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ABSTRACT
Motivation: In ordinary regression, imposition of a lasso penalty
makes continuous model selection straightforward. Lasso penalized
regression is particularly advantageous when the number of
predictors far exceeds the number of observations.
Method: The present paper evaluates the performance of lasso
penalized logistic regression in case-control disease gene mapping
with a large number of SNP (single nucleotide polymorphisms)
predictors. The strength of the lasso penalty can be tuned to select
a predetermined number of the most relevant SNPs and other
predictors. For a given value of the tuning constant, the penalized
likelihood is quickly maximized by cyclic coordinate ascent. Once
the most potent marginal predictors are identified, their two-way and
higher-order interactions can also be examined by lasso penalized
logistic regression.
Results: This strategy is tested on both simulated and real data. Our
findings on coeliac disease replicate the previous single SNP results
and shed light on possible interactions among the SNPs.
Availability: The software discussed is available in Mendel 9.0 at the
UCLA Human Genetics web site.
Contact: klange@ucla.edu

1 INTRODUCTION
The recent successes in association mapping of disease genes have
been propelled by logistic regression using cases and controls. In
most ways this represents a step down from the computational
complexities of linkage analysis performed on large pedigrees.
The most novel feature of these genome-wide association studies
is their sheer scale. Hundreds of thousands of SNPs (single
nucleotide polymorphisms) are now being typed on samples
involving thousands of individuals. This avalanche of data creates
new problems in data storage, manipulation, and analysis. Size
does matter. For instance, with hundreds of thousands of predictors,
the standard methods of multivariate regression break down. These
methods involve matrix inversion or the solution of linear equations
for a very large number of predictors p. Since these operations scale
as p3, it is hardly surprising that geneticists have opted for univariate
linear regression SNP by SNP. This simplification goes against the
grain of most statisticians, who are trained to consider predictors
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in concert. In this paper, we explore an intermediate strategy that
permits fast computation while preserving the spirit of multivariate
regression.

The lasso penalty is an effective device for continuous model
selection, especially in problems where the number of predictors
p far exceeds the number of observations n (Chen et al. 1998;
Claerbout and Muir 1973; Santosa and Symes 1986; Taylor
et al. 1979; Tibshirani 1996). Several authors have explored lasso
penalized ordinary regression (Fu 1998; Daubechies et al. 2004;
Friedman et al. 2007; Wu and Lange 2008) in both the `1 and `2
settings. Let yi be the response for case i, xij the jth predictor
for case i, βj the regression coefficient corresponding to the jth
predictor, and µ the intercept. For notational convenience also let
θ = (µ, β1, . . . , βp)

t and xi = (xi1, . . . , xip)
t. In ordinary linear

regression, the objective function is f(θ) =
∑n
i=1(yi−µ−x

t
iβ)2.

In `1 regression one replaces squares by absolute values. Lasso
penalized regression is implemented by minimizing the modified
objective function

g(θ) = f(θ) + λ

p∑
j=1

|βj |. (1)

Note that the intercept µ is ignored in the lasso penalty λ
∑p
j=1 |βj |.

The tuning constant λ controls the strength of the penalty, which
shrinks each βj toward the origin and enforces sparse solutions. A
ridge penalty λ

∑p
j=1 β

2
j also shrinks parameter estimates, but it is

not as effective in actually forcing many estimates to vanish. This
defect of the ridge penalty reflects that fact that |b| is much larger
than b2 for small b.

Many diseases are believed to stem from the interaction of risk
factors. This further complication can also be handled by lasso
penalization if we proceed in two stages. In the first stage, we
select the important marginal predictors; in the second stage, we
look for interactions among the supported predictors. In both stages,
we adjust the penalty constant to give a fixed number of supported
predictors. In most genetic studies, researchers have a general idea
of how many true predictors to expect. Our software encourages
experimentation and asks the user to decide on the right balance
between model completeness and quick computation.

This paper, like most papers, has its antecedents. In particular,
Shi et al. (2006, 2007, 2008); Uh et al. (2007), and Park and Hastie
(2008) make substantial progress in adapting the lasso to logistic
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regression and to the discovery of interactions. Malo et al. (2008)
apply ridge regression to distinguish causative from noncausative
SNPs in a small region. Schwender and Ickstadt (2008) and
Kooperberg and Ruczinski (2005) identify interactions using logic
regression. These and other relevant papers are reviewed by Liang
and Kelemen (2008). We focus on a coordinate descent algorithm
because it appears to be the fastest available. Competing algorithms
for lasso penalized logistic regression include nonnegative quadratic
programming (Sha et al. 2007), quadratic approximations (Lee et al.
2006), and interior point methods (Koh et al. 2007). Friedman
et al. (2008) compare coordinate descent with several competing
algorithms and conclude that it performs best.

The specific contributions made in this paper include a) the
consistent use of the lasso penalty for both marginal and interaction
predictors, b) selection of the tuning constant to give a fixed
number of predictors, c) application of cyclic coordinate ascent
in maximizing the lasso penalized loglikelihood, d) rigorous pre-
selection of a working set of predictors, and e) application of
false discovery rates for global significance. Our overall strategy
combines fast computing with good recovery of the dominant
predictors.

In the remainder of the paper, Section 2 fleshes out our statistical
approach to data. In particular it covers the lasso penalized logistic
model, selection of the tuning constant, cyclic coordinate ascent,
and assessment of significance for both marginal and interaction
predictors. The procedures are summarized as follows:

1. Pre-screening by a score criterion (Section 2.6);

2. Selection of the tuning parameters λ for a fixed number of
predictors by bracketing and golden section search (Section
2.2);

3. Parameter estimation via cyclic coordinate descent (Section
2.5);

4. Significance assessment based on LOO indices (Section 2.3)
and FDR (Section 2.7);

5. Lasso identification and quantification of interactions among
previously selected features (Section 2.4).

Section 3 evaluates the method on simulated data. Section 4
applies the method to real data on coeliac disease. Finally, Section
5 summarizes the advantages and limitations of lasso penalized
logistic regression in association testing, puts our specific findings
into the larger context of current research, and mentions the
availability of relevant software.

2 METHODS
2.1 Lasso Penalized Logistic Regression
In case-control studies, the dichotomous response variable yi is
typically coded as 1 for cases and 0 for controls. By analogy to
ordinary linear regression, in linear logistic regression we write the
probability pi = Pr(yi = 1) of case i given the predictor vector xi
as

pi =
eµ+xt

iβ

1 + eµ+xt
i
β
. (2)

The parameter vector θ = (µ, β1, . . . , βp)
t is usually estimated by

maximizing the loglikelihood

L(θ) =

n∑
i=1

[
yi log pi + (1− yi) log(1− pi)

]
. (3)

To encourage sparse solutions, we subtract a lasso penalty from the
loglikelihood as just suggested. For the purposes of this paper, we
consider only additive models where the range of the predictors
xij is restricted to the three values -1, 0, 1, corresponding to the
three SNPs genotypes 1/1, 1/2, and 2/2, respectively. A dominant
model can be achieved by collapsing the genotypes 1/1 and 1/2,
and a recessive model can be achieved by collapsing genotypes
1/2 and 2/2. In both models the assigned quantitative values are
−1 and 1. In our experience, the set of markers entering the
model is relatively insensitive to the genetic model assumptions.
We recommend standardizing all non-SNP quantitative predictors
to have mean 0 and variance 1.

2.2 Selection of the Tuning Constant λ

For a given value of the tuning constant λ, maximizing the
penalized loglikelihood singles out a certain number of predictors
with non-zero regression coefficients. Let r(λ) denote the number
of predictors selected. If we reduce λ and relax the penalty, then
more predictors can enter the model. Although minor exceptions
occasionally occur, r(λ) is basically a decreasing function of λ
with jumps of size 1. Hence, once a predictor enters the model, it
usually remains in the model as λ decreases. Although a predictor’s
order of entry tends to be correlated with its marginal significance,
violations of this rule of thumb occur with correlated predictors. For
every integer s ≤ p we assume that there is an interval Is on which
r(λ) = s. One can quickly find a point in Is by a combination of
bracketing and bisection. In bracketing, we start with a guess λ. If
r(λ) = s, we are done. If r(λ) < s and a ∈ (0, 1), then there is a
positive integer j such that r(ajλ) ≥ s. If r(λ) > s and b > 1, then
there is a positive integer k such that r(bkλ) ≤ s. In practice we set
a = 1

2
and b = 2 and take the smallest integer j or k yielding

the second bracketing point. Once we have a bracketing interval
[λl, λu], we employ bisection. This involves testing the midpoint
λm = 1

2
(λl + λu). There are three possibilities: if r(λm) = s, we

are done; if r(λm) < s, we replace λu by λm; and if r(λm) > s,
we replace λl by λm. In either of the latter two cases, we bisect
again and continue. As soon as we hit a point in Is, we halt the
process.

The primary danger in bracketing is visiting a λ with r(λ) very
large. To limit the damage from a poor choice of λ, we abort
optimization of the objective function whenever the search process
encounters too many nonzero predictors. Since predictors can enter
and leave the model repeatedly prior to convergence, this check is
delayed for several iterations, say 10. As a further safeguard, we set
the maximum number of nonzero predictors allowed well above the
desired number of predictors s. In practice we use s+ 10.

In simpler settings, cross-validation is used to find the best
value of λ. Recall that in k-fold cross-validation, one divides the
data into k equal batches (subsamples) and estimates parameters k
times, leaving one batch out per time. The testing error for each
omitted batch is computed using the estimates derived from the
remaining batches, and the cross-validation curve c(λ) is computed
by averaging testing error across the k batches. The curve c(λ)
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can be quite ragged, and many values of λ must be tried to find
its minimum. To avoid this time consuming process, we let the
desired number of predictors drive statistical analysis. In actual gene
mapping studies, geneticists would be thrilled to map even 5 or 10
genes. In our coeliac disease example, it is necessary to consider a
larger number of predictors to uncover the full biological truth.

2.3 Assessing Significance
When SNPs are tested one by one, it is easy to assign a p-
value to a SNP by conducting a likelihood ratio test. If we ignore
nongenetic predictors such as age, sex, and diet, then the only
relevant parameters are the intercept µ and the slope β of the
SNP. The null hypothesis β = 0 can be tested by maximizing
the loglikelihood under the null and alternative hypotheses and
forming the twice the difference in maximum loglikelihoods. This
statistic is asymptotically distributed as a χ2 distribution with 1
degree of freedom. Collectively, the p-values must be corrected
for multiple testing, either by a Bonferroni correction or some
version of a false discovery rate (FDR) correction. The latter choice
is more appropriate when we anticipate a fairly large number of
true positives. We will say more about FDR corrections later. A
more compelling concern is that proceeding SNP by SNP omits the
impact of other SNPs. Most statisticians prefer to assess significance
in the context of multiple linear regression rather than simple linear
regression. They resist this natural impulse in association studies
because of the computational barriers and the mismatch between
numbers of observations and predictors.

In our multivariate setting, we compare the standard SNP by SNP
p-values with alternative p-values generated by considering the s
selected predictors as a whole. Once we have selected the s model
predictors, we discard the non-selected predictors and re-estimate
parameters for the selected predictors with λ = 0. Since s is
small, say 10 to 20 in our numerical studies, re-estimation is now
a fully determined problem. We then undertake s further rounds of
estimation, omitting each of the selected predictors in turn. These
actions put us into position to conduct likelihood ratio tests by
leaving one predictor out at a time. It is tempting to assign p-values
by comparing the resulting likelihood ratio statistics to the percentile
points of a χ2 distribution with 1 degree of freedom. This is invalid
because it neglects the complex selection procedure for defining the
reduced model in the first place. Nonetheless, these leave-one-out
(LOO) p-values are helpful in assessing the correlations between
the retained predictors in the reduced model. To avoid confusion,
we will refer to the LOO p-values as LOO indices. The contrast
between the univariate p-values and the LOO indices is instructive.
Although both of these measures are defective and should not be
taken too seriously, they are defective in different ways and together
give a better idea of the truth.

2.4 Interaction Effects
As mentioned previously, we advocate testing for interactions after
identifying main effects. This strategy is prompted by the sobering
number of interactions possible. With p predictors, there are

(
p
k

)
k-way interactions, and 2p interactions in all. With hundreds of
thousands of SNPs, it is impossible even to examine all two-way
interactions. These problems disappear once we focus on a handful
of interesting marginal predictors. However, our commitment to a
two-stage strategy brings in its wake certain technical problems.

First, there is the combinatorial question of how to generate
all subsets of {1, . . . , r} up to a given size. Fortunately, good
algorithms for this task already exist. Minor changes to the
NEXKSB code in Nijenhuis and Wilf (1978) permit one to generate
one subset after another, with smaller subsets coming before larger
subsets. Thus, when the number of predictors r retained from stage
one is too large to generate all subsets, one can easily visit all lower-
order interactions and bypass higher-order interactions. Second,
there is the problem of storing the interaction predictors. We finesse
this problem by computing interaction products on the fly. Third,
there is the question of how to integrate SNP predictors with other
predictors such as sex, age, and environmental exposures. Since
this is largely a programming problem, we omit further discussion
of it. Fourth, our interactions do not involve any self-interactions.
Inclusion of self-interactions would force us to pass from subsets
to multisets. For SNPs the gain seems worth less than the bother.
Other predictors such as age have a richer range of values, so it may
be useful to add predictors such as age squared, age cubed, and so
forth to the original list of predictors. Finally, there are the problems
of model selection and hypothesis testing for the interaction effects.
Here again it seems reasonable to rely on lasso penalized estimation
and LOO indices.

2.5 Cyclic Coordinate Ascent Algorithm
In linear logistic regression, maximum likelihood estimates are
usually found by the scoring algorithm. This requires the score and
observed information

∇L(θ) =

n∑
i=1

[yi − pi(θ)]xi (4)

−d2L(θ) =

n∑
i=1

pi(θ)[1− pi(θ)]xixti.

of the loglikelihood (3). Because scoring coincides with Newton’s
method, it is fast and reliable, and most statisticians would agree
that it is the method of choice for low-dimensional problems. Its
Achilles heel is the need to invert the observed information at each
iteration. If we add to this drawback the complication of dealing
with the nondifferentiable lasso penalty, then it becomes abundantly
clear that competing algorithms should be considered in association
analysis.

The oldest and simplest alternative, coordinate ascent, updates
one parameter one at a time. Coordinate ascent comes in two flavors,
cyclic and greedy (Wu and Lange 2008). In cyclic coordinate ascent,
each parameter is updated in turn; in greedy coordinate ascent, the
parameter leading to the greatest increase in the objective function
is updated. Although greedy coordinate ascent makes faster initial
progress in logistic regression, it suffers from excess overhead. For
this reason we will confine our attention to cyclic coordinate ascent.

Although the logistic loglikelihood (3) is nonlinear, it has the
compensating property of concavity. Concavity fortunately carries
over to the lasso penalized loglikelihood

g(θ) = L(θ)− λ
p∑
j=1

|βj |

because the sum of two concave functions is concave. The objective
function g(θ) is nondifferentiable, but it does possess a directional

3



T. T. Wu et al

derivative along each forward or backward coordinate direction. For
instance, if uj is the coordinate direction along which βj varies,
then

dujg(θ) = lim
t↓0

g(θ + tuj)− g(θ)
t

= dujL(θ) +

{
−λ βj ≥ 0
λ βj < 0,

and for vj = −uj

dvjg(θ) = lim
t↓0

g(θ − tvj)− g(θ)
t

= dvjg(θ) +

{
λ βj > 0
−λ βj ≤ 0,

When a function such as L(θ) is differentiable, its directional
derivative along uj coincides with its ordinary partial derivative, and
its directional derivative along v = −uj coincides with the negative
of its ordinary partial derivative.

To update a single parameter of the objective function g(θ), we
use one-dimensional scoring. This works well for the intercept
parameter µ because there is no lasso penalty. For a slope parameter
βj , the lasso penalty intervenes, and particular care must be
exercised near the origin. In fact, it simplifies matters to start scoring
at the origin. Here we test the directional derivatives dujg(θ) and
dvjg(θ). If both are nonpositive, then g(θ) cannot be increased
by moving away from the origin. This claim follows from the
concavity of g(θ). If one of the directional derivatives dujg(θ)
and dvjg(θ) is positive and the other is nonpositive, then progress
can be made along the corresponding arm of g(θ), and scoring is
commenced until convergence is achieved along that arm. Concavity
rules out the possibility that both directional derivatives are positive.
A simple sketch of a concave function will convince the reader of
this assertion.

In practice, we start all parameters at the origin. In
overdetermined problems, the vast majority of slopes βj are
permanently parked there. Only those with considerable evidence
in their favor can overcome the pressure of the lasso pushing them
toward the origin. Even those that escape this pressure can be forced
back to the origin as other more potent predictors enter the model. It
is clearly computationally beneficial to organize parameter updates
by tracking the linear predictor µ + xtiβ of each case. These start
at 0, and when a single component of θ is updated, it is trivial to
update the linear predictors.

2.6 The Score Criterion and Efficient Computations
In Section 2.2 we demonstrated that the lasso penalty can be tuned
to select a predetermined number of the most relevant SNPs. Once
the value of the tuning constant λ is fixed, the penalized likelihood is
quickly maximized by cyclic coordinate ascent to give us the desired
number of nonzero coefficients. However, since we face a very
large number of SNP predictors, it would be much more efficient
if we could start our search procedure by focusing on a substantially
smaller set of features that are more likely to be associated with
the response. We accomplish this by a “swindle” that screens the
predictors according to a simple score criterion.

The score equations of the loglikelihood (4) for linear logistic
regression define part of the Karush-Kuhn-Tucker (KKT) conditions
(Lange 2004)∣∣∣ n∑

i=1

[yi − pi(λ)]xij

∣∣∣ = λ if βj 6= 0 (5)

∣∣∣ n∑
i=1

[yi − pi(λ)]xij

∣∣∣ ≤ λ if βj = 0. (6)

for optimality in the penalized model. Here pi(λ) is the fitted
probability for observation i, fit using the indicated value of λ.
For very large λ, all the βj are estimated as zero, and the only
nontrivial parameter is the intercept µ, which is unpenalized. If p0

is the overall proportion of cases in the data, then the intercept is
estimated as µ̂ = log[p0/(1− p0)] for large λ.

We accordingly define the following initial absolute score

aj =
∣∣∣ n∑
i=1

(yi − p0)xij

∣∣∣ (7)

for each predictor. Note that aj determines the standard score
statistic for testing the null model βj = 0 with µ fixed at µ̂. The
first predictor to enter the lasso penalized model as λ decreases is
the predictor with the largest value of aj .

These considerations suggest a screening device for models with
large numbers of SNPs. Because we insist on tuning the lasso
penalty to select just a handful of predictors, the final absolute
scores are apt to correlate strongly with the precomputed absolute
scores. Thus, if we desire s predictors, we take k to be a reasonably
large multiple of s, say k = 10s, sort the aj , and extract the k
predictors with the largest values of aj . Call this subset Sk. We now
subject Sk to our estimation procedure and choose a value λk to
give us exactly k predictors. The selected predictors satisfy the KKT
conditions (5) and (6). If the predictors omitted from Sk also satisfy
the KKT condition (6), then we have found the global minimum for
the given value λk and stop. If one of the omitted predictors fails the
KKT condition (6), we replace k by 2k, say, and repeat the process.
Eventually, the KKT conditions are satisfied by all predictors. Since
the KKT conditions are sufficient as well as necessary for a global
maximum, this process legalizes the swindle. Often the value 10s
works. When it does not, usually just a few doublings suffice. For
example, if the desired number of predictors is s = 10, in stage one
we fit a model with 100 predictors. When stage two is needed, we
fit a model with 200 predictors, and so forth. If there are hundred
of thousands of SNPs, our swindle saves an enormous amount of
computing with no loss in rigor.

Of course, the swindle sets Sk may contain highly correlated
features with redundant information. This turns out to be the case
with the HLA SNPs in our coeliac example. Fortunately, most of the
redundant features are discarded by the lasso penalty. Our numerical
results, for instance those displayed in Table 1, confirm that
the swindle dramatically speeds up computation while preserving
model selection results.

2.7 Computation of FDR
The score swindle also has implications for the assessment of the
FDR for the univariate p-values. We will not pursue these delicate
connections here because in practice most geneticists demand that
all univariate tests be done. Fortunately, it takes just a few minutes
of computing time to carry out the univariate logistic regressions
encountered in a modern association study. Even substituting
likelihood ratio tests for score tests does not change this fact.

In the Simes procedure highlighted by Benjamini and Hochberg
(1995) in their analysis of FDR, there are n null hypotheses
H1, . . . , Hn and n corresponding p-values P1, . . . , Pn. The latter
are replaced by their order statistics P(1), . . . , P(n). If for a given
α ≥ 0, we choose the largest integer j such that P(i) ≤ i

n
α for all

i ≤ j, then we can reject the hypotheses H(1) . . . , H(j) at an FDR
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of α or better. This procedure is justified in theory when the tests
are independent or positively correlated. In the presence of linkage
equilibrium, association tests are independent; in the presence of
linkage disequilibrium, they are positively correlated. For a more
detailed discussion of the multiple testing issues in SNP studies, see
Nyholt (2004).

3 ANALYSIS OF SIMULATED DATA
To evaluate the performance of lasso penalized regression in
association testing, we focus on underdetermined problems where
the number of predictors p far exceeds the number of observations
n. Our simulation model

log
( pi

1− pi

)
= µ+

p∑
j=1

xijβj +

p∑
k=1

p∑
l=1

xikxilηkl. (8)

involves both marginal effects and two-way interactions. For ease of
simulation, we assume that each predictor vector xi is derived from
a realization of a multivariate normal vector Yi whose marginals are
standard normal and whose covariances are

Cov(Yij , Yik) =


1 j = k
ρ j, k ≤ 10, j 6= k
0 otherwise.

Thus, only the first 10 predictors are correlated. To mimic a SNP
with equal allele frequencies, we set xij equal to -1, 0, or 1
according to whether Yij < −c, −c ≤ Yij ≤ c, or Yij > c.
The cutoff −c is the first quartile of a standard normal distribution.
In every simulation, we set µ = 1, βj = 1 for 1 ≤ j ≤ 5, and
βj = 0 for j > 5. We also set ηkl = 0 except for the special cases
η12 = η34 = 0.5. These substantial effect sizes allow us to discern
signal from noise in fairly small samples.

To ameliorate the shrinkage of the nonzero estimates for a
particular λ, we always re-estimate the selected parameters in the
final model, omitting the non-selected parameters and the lasso
penalty. This yields better parameter estimates for testing purposes.
We compute LOO indices as mentioned earlier and contrast them to
univariate p-values based on estimating the impact of each predictor
without reference to the other predictors.

We analyzed the simulated data in two stages. In stage one,
we considered only main effects and selected s1 predictors. In
stage two, we discarded the non-selected predictors and sought
s2 marginal effects or interactions among the selected predictors.
The sensible choice s2 ≥ s1 permits all predictors singled
out in stage one to remain in contention as marginal effects
in stage two. Because virtually all association studies yield
only a handful of predictors that can be replicated, we took
s1 and s2 small and considered the specific pairs (s1, s2) =
(10, 10), (10, 20), (20, 10), (20, 20). Table 1 summarizes our
results over 50 random replicates for various choices of the number
of predictors p, the number of subjects n, and the correlation
coefficient ρ. Table 1 reports the average values of the tuning
constants λ1 and λ2, the average number of true predictors Ktrue,1

andKtrue,2 found, and the average computing times in seconds. The
subscripts 1 and 2 refer to the first and second stages. The standard
error of each average appears in parentheses.

The last two columns of Table 1 summarize computing times
with and without our computational swindle. Forgoing the swindle

inflates all times in Table 1. For p = 5000 the differences are not
too noticeable, but for p = 100000 it takes 10 to 20 times longer to
reach the lasso solution without the swindle.

(p, n) ρ (s1, s2) λ1 Ktrue,1 λ2 Ktrue,2 Time No Time

Swindle Swindle

(5000, 500) 0.0(10, 10) 29.43 5.00 29.64 5.84 1.36 0.68
(1.50) (0.00) (1.90) (0.67) (0.34) (0.11)

(5000, 500) 0.0(10, 20) 29.43 5.00 10.86 6.98 2.18 1.57
(1.50) (0.00) (1.71) (0.14) (0.39) (0.26)

(5000, 500) 0.0(20, 10) 25.46 5.00 30.06 5.84 2.67 1.10
(1.06) (0.00) (1.65) (0.67) (0.40) (0.17)

(5000, 500) 0.0(20, 20) 25.46 5.00 25.49 6.24 2.75 2.17
(1.06) (0.00) (1.25) (0.65) (0.36) (0.39)

(5000, 500) 0.8(10, 10) 19.51 5.00 17.62 5.04 3.06 1.76
(1.94) (0.00) (3.24) (0.20) (0.52) (0.46)

(5000, 500) 0.8(10, 20) 19.51 5.00 6.16 6.58 5.91 4.61
(1.94) (0.00) (1.12) (0.57) (5.74) (5.63)

(5000, 500) 0.8(20, 10) 16.40 5.00 19.79 5.04 6.40 3.08
(1.50) (0.00) (2.01) (0.20) (2.94) (0.94)

(5000, 500) 0.8(20, 20) 16.40 5.00 16.28 5.12 6.50 5.14
(1.50) (0.00) (1.65) (0.38) (4.32) (3.33)

(50000, 2000) 0.0(10, 20) 67.39 5.00 21.83 7.00 39.17 10.09
(2.21) (0.00) (3.18) (0.00) (11.45)(10.81)

(50000, 2000) 0.8(10, 20) 45.99 5.00 15.09 7.00 102.31 14.59
(2.12) (0.00) (2.39) (0.00) (33.92)(10.37)

(100000, 2000)0.0(10, 20) 69.77 5.00 23.62 7.00 110.24 8.94
(2.13) (0.00) (3.24) (0.00) (22.59)(11.27)

(100000, 2000)0.8(10, 20) 47.71 5.00 14.66 7.00 197.20 10.81
(2.30) (0.00) (2.54) (0.00) (53.17) (1.69)

Table 1. Simulation results based on 50 random samples.

The results Table 1 for the choice (s1, s2) = (10, 20) appear
best. In general, we recommend using a substantially larger s2
than s1. Performance degrades as we pass from uncorrelated
to highly correlated predictors. More iterations are needed for
convergence, and the fraction of true predictors captured falls. With
a large enough sample size, performance is perfect. Table 1 in
our submitted supplementary materials displays our results for a
single representative sample with p = 50000, n = 2000, ρ = 0,
and (s1, s2) = (10, 20). At stage one, all five true predictors
are correctly selected with impressive univariate p-values and LOO
indices. At stage two, all five main effects and both interaction
effects are selected. In both instances, the univariate p-values and
LOO indices of the true predictors are much smaller than the
corresponding values for the false predictors.

It is also instructive to consider what happens in the simulated
data with p = 5000, n = 500, and ρ = 0 when the stage-one
tuning constant λ1 varies. Figure 1 plots six things as a function
of λ1: a) the number of predictors selected at stage one, b) the
number of predictors selected at stage two, c) the number of true
predictors selected at stage one, d) the number of true predictors
selected at stage two, e) the FDR at stage one, and f) the FDR
at stage two. In stage two we set the tuning constant λ2 = 25.
In counting true predictors, we consider only marginal predictors
at stage one and marginal plus interaction predictors at stage two.
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When we know the true predictors, estimating FDR is trivial, and the
Simes procedure can be ignored. Inspection of the six plots shows
that all true predictors are recovered for a fairly broad range of λ1

values. As λ1 decreases, more predictors enter the model, and FDR
increases.
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Fig. 1. Plots of the stage-one penalty constant λ1 versus the number of
selected predictors, the number of true predictors, and FDR. The stage two
penalty constant λ2 = 25.

4 ANALYSIS OF COELIAC DATA
4.1 Data Description
In the British coeliac data of van Heel et al. (2007), p = 310, 637
SNPs are typed on n = 2, 200 subjects (938 males and 1,262
females). Controls outnumber cases 1,422 to 778. Across the
sample, an impressive 99.875% of all genotypes are assigned; no
individual has more than 10% missing data. We impute missing
genotypes at a SNP by the method sketched in (Ayers and Lange
2008). Only 32 SNPs show a minor allele frequency below 1%;
these are dropped from further analysis.

4.2 Simulation Study Based on Coeliac Data
We also tested our method by conducting a simulation study

based on the coeliac data. Here in model (8), we took µ = −3,
βj = 1 for gender, rs3737728 (SNP2), rs9651273 (SNP4), and
rs4970362 (SNP9), and βj = 0 for the remaining SNPs. We also set
ηkl = 2 for the interaction of gender and rs3934834 (SNP1) and the
interaction of SNP4 and SNP9; all other ηkl we set to 0. Notice that
SNP1 has no marginal effect even though it interacts with gender

Locus Est. Expected Observed
Name p-Value Range Homozygotes Homozygotes
s3934834 1.0000
s3737728 0.7101 +/- 0.0090743 1303.39 1296
s9651273 0.6445 +/- 0.0095733 1304.25 1294
s4970362 0.7412 +/- 0.0087595 1189.35 1197

Table 2. Fisher’s exact test for Hardy-Weinberg equilibrium on the 2200
coeliac cases and controls.

in determining the response. The lower right-hand block of the
correlation matrix

gender SNP1 SNP2 SNP4 SNP9
1.0000 0.0106 −0.0178 −0.0307 0.0009
0.0106 1.0000 −0.2249 0.0991 −0.0207
−0.0178 −0.2249 1.0000 0.5289 0.3892
−0.0307 0.0991 0.5289 1.0000 0.2894

0.0009 −0.0207 0.3892 0.2894 1.0000


indicates fairly strong linkage disequilibrium among the three
marginally important SNPs. Table 2 summarizes Fisher’s exact test
for Hardy-Weinberg equilibrium on the four SNPs (Lazzeroni and
Lange 1998). A total of 10000 random tables were sampled to
approximate P-values at each SNP.

Following our previous plan of analysis, we varied the numbers
of predictors (s1, s2) in the model. The best results summarized in
Table 3 reflect the sensible choice (s1, s2) = (10, 20). At stage one,
all four true predictors are correctly selected. In stage two all four
main effects are selected, and both interaction effects are selected
for the vast majority of the 50 random replicates.

Our success with the additive model was partially replicated when
we simulated under dominant and recessive models. In the dominant
model, we score a SNP predictor as 1 if the number of minor alleles
is 1 or 2; otherwise we score it as −1. In the recessive model,
we score a SNP predictor as 1 if the number of minor alleles is 2;
otherwise we score it as−1. The last two rows of Table 3 report our
analysis results for the dominant and recessive models. The results
under the dominant model are nearly as good as those under the
additive model. Since the numbers of predictor values equal to 1
and -1 are better balanced under the dominant model, it is hardly
surprising that the recessive model does worse.

4.3 Results of Real Data Analysis
Replicating earlier results with antigenic markers, van Heel et al.

(2007) find overwhelming evidence for association in the HLA
region of chromosome 6. SNP rs2187668 in the first intron of HLA-
DQA1 has the strongest association, followed by SNPs rs9357152
and rs9275141 within or adjacent to HLA-DQB1. van Heel et al.
also identify a more weakly associated region on chromosome 4
centered on SNPs rs13119723 and rs6822844 in the KIAA1109-
TENR-IL2-IL21 linkage disequilibrium block. Their results are
reproduced in our supplementary Table 2. The p-values listed in the
table are univariate p-values taking one SNP at a time.

We now examine several models with different numbers of
desired predictors. Since the grand mean µ always enters the
model first, we omit it from further discussion. In model 0 with

6
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(s1, s2) λ1 Ktrue,1 λ2 Ktrue,2 Time

Additive Model
(10, 10) 48.78 4.00 52.19 4.46 45.33

(1.57) (0.00) (4.11) (0.50) (13.48)
(10, 20) 48.78 4.00 18.24 5.70 66.36

(1.57) (0.00) (4.05) (0.61) (12.82)
(20, 10) 45.10 4.00 53.93 4.44 74.22

(1.24) (0.00) (4.00) (0.50) (29.64)
(20, 20) 45.10 4.00 45.11 4.54 137.16

(1.24) (0.00) (1.63) (0.50) (51.70)

Dominant Model
(10, 20) 85.18 3.96 26.68 5.70 182.98

(4.57) (0.20) (5.69) (0.54) (20.62)

Recessive Model
(10, 20) 62.53 3.00 20.76 3.14 83.76

(3.93) (0.00) (8.32) (0.35) (66.12)

Table 3. Results for 50 random replicates using the coeliac genotypes

one predictor mandated, SNP rs2187668 on chromosome 6 HLA
region is selected. This SNP has the smallest univariate p-value
(9.48×10−191) among all the 310,605 SNPs tested. In model 1 with
five predictors mandated, we identify four HLA SNPs in addition
to rs2187668. In model 2 with 10 predictors mandated, once again
we recover only HLA SNPs from chromosome 6; these results are
summarized in Table 3 of our submitted supplementary materials.
Univariate p-values appear in column 4 and LOO indices in column
5 of the table. It is striking how different the univariate p-values and
LOO indices are for these SNPs. This phenomenon is just another
manifestation of the high linkage disequilibrium among the SNPs.
The estimated FDRs for the selected SNPs are all much smaller
than 0.01. In model 3 with 50 predictors mandated, we finally see
predictors outside the HLA region. Table 4 records the non-HLA
predictors identified. Here univariate p-values differ less from LOO
indices because the SNPs are largely uncorrelated.

We find similarities and differences between the van Heel et al.
(2007) results and our results. Almost all of the SNPs in Table
4 with univariate p-values below 10−4 are singled out by van
Heel et al. (2007). The one exception is SNP rs1499447 on
chromosome 8, which they dismiss because of irregularities in
genotyping. We find different SNPs in the KIAA1109-TENR-IL2-
IL21 block on chromosome 4. This is the region that replicates
well in their Dutch and Irish samples. Our failure to identify the
same SNPs in the KIAA1109-TENR-IL2-IL21 block is hardly a
disaster; the region and ultimately the underlying gene are more
important than the individual SNPs. It is noteworthy that among
the 1,000 most significant SNPs listed by van Heel et al. (2007),
979 are in the HLA region. Since SNPs in the HLA region on
chromosome 6 are highly correlated with coeliac disease, model
4 with 10 mandated predictors removes the HLA SNPs, with the
aim of finding associated SNPs outside the HLA region. Table 4
in our submitted supplementary materials now picks up SNPs on
chromosomes 9, 11, 14, and 18 that do not appear in Table 4.
Removing all chromosome 6 SNPs rather than just HLA SNPs leads
to virtually the same results as displayed in supplementary Table 4.

To test for interactions, we take the s1 = 50 predictors selected
in model 3 and examine all marginal and two-way effects. The

Position Univariate LOO
SNP Chr in BP p-value Index Estimate
gender 2.77489e-25 9.20120e-18 0.61074
rs1888176 1 63298344 0.001561 0.000234 0.36746
rs13397583 2 23459535 1.60268e-05 0.001518 0.32605
rs6735141 2 142468480 0.000684 2.84818e-05 0.44583
rs1836577 3 5776886 0.000955 0.000119 -0.38543
rs6762743 3 180494694 8.41159e-07 3.04012e-06 0.50470
rs1559810 3 189607048 6.24178e-05 0.000587 -0.36208
rs991316 4 100541468 0.000286 5.86295e-05 0.38997
rs12642902 4 123727951 4.07547e-05 2.46611e-06 0.48330
rs153462 5 150585263 0.001544 8.49478e-05 0.42474
rs13357969 5 150731750 8.89698e-05 0.000153 0.38409
rs916786 7 109841758 0.000804 0.000174 0.37033
rs736191 8 99264380 0.000261 0.000493 0.35143
rs10505604 8 134096770 4.38312e-06 3.47134e-05 -0.46746
rs1499447 8 138051471 3.90991e-11 6.99196e-05 0.42571
rs1901633 10 4800561 0.000474 0.007989 0.28059
rs1064891 10 6316580 3.41871e-06 0.089192 -0.35675
rs1539234 10 6316749 5.33772e-06 0.843098 0.03108
rs10501723 11 89922680 8.56749e-05 0.004005 0.28470
rs7320671 13 19407203 0.001174 1.64655e-05 -0.43494
rs2879414 18 47962958 0.000272 2.78969e-05 -0.41487
rs10503018 18 53326747 0.000247 0.000925 -0.36819
rs2836985 21 39623039 0.000149 0.014373 0.24478
rs6517581 21 40276738 0.001141 0.000959 0.33649
rs5764419 22 42291261 0.000411 0.003744 0.28829
rs2283693 X 9625063 0.000248 0.000731 0.28610
rs5934725 X 9885994 0.000757 0.010604 -0.22593
rs4335267 X 44940333 0.000848 0.012583 0.21747

Table 4. The non-HLA predictors found under model 3 with 50 mandated
predictors.

total number of predictors is 50 +
(
50
2

)
= 1275, and we keep

s2 = 50 predictors in the model. Most of the 50 selected predictors
have LOO indices close to one. Table 5 lists the marginal and
interaction predictors with LOO indices less than 0.01. Several
of these interactions are interesting. Given the predominance of
female patients, the interaction between gender and one of the
HLA SNPs is credible. The interactions between two HLA SNPs
and SNPs on chromosomes 2, 3, and 8 are more surprising. It is
particularly noteworthy that the univariate p-values for these three
SNPs as marginal effects (Table 4) are far less impressive than their
univariate p-values as interaction effects (Table 5).
5 DISCUSSION
Our analysis of simulated data demonstrates that lasso penalized
regression is easily capable of identifying pertinent predictors
in grossly underdetermined problems. Computational speed is
impressive. If predictors are uncorrelated, then interaction effects
can be found readily as well. As one might expect, correlations
among important predictors degrade computational speed and the
recognition of interactions. For very large data sets involving
more than, say, 109 total SNP genotypes, data compression is
mandatory. Repeated decompression of chunks of the data then
slows computation. Our computational swindle circumvents this
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Position Univariate LOO
SNP Chr in BP p-value Index Estimate
gender 2.77489e-25 0.00952 0.39359
rs1888176 1 63298344 0.001561 0.001464 0.33090
rs1836577 3 5776886 0.000955 8.69904e-05 -0.38923
rs1559810 3 189607048 6.24178e-05 9.71542e-05 -0.40263
rs991316 4 100541468 0.000286 0.000514 0.34159
rs13357969 5 150731750 8.89698e-05 4.56935e-05 0.43473
rs2187668 6 32713862 9.48302e-191 1.65234e-09 -1.30307
rs916786 7 109841758 0.000804 3.13293e-05 0.41684
rs736191 8 99264380 0.000261 0.001485 0.33010
rs10505604 8 134096770 4.38312e-06 0.001069 -0.38067
rs10501723 11 89922680 8.56749e-05 0.005633 0.28523
rs2879414 18 47962958 0.000272 0.000125 -0.38128
rs10503018 18 53326747 0.000247 6.38471e-05 -0.41328
rs5934725 23 9885994 0.000757 0.004094 -0.24651
gender, rs2856997 6 1.45631e-19 0.00088 0.41372
gender, rs736191 8 1.42328e-06 0.008821 0.26378
rs6735141, rs9357152 2,6 2.29578e-22 0.000538 0.43816
rs6762743, rs9357152 3,6 1.11685e-26 9.16095e-06 0.55819
rs3129763, rs2187668 6,6 3.8393e-71 1.90299e-14 -1.31326
rs2294478, rs1499447 6,8 3.89141e-27 0.008368 0.38291

Table 5. Strongest predictors under model 5 with all main effects and two-
way interactions included. Here we take s1 = 50 and s2 = 50 and list an
effect when its LOO index falls below 0.01.

problem because all of the working predictors easily fit within
memory.

The coeliac data set of van Heel et al. (2007) is challenging
for two reasons. First, the overwhelming HLA signal masks
the weaker signals coming from other chromosome regions.
Second, the HLA SNPs are in strong linkage disequilibrium and
hence highly correlated. Linkage disequilibrium manifests itself
as increased LOO indices and significant two-way interactions.
Despite these handicaps, lasso penalized regression identifies
several promising non-HLA regions and interaction effects. Our
results for chromosome 4 differ slightly from those of van Heel et al.
(2007) because we impute missing genotypes differently. Ayers
and Lange (2008) introduce a new penalized method of haplotype
frequency estimation that enforces parsimony and achieves both
speed and accuracy. When phase can be deduced from relatives,
this extra information can be included in estimation. Finally, it is
noteworthy that van Heel et al. have validated the chromosome 4
association on two further data sets.

One can quibble with our method of picking candidate predictors
for interaction modeling. An obvious alternative would be to look
for two-way interactions between the top s predictors and all
other predictors. This tactic requires little change in our numerical
methods.

Readers may want to compare our approach with the approach
of Shi et al. (2006, 2007, 2008). One major difference is our
application of cyclic coordinate ascent. A second major difference
is that we always select a fixed number of predictors. These
choices allow us to quickly process a very large numbers of SNPs
or interactions among SNPs. The path following algorithm of
Park and Hastie (2008) has the advantage of revealing the exact

sequence in which predictors enter the model. Path following
is more computationally demanding than simply finding the best
r predictors, but note that their software (glmpath in R, Park
and Hastie (2007)) can quickly postprocess the best r predictors
discovered.

We have featured univariate p-values and LOO indices in this
paper, but neither measure is ideal. Although FDR analysis is
valuable, no one has said the last word on multiple testing (Balding
2006; Kimmel and Shamir 2006). For instance, some form of
generalized cross validation may ultimately prove useful. As a
matter of principle, most geneticists would not accept a single study
as definitive. All important findings are subject to replication. This
attitude, whether justified or not, puts the onus on finding the most
important SNPs rather than on declaring their global significance.
Our approach to data analysis is motivated by this consideration.
The software discussed here will be made available in the next
release of Mendel.
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