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Abstract  

Our sleep timing preference, or chronotype, is a manifestation of our internal biological clock. 

Variation in chronotype has been linked to sleep disorders, cognitive and physical performance, 

and chronic disease. Here, we perform a genome-wide association study of self-reported 

chronotype within the UKBiobank cohort (n=100,420). We identify 12 new genetic loci that 

implicate known components of the circadian clock machinery and point to previously unstudied 

genetic variants and candidate genes that might modulate core circadian rhythms or light-

sensing pathways. Pathway analyses highlight central nervous and ocular systems and fear-

response related processes. Genetic correlation analysis suggests chronotype shares 

underlying genetic pathways with schizophrenia, educational attainment and possibly BMI. 

Further, Mendelian randomization suggests that evening chronotype relates to higher 

educational attainment. These results not only expand our knowledge of the circadian system in 

humans, but also expose the influence of circadian characteristics over human health and life-

history variables such as educational attainment. 
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Chronotype is a behavioral manifestation of our internal timing system, the circadian clock. 

Individual variation within our biological clock drives our morning or evening preferences, 

thereby making us into “morning larks” or “night owls”. Chronotype is influenced by many 

factors, including age, sex, social constraints, and environmental factors, among others1. 

Chronotype has been associated with sleep disorders, cognitive and physical performance, 

chronic metabolic and neurologic disease, cancer and premature aging,2 in particular when 

there is desynchrony between internal chronotype and external environment increasing disease 

risk3. Despite the importance of circadian rhythms to human health and their fundamental role 

demonstrated in model organisms,4,5 little is known about biological mechanisms underlying 

inter-individual variation in human chronotype or how it impacts on our health and physiology. 

Genes that encode molecular components of the core circadian clock (PER2, PER3) or regulate 

the pace of the clock (CSNK1D) are disrupted in Advanced Sleep Phase Syndrome (ASPS) and 

Delayed Sleep Phase Syndrome (DSPS) both of which are monogenic circadian rhythm 

disorders causing extreme advance or delay in sleep onset6. ASPS mutations shorten circadian 

period in humans and mice7,8, linking the change in pace of the clock with sleep timing 

preference. More detailed biochemical and functional characterization of these mutations have 

greatly enhanced understanding mechanisms regulating the circadian clock. Emerging evidence 

suggests that subjects with ASPS may be at increased risk for chronic disease, such as cardio-

metabolic disease9 or show familial segregation of the causal mutation with both advanced 

sleep phase and migraine10.  

In addition to monogenic sleep phase disorders, pronounced inter-individual variation in 

chronotype exists within the general population5, and epidemiologic associations with adverse 

health outcomes have been reported2,11. Chronotype is heritable as estimated by twin and family 

studies (12-42%)12-14 but its genetic basis has not yet been well defined. Candidate gene 

association studies have reported variation associated with morningness or eveningness 

preference in the CLOCK, PER1, PER2, and PER3 genes15; however, these studies have often 

had limited reproducibility, suffering from small sample sizes, heterogeneity in chronotype 

assessment and inadequate correction for population structure. Recently, a genome-wide 

association study (GWAS) for self-reported habitual bedtime identified variation in NPSR112, but 

again robust replication of this finding has not been reported. Nonetheless, these studies 

suggest that novel genetic loci for chronotype, like for other complex traits, may be identified by 

GWAS provided that sufficiently large cohorts are used.  

To define the spectrum of genetic variation contributing to variation in human circadian 

phenotype, and identify associative or causal links between chronotype and other health 

indices, we perform the largest genome-wide association study (GWAS) of self-reported 

chronotype to date, within the UK Biobank cohort (n=100,420), a unique resource with an 

extensive set of individual life history parameters. Self-reported chronotype has been validated 

in previous studies, and correlates significantly with objectively measured physiological 

rhythms16. Our work identifies several novel genetic loci that associate significantly with 

chronotype, and importantly reveals a significant genetic correlation between chronotype and 

schizophrenia risk, BMI, and educational attainment. 
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Results 

Twelve genome-wide significant association signals  

Variation in chronotype associated significantly with age, sex, sleep duration, depression and 

psychiatric medication use, with ‘eveningness’ being associated with younger age, being male, 

having a longer sleep duration, being more likely to be depressed or using psychiatric 

medication (Supplementary Table 1). These characteristics together explained 1.4% of 

variation in chronotype.   

Two parallel primary GWAS analyses of genotyped and imputed SNPs were performed using 

regression models adjusting for age, sex, 10 principal components of ancestry and genotyping 

array: an ordinal score of chronotype based on 4 categories from “definite morning” to “definite 

evening” treated as a continuous trait, using the whole population (n=100,420) and a binary 

variable of chronotype extremes (8,724 definite evening type cases vs. 26,948 definite morning 

type controls), to enrich for rarer variants expected to have stronger effects. In total, 12 genome-

wide significant loci were identified (Figure 1-2, Table 1, and Supplementary Figure 1, p<5 x 

10-8) of which three surpassed genome-wide significance in both analyses (Table 1). 

Association was observed near PER2, an ASPS gene, and three other association signals were 

found in or near genes with a well-known role in circadian rhythms (APH1A, RGS16, and 

FBXL13), consistent with the hypothesis that circadian clock biology contributes to variation in 

chronotype. Conditional analyses at the 12 loci implicated one suggestive secondary 

association signal, a missense variant (V903I) in the core circadian clock gene PER2 

(p=8.43x10-8) predicted to be damaging (Polyphen 0.984, CADD scaled 16.21; Supplementary 

Table 2); thus, confirming that core circadian clock genes disrupted in ASPS harbor common 

variants that contribute to variation in chronotype. Together, in the discovery sample, the 12 loci 

explain 4.3% of variance in chronotype. Credible set analyses17 highlight a limited number of 

potential causal variants at each locus (Table 1).  

Robustness of the self-reported chronotype trait and genetic loci identified here was further 

validated by an independent GWAS of extreme chronotype from Hu et al.18.  8 of 15 reported 

loci replicated in our study, and all 15 showed a consistent direction of effect in our study. Three 

additional loci attain genome-wide significance in meta-analysis of both studies using publicly 

available results for the 15 SNPs from Hu et al. (near genes PER3, VIP and TOX3: 

Supplementary Table 3).  

No evidence of association was observed for previously reported SNPs from other candidate 

gene or GWA studies (Supplementary Table 4). The PER3 VNTR (rs57875989) previously 

associated with chronotype19 was not directly genotyped or imputed in this study; nonetheless, a 

suggestive association signal was observed encompassing this region of PER3 (lead SNP: 

rs7545893 p=6.5x10-8; 33KB from PER3 VNTR and largely independent from the lead 23and 

me PER3 region SNP (r2=0.186 in 1KG CE18U; Supplementary Figure 2). 

Secondary analyses were performed on the 12 lead SNPs from chronotype loci, including 1) 

separate comparison of effects on morningness and eveningness, 2) sex-specific analysis, 3) 

pair-wise genetic interaction analysis, and 4) regression models including additional covariates. 

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/038620doi: bioRxiv preprint first posted online Feb. 2, 2016; 

http://dx.doi.org/10.1101/038620
http://creativecommons.org/licenses/by-nc-nd/4.0/


Comparison of case extremes (8,724 evening, or 26,948 morning) to the collapsed middle group 

(n= 64,748) revealed three loci (LINC01128, APH1A, FAT1) with stronger effects in the 

eveningness case-control analysis as opposed to morningness analysis. A rare variant (0.2%) 

at the LINC01128 locus (rs141175086C) exhibited the most striking protective effect for 

eveningness (OR=0.22 (0.10-0.50), p=1.7x10-5) but only a small risk effect for morningness 

(OR=1.30 (0.97-1.75), p=0.08; Supplementary Table 5). No significant sex-specific effects 

(Supplementary Table 6) or epistasis between loci (Supplementary Table 7) were detected. 

Similarly, sensitivity analyses adjusting for factors known to associate with chronotype, including 

sleep duration and disorders, depression, and psychiatric medication use did not significantly 

alter the effect estimates or strength of the associations (Supplementary Table 8).    

Candidate causal genes at these loci are highlighted in Supplementary Note 1. The 12 loci 

encompass 72 candidate genes enriched in pathways for circadian rhythms (padj=0.014), mental 

disorders (padj=0.001), sleep disorders (padj=0.005), the spliceosome (padj=0.020), and 

Alzheimer’s disease (padj=0.030) among others (Supplementary Table 9). In addition, four loci 

are located in or near genes with a well-known role in circadian rhythms (PER2, APH1A, 

RGS16, and FBXL13), however whether these genes are responsible for the association signals 

observed remains to be established. The remaining eight loci offer the potential of novel 

biological insights into circadian rhythms (Supplementary Note 1). Several candidate causal 

genes have been implicated in circadian rhythms. TNRC6B controls circadian behavior in flies20 

and is bound by known circadian transcription factors. MCL1 has rhythmically expressed mRNA 

in liver21, disrupts circadian rhythms in an RNAi screen using a human osteosarcoma cell line 22, 

and is bound by known circadian transcription factors 23. HTR6 is a G-protein coupled receptor 

known to regulate the sleep wake cycle24-26.  

Fine-mapping, sequencing and experimental studies are necessary to identify the causal 

gene(s) and variant(s) at each locus in order to understand mechanisms by which DNA variation 

influences variation in chronotype. However, clues may emerge from exploration of 

bioinformatic annotations of candidate regulatory variants and ENCODe analyses of chromatin 

states and bound proteins27. For example, rare variant rs141175086 is predicted to disrupt a 

binding site for the known circadian transcription factor DEC1 in an enhancer element within or 

upstream of previously uncharacterized lincRNAs (LOC643837, LINC01128).  

Pathway analyses  

Heritability of chronotype, captured by genome-wide genotypes in this study, was estimated to 

be 19.4% (continuous) and 37.7% (extreme) using GCTA28. Heritability partitioning of 

continuous chronotype GWAS by tissue and functional category using LD-score regression29 

identified enrichment in the central nervous system (Enrichment 2.63, p=1.91x10-6) and 

adrenal/pancreatic tissues (Enrichment 3.63, p=1.34x10-8; Figure 3a and Supplementary 

Table 10). Regions of the genome annotated as highly conserved across mammals30 

(Enrichment 14.33, p=1.75x10-9), and in regions of histone 3 lysine 4 monomethylation that 

mark active/poised enhancer elements (Enrichment 1.30, p=0.0017; Figure 3a and 

Supplementary Table 10) were significantly enriched, supporting a key role of circadian 

rhythms throughout mammalian evolution.  
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Gene-based analysis31 identified 23 genes significantly associated with chronotype (p<2.8x10-6, 

Supplementary Table 11, Supplementary Figure 3). Pathway analysis32 shows a significant 

enrichment in this gene-set for genes previously implicated in Alzheimer’s disease (padj=0.0176) 

and dementia (padj=0.0192), eye abnormalities (padj=0.0176) and eye diseases (padj=0.0253), 

chromosomal deletions (padj=0.0253), and brain diseases (padj=0.0253), central nervous system 

diseases (padj =0.0253), and mental disorders (padj=0.0365). In support, integrative analysis of 

signals with p<1 x 10-5 using DEPICT33, a tool that uses predicted gene functions to prioritize 

genes, gene-sets and tissues, showed suggestive enrichment in gene-sets associated with 

‘fear-response’ and ‘behavioral defense response’ (FDR<0.20), and central nervous and Hemic/ 

immune system tissues (Supplementary Table 12). In total, pathway analyses link the genetics 

of chronotype to central nervous system function and neurological disorders including dementia 

and affective disorders.  

Genetic links with schizophrenia and educational attainment 

Given that circadian rhythms play a fundamental role in human physiology, a key question is the 

extent to which the genetics of chronotype is shared with other behavioral or disease states, 

and importantly whether genetic relationships between chronotype and other traits are causal. 

To address this, we tested for genetic correlation of chronotype with GWAS variants for 19 

phenotypes spanning a range of cognitive, neuro-psychiatric, anthropometric, cardio-metabolic 

and auto-immune traits using LD score regression on chronotype GWAS and publicly available 

GWAS for each trait34. Genetic correlations suggested that tendency towards an evening 

chronotype is related to greater years of education (rg (SE) 0.161 (0.041), p=8.96 x 10-5) and 

increased schizophrenia risk (rg (SE) 0.112 (0.034), p=0.0011 (Figure 3b and Supplementary 

Table 10). Genetic correlations also suggested that a morning chronotype may share underlying 

biology with increased BMI (rg (SE) -0.0851 (0.0281), p=0.0025; Figure 3b and Supplementary 

Table 10).  

Mendelian randomization analyses 

To explore whether the relationship between chronotype and traits with significant genetic 

correlations might be causal, we tested for association of a risk score of genome-wide 

significant chronotype SNPs from 23andMe18 with years of education, schizophrenia and BMI. 

SNPs can be used as instrument variables to test for a causal relationship between two traits, 

and because genotypes are assigned randomly at meiosis, genetic association is not biased by 

confounding or reverse causation possible in observational epidemiology35,36. Since individuals 

do not know their genotype any phenotypic misclassification will be random with respect to 

genotype. In UKBiobank, a significant association was observed between a chronotype genetic 

risk score of SNPs related to eveningness and increased educational attainment (p=0.0167), 

but not schizophrenia (p=0.101) or BMI (p=0.285; Supplementary Table 13). Further 

instrumental variable analyses suggested that for each increase in ‘eveningness’ category, 

educational attainment increased by 7.5 months (p=0.021) (Figure 4, Supplementary Table 

13). We then tested for reverse causation by assessing whether variation in education, 

schizophrenia, or BMI might cause variation in chronotype by testing for association of risk 
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scores for each of these traits obtained from prior large-scale GWAS studies with chronotype. 

No significant associations were observed (Supplementary Table 13).  

 

Discussion 

In this largest GWAS of chronotype to date, we report the discovery of twelve genetic loci 

associated with chronotype, and pathway analysis suggests key roles of genes in the nervous 

and ocular systems. Further, we demonstrate shared biology of chronotype with schizophrenia, 

and possibly BMI, with a putative causal link to educational attainment. 

Several lines of evidence support these association signals as true positives that may help to 

uncover new aspects of circadian biology in humans. First, we detect signals in or near known 

circadian genes at 4 of the 12 loci, including near and in PER2, a clock gene previously 

associated with ASPS6. Second, 3 of these signals have been observed in an independent 

GWAS18 suggesting independent validation of our findings. Third, novel associated loci include 

candidate central circadian clock genes with rhythmic expression in the SCN or circadian 

behavioral phenotypes in model organisms. Fourth, genes under association peaks are 

enriched for central nervous system and ocular processes, both important for generation of 

circadian rhythms. Additional replication to confirm chronotype genetic associations and 

functional follow-up will be necessary to identify causal genes and circuits disrupted by causal 

variants at these loci. 

Our study also defines the genetic architecture of self-reported chronotype, revealing heritability 

estimates consistent with previous literature12-14, despite using a different questionnaire 

instrument than previous studies16. The 12 genome-wide significant loci appear to explain a 

large fraction of chronotype variance (4.3%) but this may be over-estimated due to winners 

curse, or may reflect lower polygenicity of chronotype than seen for other complex traits, since 

variation in a limited number of biological processes (light-sensing, core circadian clock and 

limited downstream effectors) may be causal. Significant enrichment of heritability in highly 

conserved regions is consistent with the strong conservation of circadian rhythms throughout 

evolution37 and may aid in fine-mapping of causal variants and creation of faithful animal models 

for future experimental studies. Similarly, enrichment of heritability in activating enhancer sites 

and borderline enrichment in transcriptional start sites is consistent with the role of the circadian 

molecular clock in fine-tuning of transcriptional regulation23. 

The association signals at loci identified by our study when combined with signals from 

23andme cover genes identified in GWAS for restless legs syndrome and Mendelian and model 

organism studies of narcolepsy, suggesting overlap with other sleep traits.  Genetic variants in 

the region of TOX3 have been previously associated with restless legs syndrome (RLS) in a 

GWAS38. Although the chronotype-associated variant (rs12927162) is not in linkage 

disequilibrium with the lead RLS variant (rs3104767; r2<0.001 in 1KG CEU population), it does 

suggest that TOX3 may have a broader role in basic sleep/circadian physiology.  Additionally, 

rare forms of severe early onset narcolepsy in humans39 and familial narcolepsy in canines40 re 

caused by mutations in HCRTR2, again suggesting shared underlying biology. 
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Chronotype has previously been associated with many behaviors and diseases, such as 

cardiovascular disease, type 2 diabetes, metabolic disorders, risk-taking behavior, cancer, 

psychiatric disorders, and even creativity1,3. Comparing the genetic architecture of chronotype 

captured in this study with an initial series of select phenotypes with publicly-available GWAS 

data, we identified significant genetic overlap between chronotype and schizophrenia, 

educational attainment and possibly BMI. Previous literature links evening chronotype with 

schizophrenia41-43, consistent with our findings. These studies also demonstrate severe 

circadian sleep/wake disruptions in people with schizophrenia, indicating that this relationship 

may be bidirectional. However, our Mendelian randomization analyses did not support causal 

relationships between these two. It is possible that even with our large sample size, we are 

underpowered to rule out an effect of schizophrenia on chronotype.  

We detect a surprising putative genetic link between morning chronotype and higher BMI. 

Previous observational studies have shown association of evening chronotype with higher BMI, 

poorer dietary habits, and decreased inhibitions44-47. Consistently, we noted an observational 

association between eveningness chronotype and BMI (beta=1.003 BMI units/chronotype; 

p=1x10-4; r= 0.011). Our genetic correlation analyses suggest the intriguing possibility that some 

underlying pathways contributing to morning chronotype might increase BMI. We acknowledge 

that independent replication and further large studies are required to fully understand the 

relationship between chronotype and BMI.      

Until now, it has been difficult to discern causal relationships between chronotype and other 

traits because of the potential bias due to confounding or reverse causality, which are unlikely to 

affect genetic studies48. Our work suggests that tendency to eveningness chronotype is 

potentially causally related to increased educational attainment, but replication of these findings, 

and more comprehensive assessment of potential sources of bias will require future 

investigation. Previous studies have reported that night owls earn a larger mean income than 

their earlier rising counterparts49. Another study, performed at a top-ranked business school, 

demonstrated higher GMAT scores in evening types even within a high achieving group50.   It is 

possible that there is misclassification in our self-reported measurement of chronotype. Whilst 

the question clearly asks for preference, participants might have been influenced by the reality 

of their working lives. Those from more deprived socioeconomic positions might have 

occupations that are more restrictive in terms of working hours and hence less able to ‘adhere’ 

to their preference. If this results in a relationship between socioeconomic position and 

misclassification then socioeconomic position would confound any observational associations. 

However, since participants are extremely unlikely to know their genotype for the variants we 

have identified, any misclassification of chronotype by genotype will be random with the 

expectation that the genetic correlation and Mendelian randomization studies would be biased 

towards the null.    

Our study is well-powered to detect genetic variants associated with chronotype, with previous 

studies demonstrating the power of a sample size >100,000 for detecting genetic effects51. The 

study uses a single harmonized question across a large cohort, which is in contrast with 

previous studies that needed to harmonize data across several cohorts with varying measures 

of chronotype. Our measure of chronotype is based on self-identification, and may reflect timing 
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preference more so than objective measures of chronotype and since it does not take weekday 

and weekend behavior into account, any misclassification may be related to occupation and/or 

socioeconomic position.  However, as noted above, for our genetic correlation and Mendelian 

randomization analyses this would be expected to bias findings towards the null. Our cohort is 

aged 40 to 69 and of European ancestry, which reduces the likelihood of bias due to population 

structure, but means we cannot necessarily assume our results generalize to other groups. That 

said the distribution of chronotype is consistent with that found in previous studies52-54.  

In summary, in a large-scale GWAS of chronotype, we identified 12 new genetic loci that 

implicate known components of the circadian clock machinery and point to previously unstudied 

genetic variants and candidate genes that might modulate core circadian rhythms or light-

sensing pathways. Furthermore, genome-wide analysis suggests that chronotype shares 

underlying genetic pathways with educational attainment, schizophrenia and possibly BMI, and 

that evening chronotype might be causally related to higher educational attainment. This work 

should advance biological understanding of the molecular processes underlying circadian 

rhythms, and open avenues for future research in the potential of modulating circadian biology 

to aide prevention and treatment of associated diseases.    

 

Methods 

Population and study design 

Study participants were from the UK Biobank study, described in detail elsewhere55. In brief, the 

UK Biobank is a prospective study of >500,000 people living in the United Kingdom. All people 

in the National Health Service registry who were aged 40-69 and living <25 miles from a study 

center were invited to participate between 2006-2010. In total 503,325 participants were 

recruited from over 9.2 million mailed invitations. Self-reported baseline data was collected by 

questionnaire and anthropometric assessments were performed. For the current analysis, 

individuals of non-white ethnicity were excluded to avoid confounding effects.  

Chronotype and covariate measures 

Study subjects self-reported chronotype, sleep duration, depression, medication use, age, and 

sex on a touch-screen questionnaire. Chronotype was derived from responses to a chronotype 

question that participants answered, along with other study questions, on a touch-screen 

computer at each assessment centre. The question was taken from the Morningness-

Eveningness questionnaire; it is the question from that questionnaire that explains the highest 

fraction of variance in preferences in sleep-wake timing and is an accepted measure of 

chronotype54. The question asks: “Do you consider yourself to be…” with response options 

“Definitely a ‘morning’ person”, “More a ‘morning’ than ‘evening person”, “More an ‘evening’ than 

a ‘morning’ person”, “Definitely an ‘evening’ person”, “Do not know”, “Prefer not to answer”. This 

question specifically does not ask about actual sleeping pattern, and nor does it distinguish 

between weekday and weekend behavior and was accessed at the time of exam, which crosses 

days of the week and seasons across participants. 498,450 subjects answered this question, 
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but only the 153,000 with genetic data were considered for this analysis. Subjects who 

responded “Do not know” or “Prefer not to answer” were set to missing. Chronotype was treated 

both as a continuous trait, with chronotype coded 1-4, where 1 represents definite morning 

chronotype, and a dichotomous trait, with definite morning responders set to control 

(n=125,052) and definite evening responders set to case (n=41,741). Depression was reported 

in answer to the question “How often did you feel down, depressed or hopeless mood in last 2 

weeks?” (cases, n=4,279). Subjects with self-reported shift work (n=22,165) or sleep medication 

use (n=4,575) were excluded. 

Genotyping and quality control 

Of the ~500,000 subjects with phenotype data in the UK Biobank, ~153,000 are currently 

genotyped. Genotyping was performed by the UK Biobank, and genotyping, quality control, and 

imputation procedures are described in detail here56. In brief, blood, saliva, and urine was 

collected from participants, and DNA was extracted from the buffy coat samples. Participant 

DNA was genotyped on two arrays, UK BiLEVE and UKB Axiom with >95% common content 

and genotypes for ~800,000 SNPs were imputed to the UK10K reference panel. Genotypes 

were called using Affymetrix Power Tools software. Sample and SNP quality control were 

performed. Samples were removed for high missingness or heterozygosity (480 samples), short 

runs of homozygosity (8 samples), related individuals (1,856 samples), and sex mismatches 

(191 samples). Genotypes for 152,736 samples passed sample QC (~99.9% of total samples). 

SNPs were excluded if they did not pass QC filters across all 33 genotyping batches, with a 

missingness threshold of 0.90. Batch effects were identified through frequency and Hardy-

Weinberg equilibrium tests (p-value <10-12). Before imputation, 806,466 SNPs pass QC in at 

least one batch (>99% of the array content). Population structure was captured by principal 

component analysis on the samples using a subset of high quality (missingness <1.5%), high 

frequency SNPs (>2.5%) (~100,000 SNPs) and identified the sub-sample of European descent.  

Imputation of autosomal SNPs was performed to a merged reference panel of the Phase 3 1000 

Genome Project and the UK10K using IMPUTE357. Data was prephased using SHAPEIT358. In 

total, 73,355,677 SNPs, short indels and large structural variants were imputed. Post-imputation 

QC was performed as previously outlined and an info score cut-off of 0.1 was applied. For 

GWAS, we further excluded SNPs with MAF <0.00016, a threshold which represents a 

minimum 50 counts of each genotype, a conservative threshold. In total, 100,400 samples of 

European descent with high quality genotyping and complete phenotype/covariate data were 

used for these analyses. Genotyping quality of two significant rare SNPs (rs1144566 and 

rs35333999) was verified by examination of genotyping intensity cluster plots (Supplementary 

Figure 5). In addition, for two significant imputed rare SNPs which checked Information Quality 

Scores (info) and found these to be  above the standard threshold of 0.40 used to indicate good 

imputation quality59 (rs141175086 info =0.48 and rs148750727 info = 0.88). Considering the 

size of the genotyped UK Biobank cohort (N~150,000), an information measure of 0.4 on a 

sample of 150,000 individuals indicates that the amount of data at the imputed SNP is roughly 

equivalent to perfectly observed genotype data in a sample of N~60,000.  

Statistical Analysis 
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Genetic association analysis was performed in SNPTEST60 with the “expected” method using 

an additive genetic model adjusted for age, sex, 10 principal components of ancestry and 

genotyping array. Genome-wide association analysis was performed separately for continuous 

chronotype and “extreme” chronotype with a genome-wide significance threshold of 5x10-8. 

Follow-up analyses on genome-wide significant loci included sex interaction testing using a 

linear regression model including a sex*SNP interaction term, performed in R61, conditional 

analysis using SNPTEST conditioning on the lead signal in each locus ±500kb, covariate 

sensitivity analysis individually adjusting for sleep duration, sleep disorders, insomnia, and 

depression/psychiatric medication use. Heritability was calculated using BOLT-Reml62. Post-

GWAS analysis of LD Score Regression (LDSC)29,34,63 was conducted using all UK Biobank 

SNPs also found in HapMap364 and included publicly available data from 19 published genome-

wide association studies, with a p-value threshold of 0.0026 after Bonferroni correction for all 19 

tests performed. Gene-based testing was performed using VEGAS31 on GWAS summary 

statistics from SNPs and samples passing rigorous quality control , and gene-set enrichment of 

genes significant after Bonferroni correction was performed using Web-Gestalt32.  Given that 

gene-based tests like VEGAS are sensitive to missing data and may show inflation and low 

power with if data for rare variants is missing65, we note low missingness rates (>80% of SNPs 

had over 99.5% genotyping call rate), and for <5% of SNPs that may have failed in a subset of 

33 batches, imputation was used to infer missing genotypes. Furthermore, our gene-based 

testing included only single SNP association results for variants with over 50 minor allele 

counts. A Q-Q plot of inflation-adjusted gene-based results for 17,791 genes is shown in 

Supplementary Figure 3.  Pathway-based analysis to identify enrichment in biological 

processes, gene-sets and tissues suggested by the top loci was performed in DEPICT33 for all 

SNPs present in 1KG phase 366.  

For Mendelian randomization analyses, the weighted genetic risk score was calculated by 

summing the products of the chronotype risk allele count for 15 SNPs multiplied by the scaled 

chronotype effect reported by 23andMe18 i.e. using weights from an independent study to our 

own). The instrumental variable analyses were performed in R40 using the two-stage-least-

squares method (TSLS function in the SEM package). The risk scores for education, 

schizophrenia, and BMI were constructed using the GWS SNPs and weights from previously 

published GWAS67-69 and tested on chronotype using the summary statistics from our reported 

GWAS using the GTX package in R.   
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Figure 1. Manhattan and QQ plots for genome-wide association analysis of both continuous (A 

& B) and extreme (C & D) chronotype. Manhattan plots (A. and C.). Red line is genome-wide 

significant (5x10-8) and blue line is suggestive (1×10-6). Q-Q plots (B. and D.). Nearest gene 

name is annotated. Heritability estimates were calculated using BOLT-REML and lambda 

inflation values using GenABEL in R.  
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Figure 2. Regional association plots for genome-wide significant chronotype loci (A.-L.). Panels 

A-I show loci associated with continuous chronotype, J-L show loci associated with extreme 

chronotype. Genes within the region are shown in the lower panel. The blue line indicates the 

recombination rate. Filled circles show the -log10 P value for each SNP, with the lead SNP 

shown in purple. Additional SNPs in the locus are colored according to correlation (r2) with the 

lead SNP (estimated by LocusZoom based on the CEU HapMap haplotypes). *chr7 

rs372229746 is not in the reference panel, therefore LD data is unavailable for this SNP. 
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Figure 3. Overall genetic architecture of chronotype across tissues, functional categories, and 

cross-trait genetic correlation. A. Enrichment estimates for the main annotations and tissues of 

LDSC. Error bars represent 95% confidence intervals around the estimate. Categories are 

sorted by p-value, with boxes indicating annotations or tissues which pass the multiple testing 

significance threshold. B. Chronotype regression estimates of genetic correlation with the 

summary statistics from 19 publicly available genome-wide association studies of psychiatric 

and metabolic disorders, immune diseases, and other traits of natural variation. The horizontal 

axis indicates the phenotype compared to categorical chronotype and the vertical axis indicates 

genetic correlation. Error bars are standard errors. Abbreviations: Tss=transcription start site, 

DHS=DNase hypersenstivity, UTR=untranslated region, CTCF=CCCTC-binding transcription 

factor, TFBS=transcription factor binding site, CNS=central nervous system, GI=gastrointestinal, 

BMI=body mass index, ADHD=attention deficit hyperactivity disorder, T2D=type 2 diabetes. 
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Figure 4. Mendelian Randomization: Under the assumptions of instrumental variable Mendelian 

randomization analyses70, our results show that having an evening chronotype results in higher 

educational attainment. In this analysis, for the chronotype risk score (comprised of 15 SNPs 

from the 23andMe GWAS of chronotype, weighted by effect size), the β coefficient for the 

association with chronotype was regressed on the β coefficient for the association with the main 

educational attainment trait in the UKBiobank (n=68,718) using TSLS.

Chronotype 

Genetic Risk 

Score

(15 SNPs)

Chronotype

Age at 

culmination of 

education

unmeasured 

confounders

+ 0.015 

“eveningness” units/

allele p<0.0001

+ 0.1 month/“eveningness” chronotype allele

p=0.0167

+ 1.08 months/

chronotype

p<0.0001

Mendelian Randomization for 

causal relationship of Chronotype 

on Educational Attainment:

β= 0.625 (.270), p=0.021
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Table 1. Genome-wide significant loci associated with chronotype in subjects of European ancestry in the UKBiobank. 
  

          

Continuous Chronotype (n=100,420) 
(1-4 ranging from “definite morning” 

to “definite evening”) 

Extreme Chronotype                
(n= 8,724 evening type cases, 

n=26,948 morning type controls)   

SNP  
Chr:position 

NCBI 37 
Nearest 
 Gene  

Alleles 
(E/A)  EAF  Beta (SE) p-val OR (95% CI) p-val 

 Most likely causal 
SNPs (probability)* 

rs141175086 1:780,397 LINC01128 C/T 0.998 0.266 (0.070) 1.42 x 10
-4

 2.16 [1.34 3.49] 4.38 x 10
-8

 rs141175086 (1.00) 

rs2050122  1:19,989,205  HTR6  C/T  0.80 0.031 (0.006) 4.61 x 10
-8

 1.12 [1.07-1.17] 7.94 x 10
-7

 rs2050122 (0.385) 

rs76681500  1:77,713,434  AK5 G/A  0.84 0.043 (0.006) 1.50 x 10
-12

 1.16 [1.10-1.22] 1.77 x 10
-9

 rs76681500 (0.665) 

rs10157197 1:150,250,636  APH1A  A/G  0.40 0.028 (0.005) 1.48 x 10
-9 

 1.13 [1.09-1.17] 1.27 x 10
-11

 

rs10157197 (0.085), 
rs11205355 (0.085) 

rs1144566 1:182,569,626 RGS16 C/T 0.97 0.099 (0.013) 2.62 x 10
-14

 1.35 [1.22-1.50] 1.29 x 10
-8

 

rs1144566 (0.213), 

rs694383 (0.213), 
rs12743617 (0.213), 
rs509476 (0.213) 

rs11895698  2:239,338,495  ASB1 T/C  0.14 0.035 (0.006) 1.15 x 10
-8

 1.10 [1.05-1.15] 1.30 x 10
-4

 

rs11895698 (0.279), 
rs3769118 (0.279) 

rs11708779  3:55,934,939  ERC2  G/A  0.65 0.026 (0.005) 3.08 x 10
-8

 1.09 [1.06-1.13] 1.20 x 10
-6

 rs11708779 (0.769) 

rs148750727 4:188,022,952 FAT1 T/G 0.995 0.154 (0.033) 3.61 x 10
-6

 2.34 [1.69-3.23] 1.58 x 10
-8

 rs148750727 (1.00) 

rs372229746  7:102,158,815  FBXL13  A/G  0.45 0.034 (0.005) 5.18 x 10
-10

 1.12 [1.07-1.16] 4.29 x 10
-7

 N/A 

rs17311976 8:131,637,337 ADCY8 C/T 0.19 0.028 (0.006) 1.08 x 10
-6

 1.13 [1.08-1.18] 3.37 x 10
-8

 N/A 

rs542675489 12:120,994,888 RNF10 C/CA 0.60 0.027 (0.005) 3.29 x 10
-9

 1.09 [1.05-1.13] 1.38 x 10
-5

 rs542675489 (1.00) 

rs4821940 22:40,659,573 TNRC6B C/T 0.55 0.026 (0.004) 1.05 x 10
-8

 1.07 [1.04-1.11] 8.56 x 10
-5

 rs4821940 (0.172) 

     

        

 
Suggestive Secondary Signal 

   

        

 
rs35333999 2:239161957 PER2 T/C 0.043 0.059 (0.011) 8.43 x 10

-8
 1.21 [1.11-1.32]  9.01 x 10

-6
  N/A 

 E=effect allele, A=alternative allele, Chr=chromosome, OR=Odds Ratio, CI=confidence interval. Ancestral allele is indicated in bold. EAF=effect allele frequency. Candidate Putative 
causal SNPs were identified by PICS. Note, increasing beta and Odds Ratio indicate greater evening type preference. 
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