya at

genome-wide level. At K¼ 3, STRUCTURE analysis agrees with the

principal component analysis dimension results indicating the pre-

sence of three genetic backgrounds. This is not surprising given our

current understanding of the origin and history of these populations

and it is in agreement with previous finding using microsatellite loci

(Hanotte et al., 2002). Moreover, using 45 000 randomly selected

autosomal genome-wide SNP markers, we are able to unravel finer

details of the extent of genome admixture (AT, European taurine and

Asian zebu) within the studied populations (Figures 1 and 2).

Assessment of the level of inferred ancestral proportion difference

between animals (two EASZ calf cohorts and the Sheko breed) and

autosomes (Supplementary Figures S4a–c) is also presented.

Our results support ancient zebu�AT admixture in the EASZ

population, subsequently shaped by selection and/or genetic drift,

followed by a more recent exotic European cattle introgression.

Indeed, we do observe very little variation among animals for the

inferred zebu and AT ancestral proportions, at the contrary of the

inferred European taurine background. It indicates that the AT and

zebu genome ancestries have had time to ‘diffuse’ homogenously

among the calves of our study population, while the level of European

taurine introgression, of more recent origin, still needs to reach an

equilibrium (Figure 1). Interestingly, we observe differences in zebu or

AT ancestry proportions among chromosomes, differences shared

between the EASZ and the Sheko as revealed by the correlation

analyses. It suggests at least a partial role of selection in shaping the

genome architecture of present day indigenous East African cattle

populations rather than only genetic drift. The EASZ and Sheko

admixed (taurine� zebu) populations occupy to some extent similar

agro-ecological environments in different geographical locations

(DAGRIS, 2007). It remains, however, unknown which common

selection pressures may have shaped the genome of these crossbreed

populations. These effects may be attributed to environmental factors

(for example, common infectious disease challenges) and/or may be

the consequence of within genome selection pressures following the

crossbreeding of cattle belonging to two distinct lineages that

separated more than half a million years ago (Loftus et al., 1994;
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MacHugh et al., 1997). Worth mentioning here, is the detected

presence so far of only taurine cattle mitochondrial DNA on the

African continent even in populations phenotypically classified as

zebu (Gifford-Gonzalez and Hanotte, 2011), is an observation

compatible with the pattern of male-mediated zebu introgression

into taurine animals or with a selection pressure in favor of taurine

mitochondrial haplotypes.

We also assessed if the global genome admixture of the EASZ could

be further partitioned to finer detail. In other words, whether the AT

and Asian zebu inferred genetic ancestry in EASZ at K¼ 3 may be

further separated into distinct genome components that reflect in-

depth details revealing the history of the breed. Previous studies

indicate that through the Horn of Africa, the African continent likely

witnessed two waves of zebu introductions and migrations (Hanotte

et al., 2002), which may have distinctively imprinted the genome of

the EASZ. The presence of a unique shared genetic background at

K¼ 4 (Figure 1) between EASZ and Sheko, absent in both the Nelore

and N’dama breeds, is compatible with a two wave zebu introgression

pattern. It would be tempting to claim that this additional component

may represent the first phase intermediate zebu–taurine hybrid, so-

called sanga cattle (see Rege, 1999; Rege and Tawah, 1999), but in

absence of an appropriate reference population such interpretation

remains hypothetical. Indeed, the presence of a ‘unique’ East African

genetic background will also be compatible with an indigenous

Figure 3 (a) Histogram representing the frequency of calves with varying levels of European ancestry. Three categories of European taurine introgression of

data set 1 were defined using the Ward algorithm. (b) Geospatial distribution of the substantial European taurine (X12.5%) and moderate European taurine

(1.56%oXo12.5%) categories. It indicates a genetic cline and two hotspots of substantial European introgression (X12.5%) found within close proximity

of animal markets.
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African ancestry (for example, from African wild aurochs introgres-

sion). The analysis of more African cattle populations, representative

of a broader geographic area from the continent, as well as additional

reference breeds drawn outside of the continent may further clarify

this issue. Until then, we should favor the clearly interpretable three

clusters model previously supported by several studies (for example,

Hanotte et al., 2002).

As mentioned above, the level of European taurine ancestry in

EASZ was unevenly distributed among calves, but relatively similar

among chromosomes (Figure 1 and Supplementary Figure S4a).

There are several possible European taurine genetic sources in the

studied area. These include concluded and ongoing dairy breed

improvement programs that used/use exotic animals and semen. Also,

animal markets in the studied area are stocked with crossbred

animals. Although the overall average European ancestry was only

2% for the entire studied population, the proportions varied across

the study area. The animals with substantial European ancestry

(X12.5%), which is compatible with a European taurine introgres-

sion event three or less generations ago, were found close to major

livestock markets (Figure 3b). Interestingly, the average proportions of

European taurine (ranging between 4 and 7%) were higher in

northern sub-locations such as Busia and Bungoma that participated

actively in initiatives to develop the local dairy production

systems (Baltenweck et al., 2005). In the southern sub-locations

found within Siaya district, little or no European taurine introgression

was observed (p1.25%; Figure 3b). We purposely avoided the

sampling of first-generation crossbred animals during the study and

therefore our data is not representative of the current impact of dairy

sector development activities on the indigenous EASZ population.

Even so, our study still highlights the trend of European taurine

introgression into the EASZ population. An interesting related

question is whether or not such exotic introgression is under

selection? Commercial cattle originating from the temperate environ-

ment are known to be poorly adapted to most of the tropical agro-

ecosystems (for example, Vordermeier et al., 2012) and selection

against exotic introgression will be expected. Our recent analysis of

the same EASZ animals suggests that it is indeed the case with

increased vulnerability to infectious diseases for the EASZ intro-

gressed animals (Murray et al., 2013b).

Excluding introgressed animals with exotic taurine, nonsignificant

genetic differentiation was observed between sub-locations

(Supplementary Figure S6). Low or absence of differentiation implies

frequent exchanges and/or movements of animals across a geogra-

phical area (Tapio et al., 2010; Dumasy et al., 2012). This is

compatible with movement of livestock, including breeding bulls

across the studied area and active animal trade between sub-locations.

It may also explain why we do observe in two sub-locations (Bukati

and Luanda) a few calves with different indigenous ancestral propor-

tion. The parentage from these calves could have included other

indigenous breed(s) present near the studied area.

EASZ are believed to comprise of several sub-populations accord-

ing to the farmer communities rearing them. These include the

Kavirondo zebu reared by the Luo and Luhya communities, and the

Teso zebu reared by the Teso community (DAGRIS, 2007). Berthouly

et al. (2009) have shown that, in Vietnamese goat, genetic differentia-

tion is greatly influenced by farmers’ ethnicity and husbandry

practices. There is no apparent evidence that this may be the case

in our study population.

Decrease in LD as a function of distance between markers has been

reported in several cattle population or breeds (for example, de Roos

et al., 2008; Gautier et al., 2009; Flury et al., 2010). The observed

intermediate LD in EASZ, 0.05 or2o0.2 (Supplementary Figure S7),

reaches approximately as far in the genome as in other cattle

populations (de Roos et al., 2008; Gautier et al., 2009; Flury et al.,

2010), but both the minimum and maximum r2 were lower than

commonly observed. The background LD (the minimum value to

which the mean LD asymptotes with increasing distance between

markers) is approximately a quarter of those generally observed in

cattle populations (de Roos et al., 2008; Gautier et al., 2009; Flury

et al., 2010; Supplementary Figure S7). It is similar to the expected

value for a heavily stratified population (Gautier et al., 2007). This

may suggest that our population has been subdivided in the past,

although today we do not observe genetic differentiation across the

studied area.

There are several algorithms for inferring population size from LD

and it remains unclear which method is the most appropriate one (for

example, Corbin et al., 2012). However, cattle LD estimates indicate

that all these populations, which include Asian zebu, AT and

European taurine breeds, have been shrinking over time (Gautier

et al., 2007; de Roos et al., 2008; The Bovine HapMap Consortium,

2009; Flury et al., 2010). The trend has been associated with

domestication events, artificial selection for economic traits and

breed formation (The Bovine HapMap Consortium, 2009). We do

observe a similar declining trend in population size for the EASZ

(Figure 4). However, in contrast to other cattle populations, an

increase in effective population size is observed approximately 126

generations ago.

Historical cattle generation lengths, prior the intensive breeding

system, are expected to be longer than 4 years (Kidd and Cavalli-

Sforza, 1974). We assume a 6 years generation length in the EASZ as

estimated in Red Sindhi cattle on the Indian subcontinent

(Mahadevan, 1955). It is slightly shorter than 6.72 years estimated

by Alim (1960) for Kenana zebu cattle in Sudan. With this

assumption, the EASZ expansion would have begun approximately

126 generations or B750 years ago, which is the time when zebu

cattle supposedly became common in the Rift Valley (Payne, 1970).

We then observe a drastic decrease in effective population size starting

around 40 generation or 240 years ago up to present time (Figure 4).

During this time span (B240–750 years ago), three exceptionally

favorable climatic periods with relatively shorter dry spells were

experienced in Eastern Africa (Verschuren et al., 2000). The cattle

population seemed to thrive during these favorable seasons but
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drastically shrunk during the subsequent Lapanarat–Mahlatule

drought that was characterized by a sequel of severe droughts and

political upheavals (Verschuren et al., 2000). It is also well docu-

mented that East African cattle were decimated following the

rinderpest epidemic at the end of the nineteenth century (Blench,

1993; Paynes and Hodges, 1997). Our data suggests that the decline in

cattle population in the region had already started before the disease

outbreaks.

The BovineSNP50 v. 1 beadchip used in this study allowed us to

estimate the ancestry proportions of the three main cattle lineages

within the EASZ. The largest proportion of the markers included on

this beadchip was selected for informativeness in European taurine

breeds (Matukumalli et al., 2009), and not surprisingly, a small

number of these markers are sufficient for the estimation of the

European ancestral proportion (Supplementary Figure S8a). This

ascertainment bias makes the SNP chip particularly suitable for the

detection of European taurine introgression in African native cattle

populations. In contrast, more markers were required for accurate

estimation of the zebu (Supplementary Figure S8b) and more

particularly the AT ancestries (Supplementary Figure S8c). Owing to

this technical shortcoming, the taurine ancestral estimates of our

study population may not be fully conclusive. The current availability

of a BovineHD genotyping bead chip (Illumina) offers an opportu-

nity to clarify this issue. In addition, we show here that the

neighboring markers in the BovineSNP50 v. 1 beadchip are not

typically in strong LD, and the chip is informative only for

approximately half of the EASZ genome, making the chip an

incomplete tool for genome-wide association study, detection of

signatures of selection and genomic selection.

The history of East African cattle is complex. It was closely

intermingled with the history of local human communities (Hanotte

et al., 2002). Undoubtedly, the need to adapt to the harsh tropical

environments of the area must have shaped the present day East

African cattle genomes. This article presents valuable insights toward

better understanding the genetic landscape, genetic affinities and

demographic history of an African indigenous cattle breed as well as

highlights the urgent need to implement crucial management strate-

gies pertinent in the population’s sustenance. The expected ‘Livestock

Revolution’ (Delgado et al., 1999) describes a growing demand for

animal products especially in developing countries. It presents a

unique opportunity to harness the African indigenous livestock

productivity potential by re-defining current breeding strategies aimed

at obtaining both productive and resilient animals, while concurrently

preserving the rich genetic variability of these populations. In-depth

characterization of the genome of these indigenous African breeds is

an essential step toward achieving these ultimate goals.
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