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Abstract

To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a

multistage genome-wide association study of lung cancer in Asian women who never smoked. We

scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies

from mainland China, South Korea, Japan, Singapore, Taiwan, and Hong Kong. We genotyped the

most promising variants (associated at P < 5 × 10-6) in an additional 1,099 cases and 2,913

controls. We identified three new susceptibility loci at 10q25.2 (rs7086803, P = 3.54 × 10-18),

6q22.2 (rs9387478, P = 4.14 × 10-10) and 6p21.32 (rs2395185, P = 9.51 × 10-9). We also

confirmed associations reported for loci at 5p15.33 and 3q28 and a recently reported finding at

17q24.3. We observed no evidence of association for lung cancer at 15q25 in never-smoking

women in Asia, providing strong evidence that this locus is not associated with lung cancer

independent of smoking.

It is estimated that 25% of lung cancer cases arise in individuals who never smoked. Lung

cancer in never smokers ranks as the seventh most common cause of cancer death

worldwide1. A number of observations suggest that the molecular pathogenesis of lung

cancer differs by smoking status. Differences have been reported by smoking status for

cellular and molecular carcinogenic pathways, distinct profiles of oncogenic mutations (for

example, in EGFR), and response to targeted therapy2, 3. Compared to lung cancer in

smokers, cases in never smokers are more likely to arise in women at a younger age and

there is a greater proportion of cases with the adenocarcinoma histology subtype3.
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Epidemiological studies of lung cancer in never smokers have shown that the incidence of

lung cancer in women is particularly high in Asia4, which is partially attributed to exposure

to environmental tobacco smoke, combustion products from indoor heating and cooking

fuel, and cooking oil fumes4-10.

To gain insight into the etiology of lung cancer among never-smoking women, we formed

the Female Lung Cancer Consortium in Asia (FLCCA), which includes studies drawn from

mainland China, South Korea, Japan, Singapore, Taiwan, and Hong Kong. Previously, we

published the first genome-wide association study (GWAS) of lung cancer in never-smoking

Asian women, including 584 cases and 585 controls with large-scale replication, reporting

an association at 5p15.33 near the TERT gene 11; in this study, it was also notable that the

estimated effect of the associated locus was greater in non-smoking Asian women than the

reported effect size observed in primarily smokers of European ancestry12. We also

confirmed an association signal in TP63 at 3q2813, replicating the report from a GWAS

conducted in Japan14.

To identify new susceptibility loci in Asian never-smoking women, we conducted a lung

cancer GWAS in 14 studies (13 case-control studies and 1 cohort study, Supplementary

Note, Supplementary Table 1). Samples were scanned at 6 centers (Online Methods): the

United States National Cancer Institute (NCI) Cancer Genomic Research (CGR) Laboratory,

the Genome Institute of Singapore, Memorial Sloan-Kettering Cancer Center, GeneTech

Biotech Co. in Taiwan, Gene-Square Biotech in Beijing, and deCODE Genetics in Iceland.

After stringent quality control analysis of genotypes (Online Methods), we combined

datasets for 5,510 lung cancer cases and 4,544 controls using a previously described

clustering algorithm15. The primary analysis was performed using logistic regression for

genotype trend effect (with 1 degree of freedom) adjusted for study center, age and three

eigenvectors (on the basis of principal- components analysis). A comparison of the observed

and expected p-values in the quantile-quantile (Q-Q) plot showed an enrichment of observed

signals with small p-values compared to the null distribution of no association, with little

evidence for genomic inflation (unscaled λ = 1.014, λ1000 = 1.003; Supplementary Figure

1)16.

The overall association results are shown in a Manhattan plot, in which we observed both

new and known loci that exceeded the threshold for genome-wide significance, P < 5 × 10-8

(Fig. 1). We observed an association at two previously established loci, rs2736100 at

5p15.3311, 12, 14, 17-19, and rs4488809 at 3q2813, 14. We also observed support for an

association at a recently reported locus marked by rs7216064 at 17q24.320 (Supplementary

Table 2). Notably, there was no evidence for association across the 15q25 region, which has

been associated with smoking-related lung cancer12, 19, 21-24. We did not observe strong

signals for other loci reported in either European25 or Asian17,26 populations

(Supplementary Table 2).

In our primary scan, we observed one new locus at 10q25.2, marked by rs7086803, that

substantially exceeded the threshold for genome-wide significance (OR = 1.32, 95% CI =

1.24-1.41, P = 5.04 × 10-17) (Fig. 1, Table 1). We developed assays to genotype 13 SNPs

associated at P < 5 × 10-6 in the initial scan, using analysis of all cases or the most common
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subtype in non-smokers, adenocarcinoma. We genotyped 1,099 new cases and 2,913

controls drawn from the same studies as in the initial scan. In a combined analysis of 6,609

cases and 7,457 controls, 3 new loci achieved associations at genome-wide significance

(Table 1): 10q25.2 (rs7086803, OR = 1.28, 95% CI = 1.21-1.35, P = 3.54 × 10-18); 6q22.2

(rs9387478, OR = 0.85, 95% CI = 0.81-0.90, P = 4.14 × 10-10); and 6p21.32 (rs2395185,

OR = 1.17, 95% CI = 1.11-1.23, P = 9.51 × 10-9) (Table 1, Fig. 2, Supplementary Figure 2,

Supplementary Tables 3 and 4).

Analysis by histological subtype of lung cancer showed that both the 6q22.2 locus

(rs9387478) and 6p21.32 locus (rs2395185) were associated with adenocarcinoma only,

which comprised 71% of cases (Table 2). The estimated effects were consistent across

studies (Supplementary Figure. 2). We note that rs7086803 showed a somewhat larger effect

for squamous carcinoma compared to adenocarcinoma (Table 2), but, as the number of

squamous carcinoma cases analyzed was small, we consider this a preliminary observation

requiring independent replication.

To explore the relationship between these three regions and lung cancer in populations of

European ancestry, we analyzed data from a previously reported GWAS of 5,718 lung

cancer cases and 5,739 controls, including men and women who were primarily ever

smokers12. We found no evidence for association at the three newly associated loci. In a

sub-analysis of 350 never-smoker cases and 1,379 never smoker controls drawn from this

study, we observed some evidence of association for rs2395185 but larger studies are

warranted (unpublished data, T Landi).

We imputed SNPs catalogued in the 1000 Genomes Project March 2012 release and the

Division of Cancer Epidemiology and Genetics Imputation Reference Set version 127 using

the IMPUTE2 program28 across a 1-Mb region centered on the index SNP (see Online
Methods). The association analysis did not identify new signals that were substantially

stronger than the genotyped SNPs for the two non-HLA regions (Supplementary Figure.

3a,b). Although there appear to be stronger signals in the imputed data for the HLA Class II

region (Supplementary Figure. 3c), HLA-typing will be necessary to unravel the specific

haplotypes.

At the 6q22 locus, six SNPs were highly correlated with rs9387478 (r2 = 0.99 – 1.00). Two

SNPs, rs9387478 and rs6937083 (pairwise r2 = 1), were observed within a region defined by

the Encyclopedia of DNA Elements (ENCODE) as containing both chromatin state

segmentation and enhancer- and promoter-associated histone marks. Although the evidence

for evolutionary conservation is weak (i.e., a cross-species sequence alignment comparison

indicated conservation at the site of ∼29.2 million years since divergence from a common

ancestor), rs6937083 falls within an ENCODE predicted transcription factor binding site and

an exon of the AceView predicted gene, DCBLD1. The architecture of the region on

chromosome 10q25 is more complicated because there are 23 perfectly correlated SNPs (r2

= 1) and 1 highly correlated SNP (r2 = 0.99). All localize to intron 7 or the untranslated

region (UTR) of one transcript of the vesicle transport through interaction with the t-

SNAREs homolog 1A (yeast) gene (VTI1A). Sixteen fall within putatively functional

regions, defined as ENCODE DNase I hypersensitivity clusters, chromatin state
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segmentation, the UTR of VTI1A, ENCODE enhancer- and promoter-associated histone

marks, and/or highly conserved (i.e., a cross-species sequence alignment comparison

indicated conservation at the site of 300 million years since divergence from a common

ancestor) regions (see Supplementary Table 5); rs11196080 is noteworthy because many of

the functionally-predicted areas converge on this SNP, making this a high priority variant

for functional follow-up studies.

The strongest new association signal, rs7086803 at 10q25.2, maps to intron 7 of the VTI1A

gene, which has been implicated in lung carcinogenesis. Loss of VTI1A activity has been

reported to reduce high-frequency spontaneous neurotransmitter release29 and rapid

progressive neuro-degeneration in the peripheral ganglia30. VTI1A is also involved in

Acrp30-containing vesicles in adipocytes, and lower amounts of VTI1A in cultured

adipocytes can inhibit adiponectin secretion31. Lower amounts of adiponectin have

previously been associated with advanced lung cancer31,32. A recent study reported

recurrent VTI1A-TCF7L2 fusions in colorectal cancers, and a colorectal carcinoma cell line

with the fusion gene was shown to be dependent on VTI1A-TCF7L2 for anchorage-

independent growth33.

The rs9387478 SNP at 6q22.2 is located in an interval that contains two candidate genes:

DCBLD1 (encoding discoidin, CUB and LCCL domain containing 1) and ROS1 (encoding

the ROS proto-oncogene receptor tyrosine kinase). ROS1 functions as both an integral

membrane protein and a receptor tyrosine kinase34. Expression of Ros1 is specifically

increased in lung cancer tissue in mice, and ROS1 expression levels are increased in non-

small cell lung cancer (NSCLC)35. ROS1 fusions in lung adenocarcinoma and NSCLC,

particularly in Asian never smokers, have been identified as drivers of oncogenesis 36-38.

ROS1 rearrangements were found to be more common in lung adenocarcinomas from never

smokers and younger affected individuals39. There is limited evidence concerning the

functional role of the protein encoded by DCBLD1; a related gene at 3q12.2, DCBLD2

(encoding discoidin, CUB and LCCL domain containing 2, also known as CLCP1),

regulates cellular proliferation and invasion and may have an important role in cancer

metastasis40, 41, 42.

The third locus, marked by rs2395185 at 6p21.3, is located within 20 kb of HLA-DRA

(encoding major histocompatibility complex, class II, DR alpha) and 52 kb downstream of

HLA-DRB5 (encoding major histocompatibility complex, class II, DR beta 5). There was no

evidence for strong linkage disequilibrium between this SNP and other SNPs reported for

lung cancer at 6p21.3217, 23. There was little LD with a recently reported SNP, rs3817963,

and lung cancer in a Japanese population, also on 6p21.320; the r2 in Han Chinese and

Japanese HapMap samples was 0.18 and 0.10, respectively, and D′ was 0.57 and 0.43,

respectively. These data suggest that our locus probably represents a new HLA Class II-

related finding for nonsmoking lung cancer susceptibility. Further mapping across the

complex HLA region is required to characterize the specific susceptibility alleles or

haplotypes involved in non-smoking lung cancer risk. We also note that rs2395185 has been

previously associated with ulcerative colitis43, Hodgkin lymphoma44, and type 1 diabetes45.
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In previous GWAS of lung cancer, in which a majority of cases were smokers, SNPs across

a region at 15q25 have been associated with lung cancer risk12, 19, 21-24. However, studies of

smoking related behavior have also identified variants at 15q25, raising the possibility that

the variants previously identified by GWAS for lung cancer could mediate risk through

effects on tobacco use46. We previously genotyped additional SNPs across 15q25 in Asian

studies and observed no evidence of association with lung cancer in never-smoking Asian

females11. Notably, in our current, larger study, there was no evidence for association with

lung cancer at 15q25 in the never-smoking population overall or in the major subtypes.

These data provide strong evidence that this locus is not associated with lung cancer

independent of smoking in never-smoking females in Asia, which contrasts with the results

from a smaller Asian study24, but is consistent with previous reports from smaller studies

conducted in populations of European ancestry12, 47, 48.

We investigated the relationship between our new loci and known environmental exposures.

The association between exposure to environmental tobacco smoke (ETS) in the home and

adenocarcinoma in the five studies with data available yielded an OR of 1.36 (P = 1.2 ×

10-4) in an analysis of 1,770 cases and 2,675 controls, consistent with previous reports8. The

effect of ETS was stronger for subjects with the GG genotype at rs2395185, with OR = 1.78

(P = 1.15 × 10-5), compared to subjects with GT/TT genotypes, OR = 1.16 (P = 0.15), with

Pinteraction = 0.002. The association between the T allele at rs2395185 and risk of

adenocarcinoma in subjects with and without exposure to ETS yielded OR = 1.13 (P =

0.031) and OR = 1.43 (P = 5.6 × 10-4), respectively, with Pinteraction = 0.037. There was no

evidence of interaction with the other two new loci reported here.

In summary, we conducted a GWAS of lung cancer in never-smoking females in Asia and

identified three new susceptibility loci at 10q25.2, 6q22.2, and 6p21.32. We also confirmed

associations with two previously reported regions at 5p15.3311, 12, 14, 17-19, 3q2813, 14 and a

recently reported locus at 17q24.320. It is notable that our strongest finding at 10q25.2 has

not been reported previously in lung cancer GWAS. This observation suggests that the

etiology of lung cancer among never-smokers in Asia may have unique genetic

characteristics. This is consistent with the distinct pattern of environmental risk factors that

have been causally linked to lung cancer among never-smoking females in Asia4-8, 10, and

the distinct molecular phenotypes of lung cancer in never-smokers2, 3. Further work is

warranted to map the new regions. Functional work is required to identify the variants that

directly account for the underlying association as well as to study how the genetic variants

interact with established environmental risk including ETS, cooking fumes, and fuel use

among never-smoking females in Asia.

Online Methods

Study participants

Participants were drawn from 14 studies (Supplementary Table 1). Cases had histologically

confirmed lung cancer. Each participating study obtained informed consent from study

participants and approval from its respective Institutional Review Board for this study.

Studies obtained institutional certification permitting data sharing in accordance with the

NIH Policy for Sharing of Data Obtained in NIH Supported or Conducted Genome-Wide
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Association Studies (GWAS), with the exception of the component of the GELAC study

that was not scanned at NCI (see below).

Genotyping and quality control

Genome-wide scanning data came from two sources. Internal sets (HKS, SNU, CNULCS,

SWHS, YLCS and components of samples from Japan and GELAC) were genotyped at the

NCI Cancer Genomic Research (CGR) Laboratory using the Illumina 660W SNP

microarray. External sets were genotyped as follows: a) samples from CAMSCH, FLCS,

GDS, SLCS, TLCS, and WLCS were genotyped on contract at Gene-Square Biotech, Inc. in

Beijing using the Illumina 660W SNP microarray; b) samples from GELAC were genotyped

on contract at GeneTech Biotech Co., Taiwan on the Illumina 370k SNP microarray in a

pilot project and remaining samples were genotyped on contract at deCODE Genetics,

Iceland using the Illumina 610Q SNP microarray and initially reported elsewhere11; c) a

subset of samples from Japan were genotyped at Memorial Sloan-Kettering Cancer Center

(MSKCC) using the Illumina 610Q SNP microarray; and d) samples from Singapore were

genotyped at the Genome Institute of Singapore on the Illumina 660W SNP microarray. The

scanned intensity data from external sources were collected, and genotypes were clustered

and called at the CGR using Illumina Genome Studio v2011.1 on the basis of the GenTrain2

calling algorithm. Genotype clusters were estimated from samples with preliminary

completion rates greater than 98% per cluster group.

Genotyping was attempted for a total of 5,568 samples on the Illumina 660W SNP

microarray at the CGR. Six samples could not be loaded into the Illumina Genome Studio

because of their low intensities, and 16 samples failed to scan because of broken chips. In

addition, a total of 5,946 samples were genotyped at Gene-Square Biotech, Inc. (3,828),

deCODE, Iceland and GeneTech Biotech Co., Taiwan (1,232), MSKCC (374) and

Singapore (512); the distribution of samples genotyped per SNP microarray chip was as

follows: Illumina 660W (4,340), Illumina 610Q (1,494), and Illumina 370K (112) arrays.

Seven samples (all from Gene Square) could not be loaded to the Illumina Genome Studio

because of their low intensities. In addition, 111 samples from 4 studies (FLCS, GDS,

SLCS, and TLCS) were excluded due to lab processing errors. The combined 11,374

samples with genotypes mapped to 11,025 unique individuals drawn from 14 studies.

We subsequently performed quality control filtering at the sample level in 19 QC groups

(Supplementary Tables 6a,b,c). Samples were excluded that had low completion rates (n =

725 samples) and extreme mean heterozygosity rates (n = 116). Thresholds were chosen on

the basis of the sample completion rate or sample mean heterozygosity distribution for each

QC group (Supplementary Table 6a) and on the basis of discordant expected duplicate

samples (n = 6). There were samples that were excluded for multiple reasons, and the total

number of unique samples excluded was 761 (Supplementary Table 6b). Genotype data for

the remaining 10,613 samples were merged, resulting in data from 10,312 unique

individuals. The genotype concordance rate for the expected duplicates (n = 311) was

greater than 99.9%. Further QC analysis at the individual level led to the exclusion of

samples with: (i) gender discordance (n = 94); (ii) less than 86% Asian ancestry (n = 3); (iii)

first-degree relatives who were also genotyped in the study (n=136 subjects); and (iv)
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incomplete phenotype or unknown histology, as well as those who had ever smoked or were

deemed ineligible (n=15). Thus, the total number of scanned subjects after both QC and

analytic exclusions was 10,054 (5,510 cases and 4,544 controls). A summary of the number

of excluded loci by study is shown in Supplementary Table 6c.

TaqMan custom genotyping assays (ABI) were designed and optimized for 13 SNPs,

including 9 in the NCI scan data and 4 surrogates not in this scan. In an analysis of 385

samples from 7 studies, the comparison of the Illumina calls with the TaqMan assays

conducted at the NCI CGR showed an average concordance rate of 99.97% (with a range of

99.7–100%) for the overlapping 9 SNPs. The Cancer Institute and Hospital, Chinese

Academy of Medical Sciences also conducted TaqMan genotyping for 7 SNPs on 201

previously scanned samples from 5 studies. The comparison of the Illumina calls with the

TaqMan assays showed an average concordance rate of 99.93% (with a range of

99.5-100%). In examining the concordance between rs2395185 (scan) and its perfect

surrogate rs28366298 (TaqMan), we applied genotype mapping GG→AA, GT→AC and

TT→CC in order to confirm reproducibility of genotyping between platforms.

For the replication phase, we analyzed an additional 3,933 individuals (1,023 cases and

2,910 controls) with TaqMan data, and an additional 79 individuals (76 cases and 3 controls)

genotyped using the Illumina 660W array at Gene-Square were available for analysis. Thus,

the final number of subjects used in the analyses was 14,066 (6,609 cases and 7,457

controls; Supplementary Table 1). SNP assays with locus call rates lower than 90% or

Hardy-Weinberg Equilibrium (HWE) p values less than 1.0 × 10-7 in each QC group were

excluded. In total, 596,032 SNPs remained in the analytic data set. After setting the

minimum minor allele frequency (MAF) to 0.01, we excluded 83,806 loci from the

association analysis. Thus, 512,226 SNPs were analyzed in the association studies reported

here.

Statistical analyses

Data analysis and management were performed with GLU (Genotyping Library and Utilities

version 1.0), a suite of tools available as an open-source application for the management,

storage and analysis of GWAS data. Assessment of the population structure of study

participants was performed with the GLU struct.admix module using the JPT+CHB, CEU

and YRI samples as the reference populations (HapMap Build 28). A set of 33,165 SNPs

with low pairwise correlation (r2 < 0.01) was selected for this analysis. Three individuals

were estimated to have less than 86% Asian ancestry (Supplementary Fig. 4).

The genotypes for all subject pairs were computed for cryptic relatedness using the GLU

qc.ibds module with the same set of selected SNPs. In addition to 68 pairs of unexpected

duplicates, we detected 33 parent-offspring and 41 full-sibling pairs. For the 142 unexpected

duplicates and first-degree relative pairs, 1 subject from each simple pair was excluded. For

each family with multiple relative pairs detected, only one randomly chosen subject was

included in the principal-components analysis (PCA). To address the underlying population

substructure, PCA was conducted using the GLU struct.pca module, a program similar to

EIGENSTRAT49, 50, with the same set of SNPs (Supplementary Fig. 5a,b). Three samples

with less than 86% Asian ancestry were excluded on the basis of PCA.
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Association analysis

Association analyses were conducted using logistic regression, adjusted for age (in 10-year

categories), study group and eigenvectors if they were significant when analyzed in the base

models. For analysis of all cases versus controls, we adjusted for EV1, EV2 and EV4. For

analysis of adenocarcinoma cases versus controls, we adjusted for EV2 and EV4. For

analysis of squamous cell cases versus controls, we adjusted for EV8. Each SNP genotype

was coded as a count of minor alleles (i.e. trend effect). A score test with one degree of

freedom was performed on all genetic parameters in each model to determine statistical

significance. The unscaled λ value for all cases versus controls in the main effect model was

1.014, and λ1000 was 1.00316, with λcorrected=1+(λ-1) × (ncase
-1+ncontrol

-1)/(2 × 10-3).

We assessed heterogeneity in genetic effects across studies using the Cochran's Q statistic,

which conforms to a chi-square distribution with k-1 degree of freedom, where k is the

number of studies.

For the inclusion of TaqMan data for the SNPs that failed assay design (rs2395185 and

rs10197940), we conducted a fixed effects meta-analysis by combining the aggregate results

from their perfect surrogates (rs28366298 and rs2290368, respectively) scanned in the

GWAS with their own results based only on the additional TaqMan samples not used in the

GWAS association analyses.

Genotype-environment interactions with ETS were assessed using logistic regression for

studies with such information available and adjusted by age, study group, the main effect of

the SNP and ETS, and the interaction term.

Estimate of recombination hotspots

To identify recombination hotspots in the region, we used SequenceLDhot51, a program that

uses the approximate marginal likelihood method52 and calculates likelihood ratio statistics

at a set of possible hotspots. Drawn from scanned controls, 100 individuals were randomly

sampled from Han Chinese, Japanese and Korean samples. Three independent

recombination hotspot inferences were analyzed and represented as three different colored

lines in Fig. 1. Specifically, for the VTI1A regional plot, genotypes of 70 SNPs spanning

chr10: 114,362,000 - 114,593,000 (UCSC Genome Build hg18) were phased using PHASE

v2.153 to calculate background recombination rates. The PHASE outcome was used as direct

input for the SequenceLDhot program and LD was estimated as r2 for 70 SNPs within a

∼230 kb region, and a heat map was drawn using the snp.plotter program54. Similarly, we

started with the genotypes of 63 SNPs for the ROS1/DCBLD1 regional plot and the

genotypes of 59 SNPs for the HLA class II locus.

Imputation analysis

To begin to fine map newly identified regions, we imputed all the SNPs catalogued in the

1000 Genomes Project data, March 2012 release, and the DCEG Imputation Reference Set

version 127. The IMPUTE2 program28 was used to impute a 1 Mb region centered on the

index SNP for each of the three regions, using recommended default settings. Imputed SNPs

with INFO < 0.3 were excluded from association analysis using the SNPTEST program v2.3
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(see URLs), which considered probabilistic genotypes out of imputation. Because 1000

Genomes Project data was based on the NCBI Build 37 reference genome, we conducted

liftover (see URLs) on our scan data from Build 36 to 37 before imputation.

Data access

The CGEMS data portal provides access to individual level data for investigators from

certified scientific institutions after approval of their submitted Data Access Request.

URLs—CGF: http://cgf.nci.nih.gov/

GLU: http://code.google.com/p/glu-genetics/

EIGENSTRAT: http://genepath.med.harvard.edu/∼reich/EIGENSTRAT.htm

STRUCTURE: http://pritch.bsd.uchicago.edu/structure.html

IMPUTE2: http://mathgen.stats.ox.ac.uk/impute/impute_v2.html

SNPTEST: https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html

LIFTOVER: http://hgdownload.cse.ucsc.edu/downloads.html

Forest plots were generated using SAS v9.2. (http://support.sas.com/kb/43/855.html)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Association results from a GWAS of never-smoking women in Asia
Manhattan plot based on P values derived from 1-degree-of-freedom tests of genotype trend

effect in an unconditional logistic regression analysis adjusted for study, age and three

eigenvectors in a GWAS of lung cancer in never-smoking Asian females, including 5,510

lung cancer cases and 4,544 controls. The x axis represents chromosomal location, and the y

axis shows P values on a negative logarithmic scale. The red horizontal line represents the

genome-wide significance threshold of P = 5 × 10-8. Labeled are two previously associated

loci (TERT at 5p15.33 and TP63 at 3q28) together with three newly identified loci (VTI1A

on chromosome 10 and ROS1-DCBLD1 and the HLA Class II region on chromosome 6).
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Figure 2. Association results, recombination hot-spots, and linkage disequilibrium plots for the
regions newly associated with lung cancer in never-smoking Asian females
Top, association results of GWAS data (grey diamonds), TaqMan data (blue diamonds) and

combined data (red diamonds) are shown in the top panel with −log10(P) values (left y axis).

Overlaid are the likelihood ratio statistics (right y axis) to estimate putative recombination

hotspots across the region on the basis of 3 sets of 100 randomly selected control samples

representing Han Chinese, Japanese and Korean (connected lines in green, blue, and red,

respectively) individuals. Bottom, LD heatmap based on pairwise r2 values from total

control populations for all SNPs included in the GWAS. (a) A 229.7- kb region at 10q25.2

spanning the VTI1A gene. (b) A 223.4- kb region at 6q22.2 spanning the ROS1, DCBLD1

and GOPC genes. (c) A 279.6- kb region at 6p21.32 spanning multiple genes in the HLA

class II region. Because a Taqman assay could not be designed for rs2395185, we instead

genotyped rs28366298, its perfect surrogate (r2 = 1.0), by TaqMan. The reported P value is

based on meta-analysis of the rs2395185 results in the GWAS and the rs28366298 results in
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the TaqMan set. Genomic coordinates are based on NCBI Human Genome Build 36.

Schematic gene structures are taken from the UCSC Genome Browser and are scaled to the

x-axis.
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