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Abstract

Background: Oyster is rich in glycogen and free amino acids and is called “the milk of sea”. To understand the
main genetic effects of these traits and the genetic networks underlying their correlation, we have conducted the
whole genome resequencing with 427 oysters collected from the world-wide scale.

Results: After association analysis, 168 clustered significant single nucleotide polymorphism (SNP) loci were
identified for glycogen content and 17 SNPs were verified with 288 oyster individuals in another wide populations.
These were the most important candidate loci for oyster breeding. Among 24 genes in the 100-kb regions of
the leading SNP loci, cytochrome P450 17A1 (CYP17A1) contained a non-synonymous SNP and displayed
higher expressions in high glycogen content individuals. This might enhance the gluconeogenesis process
by the transcriptionally regulating the expression of phosphoenolpyruvate carboxykinase (PEPCK) and
glucose 6-phosphatase (G6Pase). Also, for amino acids content, 417 clustered significant SNPs were identified. After
genetic network analysis, three node SNP regions were identified to be associated with glycogen, protein, and Asp
content, which might explain their significant correlation.

Conclusion: Overall, this study provides insights into the genetic correlation among complex traits, which will facilitate
future oyster functional studies and breeding through molecular design.

Keywords: Oyster, Nutrient traits, Genome resequencing, Population structure, Genome-wide association study,
Genetic network

Background

The Pacific oyster Crassostrea gigas is an important

marine fishery resource cultivated globally. Its annual

global production continues to increase at a rate of 4

million tons per year [1]. However, with the increas-

ing demand for the high quality of seafood, breeders

have began to focuse on the genetic breeding to im-

prove oyster quality traits. Oyster is rich in taurine

(50 μmol/g wet weight), amino acids (45–57% of dry

weight), and glycogen (20–40% of the dry weight),

but with low content of fat and cholesterol [2]. These

traits are related not only to the flavor and the qual-

ity of oysters, but also to their hardiness, which is the

most important objective of nutrient breeding of oys-

ters. More important, many studies revealed that dif-

ferent oysters individuals carrying a large amount of

phenotype (glycogen, amino acids contents) and gen-

etic variations, providing important resources to im-

prove oyster qualities [3, 4]. However, the traditional

cross breeding methods usually have long cycle and

was low efficiency [5]. Recently, molecular breeding

has been used for the cultivation of new shellfish var-

ieties. However, this breeding method needs to under-

stand the genetic architecture underlyging these
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breeding traits [6, 7]. Therefore, the genetic studies of

oyster nutrient traits, such as glycogen, protein and

amino acids, is necessary for the development of mo-

lecular breeding inoysters.

Studies on the genetic basis of glycogen, amino acid,

and protein content have been extensively conducted in

various domesticated animals, as well as in crops [8–10],

cattle [11], pigs [12], Atlantic salmon [13], carp [14], and

Asian seabass [15]. However, in bivalves, nutrient trait-

related studies are limited. To date, genetic studies on

target traits and breeding have mainly focused on their

growth and stress resistance [16–18]. Genetic studies of

glycogen, protein, and amino acids in mollusks are

scarce as they are expensive and not amenable to high-

throughput assays. Several SNP loci for glycogen content

were detected by target sequencing [19, 20]. For ex-

ample, an effective haplotype of glycogen synthase is

found in C. gigas, which is significantly related to the

glycogen content [20]. However, these analyses mainly

focused on several genes involved in glycogen synthesis

and degradation pathways. With respect to complex

regulation mechanisms, this analysis cannot detect the

major loci and genes.

Recently, more and more evidences revealed that

genome-wide association (GWA) studies was a power-

ful method to identify the nucleotide polymorphisms

associated with agronomics traits in plants and ani-

mals [21, 22]. In bivalves species, GWAS for growth

[23], shell color [24], sex-determination [25] and dis-

ease resistance has been conducted in oysters,

scallops, etc. Several methods that utilize NGS for

genotyping, such as reduced genome representation

sequencing methods—2b-RAD-seq, genotyping-by-se-

quencing (GBS), and whole-genome resequencing ana-

lysis [26]. For example, GBS sequencing has been

used to conduct GWAS analysis to illustrate the gen-

etic basis of carotene content in scallops [24]. How-

ever, reduced genome representation sequencing can

genotype only a fraction of the genome. With the ad-

vances in high-throughput sequencing technologies,

the genome of several mollusks have been completed

[27–29]. Therefore, the GWAS of glycogen, protein,

and amino acids by genome resequencing will provide

valuable information for molecular breeding of oys-

ters, which has not been conducted in marine bi-

valves until now.

Several traits exhibit heritable covariation, adding to

the complexity of breeding. However, information on

specific trait is insufficient for molecular breeding. In

plants, the correlation analysis of complex traits has

been conducted by many studies [30, 31]. In oysters, the

objective of breeding is to improve yield, and multiple

selection criteria, including glycogen, protein, and amino

acids content, have been applied. These traits exhibit

positive or negative correlation with each other. Infor-

mation on trait covariation is essential for the genetic

improvement of multiple complex traits [32].

In the present study, we aimed to understand the main

genetic effects of nutrient traits and genetic networks

underlying phenotypic correlation in oysters. Four hun-

dred and twenty-seven individuals were collected to con-

duct genome resequencing, which were used to perform

GWAS to identified new SNP loci for these characteris-

tics. The candidate SNP loci were further verified with

the 190 K SNP array using other populations and the

candidate genes were used for the functional analysis.

Further, genetic networks between different traits were

also analyzed. The results will facilitate future breeding

of oysters to improve these traits through genomic

selection.

Results

Genotyping of 427 individuals from 26 sample collection

sites

In the present study, we collected 427 individuals

from different geographical populations (Fig. 1a), cov-

ering the main oyster production areas in North

China, as well as from Korea, Japan, and Canada. The

major information for these 26 locations were repre-

sented in Additional file 1: Table S1. Resequencing

and population structure analysis of 371 wild oysters

collected in China have been conducted by us previ-

ously [33]. In the present study, 42 other individuals col-

lected from different countries, including Canada, Japan,

and Korea, were further used for whole genome resequen-

cing. In total, 4.8 billion paired-end reads of 427 individuals

were generated with a mean depth of approximately 20×

for each oyster (Additional file 2: Table S2). After mapping

against the reference genome and SNP calling, a total of 52,

142,764 SNPs and 12,153,683 small indels (≤ 6 bp) were

identified (Additional file 2: Table S2). The accuracy of the

identified SNPs was more than 96.5 and 98.2% according to

SNP chip array and Sanger sequencing verification [33].

These SNPs were used to evaluate linkage disequilib-

rium (LD), which decayed to 0.25–0.33 beyond 100 bp

in different populations (Fig. 1b). This LD decay was fas-

ter than that in several plants (such as rice [34], maize

[35], soybean [31], and cotton [36]) and mammals (such

as pig [37] and human [38]). For the fast decay of LD, it

is easy to locate the candidate genes within a LD block,

a universal problem that occurs in plant GWAS [31, 39].

The population of C. gigas in North China can be classi-

fied into four main clades, based on their geographical

distribution [33]. In the present study, the neighbor-join-

ing tree (NJ) suggested that three populations from

Canada, Japan, and Korea were different from the indi-

viduals in China (Additional file 10: Figure S1). The C.

angulata was used as the outgroup. The PCA analysis
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further supported this difference (Fig. 1c). This was re-

lated to their geographical distribution pattern, which

has been reported to be associated with some special

polymorphism loci in mollusks. This suggests that the

427 individuals may have population differentiation,

which was used as a covariate within the GWAS model.

Phenotyping of 427 individuals

The 427 female individuals collected from different loca-

tions were usd for breeding and produce 427 half-sib fam-

ilies. The F1 oysters from 427 half-sib families were bred

and cultured in Qingdao and were used for the assay of

their phenotype traits (the content of glycogen, protein, and

18 amino acids). The 30 individuals were collected in each

family and were used for phenotype detection (a total of 12,

810 individuals), which represented 427 female parents’

phenotypic values. The F1 breeding method and phenotypic

values have been presented in Additional file 11: Figure S2

and Additional file 3: Table S3, respectively. Except the

content of methionine (Met), arginine (Arg), and

cysteine (Cys), other traits presented normal distri-

bution (Additional file 12: Figure S3) and exhibited

significant variations among the 427 individuals

(Additional file 4: Table S4). The glycogen content

ranged from 44.02 to 239.04 mg/g and the largest

fold change was 5.43. For most amino acids, the fold

changes among individuals ranged from 1.4 to 3.9.

However, the two S-containing amino acids, includ-

ing Cys and Met, presented 19.4- and 18.4-fold

changes. The phenotypic diversity of these traits was

comparable with that of various crop varieties re-

ported previously [40]. Among the eighteen detected

amino acids, the content of glutamic acid (Glu) and tau-

rine (Tau) was the highest, accounting for 14 and 11% of

the total amino acid content (TAA), respectively. Besides,

the delicious amino acids (DAAs), including Glu, aspartate

(Asp), glycine (Gly), alanine (Ala), phenylalanine (Phe),

and tyrosine (Tyr), accounted for 41% of the TAA content

(Additional file 13: Figure S4). We also estimated pheno-

typic correlations among the analyzed traits. The glycogen

content exhibited significant negative correlation with

traits such as protein and amino acid component (except,

Cys and Met). Further, 15 amino acids showed signifi-

cantly positive correlation with each other (Fig. 1d,

Fig. 1 Geographic distribution and genetic structure of 427 oyster individuals. a. The world-scale geographic distribution of Crassostrea gigas. 1.
DanDong; 2. ZhuangHe; 3. Haiyang Dao; 4. DaLian; 5. Bayu Quan; 6. JinZhou; 7. QinHuangdao; 8. ChangLi; 9. LaoTing; 10. BinZhou; 11. WeiFang;
12. YanTai; 13. WeiHai; 14. RongCheng; 15. Qingdao_ShenTanggou; 16. QingDao_JiaoNan; 17. RiZhao; 18. LianYungang. The maps were download
from http://commons.wikimedia.org/wiki/Main_Page. b, c. The LD decay and PCA analyses of the 427 oysters collected. d. The correlation analysis
of different quality traits in oysters—glycogen, protein, and amino acids content. The x-lab and y-lab indicate correlation value and
P-value, respectively
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Additional file 5: Table S5). Especially, Asp, Leu, Glu, and

Thr presented strong positive correlation (r > 0.8, P < 0.01)

with each other, as they are physiologically correlated.

However, the content of Met exhibited negative correl-

ation with several amino acids, but it positively correlated

with the content of Cys, Arg, His, and Try.

GWAS identified the significantly associated loci (SAL)

with glycogen and protein

We conducted a GWAS on 20 traits (including the content

of glycogen, protein, and 18 amino acids) based on 4.2 mil-

lion high quality SNP markers (SNPs with a minor allele

frequency [MAF] of ≥0.05) genotyped from 427 individuals

using the mixed linear model (Additional file 14: Figure S5,

Additional file 15: Figure S6, Additional file 16: Figure S7).

The population structure was represented by the first three

principal components, which were fitted as fixed effects.

After GWAS, we identified 175 and 32 significantly associ-

ated loci (SAL) for glycogen and protein content, explaining

3.59–23.72% and 3.10–16.61% of phenotypic variation with

a suggestive threshold (P < 1 × 10 − 6 in a mixed model; false

discovery rate (FDR) < 0.05). For glycogen analysis, 168 of

175 SNPs were clustered into a peak on chromosomes 6, 8,

and 9 (Additional file 6: Table S6, Fig. 2a), which were

mainly discussed in the following parts. Sixty-seven SNPs

were clustered in scaffold1243 (chromosome 9), 7 loci in

scaffold1597 (chromosome 8), 39 loci in scaffold340

(chromosome 6), 16 loci in scaffold389 (chromosome 9),

and 39 loci in scaffold426 (chromosome 6) (Additional file

6: Table S6). Among these loci, 111 SNPs distributed in the

gene region and 57 in the intergenic region. Also, these

clustered loci within the same scaffold presented high LD

correlation (r2 > 0.4) (Figs. 2b, Additional file 15: Figsure S6

and Additional file 16: Figure S7). For protein contents, 21

of 32 SNPs were clustered into a peak on scaffold340

(chromosome 6).

GWAS signals validation for glycogen and protein

contents with 288 individuals

We further conducted the association analysis with 288

oyster individuals collected in Qingdao in 2014 to valid-

ate the GWAS results for glycogen and proteins. These

288 individuals were one-year old and were cultured in

the same environment, which were used for phenotype

and genotype detection. The genotypes were obtained

using the 190 K SNP Chips [41]. After SNP filtering,

145,550 SNPs were used for GWAS analysis. A total of

9,050 and 9,336 SNP loci were identified to be associ-

ation with glycogen and protein contents (P-value ≤ 0.05)

(Additional file 7: Table S7, Additional file 8: Table S8).

We mainly focused on the SNPs located on candidate

regions (scaffold1243, 1597, 340, 389 and 426) which ob-

tained from the GWAS results. We found 17 loci on

scaffold1243, scaffold1597, scaffold340, and scaffold426

were further verified to be significantly (P-value ≤ 0.05)

associated with glycogen content (Fig. 2b). Four loci in

scaffold340 were verified to be associated with protein

contents (P-value ≤ 0.05). For the high LD values

(r2>0.4) of SNPs on scaffold1243, 1597, 340 and 426

(Additional file 15: Figure S6), we think that these re-

gions were most important candidates for glycogen

analysis.

CYP17A1 was responsible for glycogen synthesis

We have conducted the candidate genes analysis within

100 kb of the leading SNPs on scaffold1243, 1597, 340,

389 and 426. There are 21 genes located within 100 kb

of the leading SNPs in these regions based on our gen-

ome sequence (Additional file 17: Figure S8). Only two

genes, including steroid 17-α-hydroxylase/17,20 lyase-

like (CYP17A1) and one unknown gene, contained non-

synonymous SNPs. As the major candidate gene associ-

ated with glycogen contents, we have analyzed CYP17A1

at a single gene resolution level in oysters.

CYP17A1 contained 12 significantly associated

SNPs with glycogen content and 8 SNPs located in

exon regions. A significant non-synonymous SNP

that caused a change from C (11 individuals) to T

(341 individuals) at 425 amino acid position in the

protein sequence (1,275 bp in the CDS) resulted in a

change from F (Phe) to L (Leu), accounting for 6.2%

of the phenotypic variation (Fig. 2c, d). Therefore,

there was an average increase of 135.77 mg/kg in

glycogen content, which is higher than the average

effect of unfavorable allelic class (108.65 mg/kg). Ac-

cording to the multiple alignment and three-dimen-

sional protein structural modeling analysis, F425 L

located at a turn in β-sheet and formed the sub-

strate-binding pocket (Additional file 18: Figure S9).

This mutation might affect the substrate binding

activity of this enzyme. Further, we have selected

100 individuals collected in Qingdao in 2014 to con-

duct the GBA analysis. This non-synonymous SNPs

were also associated with glycogen content within

this population (P-value = 0.03) (Fig. 2d). Also, we

have identified a total of 19 SNPs in the CDS region

of this gene and four haplotypes based on this non-

synonymous SNPs (Fig. 2d). However, these haplo-

types did not exhibit significant association with

glycogen content. Gene expression analysis showed

that the CYP17A1 was highly expressed in individ-

uals with higher glycogen contents (Fig. 2e). In order

to observe its regulation mechanism for gluconeo-

genesis metabolism, we have analyzed two key genes

expressions participated in gluconeogenesis metabol-

ism process, including PEPCK and G6Pase. Their

expressions were higher in high glycogen contents
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Fig. 2 (See legend on next page.)
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individuals, indicating their stronger gluconeogenesis

capacity.

GWAS analysis of different amino acids content

We have also conducted GWAS analysis with 426 individ-

uals with 18 different amino acids. A total of 787 significant

SNPs (P < 10− 6) were identified to be associated with these

traits (Additional file 6: Table S6), explaining 0.3–49% of

phenotypic variation. The largest was observed for Arg

content in oysters. The Manhattan plots revealed that 417

clustered SNPs were distributed in different chromosomes

(Additional file 14: Figure S5, Additional file 6: Table S6).

For the high correlation among amino acid components,

many significant SNPs for different amino acids were over-

lapped (Additional file 6: Table S6). Especially, we identi-

fied two regions in scaffold426 and scaffold340 co-

associated with the content of Asp, Glu, Leu, Ser,

and Thr (Fig. 3a), and their phenotype correlation

coefficient was > 0.8. Furthermore, these two regions

overlapped with glycogen content, indicating that the

same underlying mechanisms regulated the content

of glycogen and these five amino acids. Among these

two regions, 10 genes were identified, and they were

the most important candidates to explain their gen-

etic correlation (Fig. 3b and c). Also, a total of 66

candidate genes for all amino acids’ components

were identified within 100 Kb regions (Figs. 2 and 3,

Additional file 19: Figure S10).

Besides, Met exhibited a weak negative correlation

with others (except with Cys), which was further used

to analyze (Additional file 5: Table S5). Out of 154

signals in GWAS for Met content, 60 were clustered

in chromosomes 3, 6, and 9. These clustered SNPs

were distributed in the following regions: 134,231 to

148,283 bp in scaffold618 (chromosome 3), 50,589 to

63,179 bp in scaffold535 (chromosome 9), 47,819 to

51,456 bp in scaffold1610 (chromosome 7), and 242,

446 to 243,557 bp in scaffold142 (chromosome 3)

(Fig. 4a, Additional file 6: Table S6). In these regions,

only two genes contained non-synonymous SNPs.

One was a non-synonymous SNP mutation from G to

C (GWAS, P = 7.98E-07) at 548-bp position of an un-

known gene (Crassostrea_gigas_GLEAN_10005147) in-

duced amino acid transformation from T to R. The

other was a non-synonymous SNP mutation from A

to G (GWAS, P = 2.03E-08) at 3097-bp position of

collagen α-1(XXIV) chain gene (Crassostrea_gigas_

GLEAN_10013041) induced amino acid transform-

ation from M to V (Fig. 4b). Moreover, these two SNPs

induced 6.55 and 15.75% phenotypic variations, respect-

ively, which were the most important candidate genes

involved in Met synthesis (Additional file 6: Table S6). An-

other S-containing amino acid, Tau is a FAA, which is not

utilized in protein synthesis, but is found free or in simple

peptides. Taurine is synthesized from Met and Cys, and it

is present in high concentrations in oysters and is the

most abundant FAA. In the present study, 12 significant

SNP signals were identified for taurine content (Fig. 4c).

Among them, six signals were clustered on scaffold801

(Chromosome 1), located upstream and in the extron of

perlucin (PLC) (Fig. 4d), explaining the phenotypic vari-

ation by 7.54–8.48% (Additional file 6: Table S6). Besides,

a significant correlation between the polymorphisms of

these two genes (PLC and collagen α-1) and two S-con-

taining amino acids content (Tau and Met) was observed,

inducing a differential expression pattern of these two

genes in high and low amino acid content individuals (Fig.

4c, d and h). It has been revealed that PLC and collagen

α-1 could promote calcium carbonate precipitation and

participate in shell formation in mollusks. Also, these

two S-containing amino acids participated in shell

formation and biomineralization process in mollusks

[42, 43]. In the present study, the polymorphism of

these two genes induced their differential expression

patterns, which might affect the shell formation

process in oyster. However, further studies should be

conducted to analyze this genes function in the amino

acids’ metabolism process.

Complex trait interaction

From the physiological correlation analysis, we found

that several traits displayed positive or negative correl-

ation with each other, suggesting that they might be gen-

etically co-regulated (Additional file 5: Table S5). To

elucidate the genetic basis of the correlation among dif-

ferent traits, we analyzed the association networks using

by a previously reported method [31] based on the LD

analysis. The results revealed that several SALs were

(See figure on previous page.)
Fig. 2 Genome-wide association study of glycogen content and candidate gene analysis in different oyster populations. a The Manhattan and
QQ plots of glycogen content in oysters. The negative log10-transformed P-values from a genome-wide scan are plotted against position on each
of the 10 chromosomes. Red horizontal dashed line indicates the genome-wide significance threshold. b The verification of significant loci using
190 K SNP chips with 300 individuals collected from Qingdao in 2013. c The 0.1-Mb region on each side of the peak SNP in scaffold389, and the
position of peak SNP is indicated by a vertical red line with the red triangle. d The gene base analysis (GBA) of CYP17A1 by the PCR with 100
individuals collected from Qingdao in 2013. After the identification of SNPs, the association analysis was conducted using the SHEsis software
(http://analysis.bio-x.cn/) and five haplotypes were identified. Furthermore, the association between the SNP loci or related haplotypes and
glycogen content was analyzed. e The expression pattern of CYP17A1, PEPCK, and G6Pase in high and low glycogen content populations.
Significant difference was calculated by the t-test (** indicates P < 0.01, * indicates P < 0.05, n = 15)
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connected for most traits, which regulated the associ-

ation phenotypes (Additional file 9: Table S9, Fig. 5a).

One group of the connected SALs located on scaf-

fold340 and scaffold426 regions, which regulated the

content of glycogen, protein, Asp, Ser, Leu, and Thr. Be-

sides, the SAL on scaffold1243 plays important roles in

the regulation of glycogen, protein, and Asp content,

whereas, that on scaffold1597 regulates glycogen and

Cys content.

Especially, in oysters, the content of glycogen, protein,

and Asp has significant positive or negative correlation

with each other (Fig. 5b). We have identified three node

SNP loci associated with these three characters in scaf-

fold340, scaffold426, and scaffold1243. To verify the ef-

fects of these three regions in the association network,

we analyzed different genotypes with leading SNP loci in

scaffold340, scaffold426, and scaffold1243 (Fig. 5c). The

content of glycogen, protein, and Asp was compared be-

tween different genotyping types. The results showed

that the oysters with the genotype GG_TT_R (82% indi-

viduals) have significantly higher glycogen content and

lower protein and Asp content than those with the

genotype AA_CC_R (13% individuals), confirming that

these three loci play an important role in regulating

these three important agronomic traits simultaneously

(Fig. 5d). In previous studies, several polymorphic sites

have been identified to be associated with glycogen con-

tent in mollusks. However, the correlation between dif-

ferent quality traits and their genetic basis has not been

studied. Our results provide a genetic explanation for

the significant (P < 0.01, Pearson’s product-moment cor-

relation) positive relationship between protein and Asp

content, as well as the negative relationship between

glycogen and protein or Asp content.

Discussion

We have performed an integrated GWAS analysis with

expression profiling data and GBA, which we used to

rapidly identify candidate genes associated with glycogen

and amino acids contents in oysters. We have mapped

175, 32 and 787 GWAS signals significantly associated

with glycogen, protein and types amino acids contents.

A total of 17 GWAS signals in four genomics regions

(scaffold1243, 1597, 340 and 426) were further validated

to be with glycogen contents in another wild population

cultured in Qingdao (288 individuals). For the high LD

of SNPs in these four regions, we think these were most

important candidate regions for glycogen content.

Fig. 3 Genome-wide association study of amino acids, including Asp, Glu, Leu, Lys, Ser, Thr, and Val. a The Manhattan and QQ plots of these
traits. The negative log10-transformed P-values from a genome-wide scan are plotted against position on each of the 10 chromosomes. Red
horizontal dashed line indicates the genome-wide significance threshold. b, c The upper panel indicates the 0.1-Mb region on each side of the
peak SNP in scaffold426 and scaffold340, and the position of peak SNP is indicated by a vertical red line with the red triangle. The bottom panel
shows the annotated genes of the 100-kb region. Significant SNP that surpassed the threshold is indicated by red plots and peak SNP is indicated
by purple plots. The dotted lines with arrows represent the traits related to the peak SNP. Gene is indicated by black boxes
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Further, gene function analysis found that cytochrome

P450 17A1 (CYP17A1) contained a non-synonymous

SNP between high and low glycogen contents individuals

and displayed the higher expressions in high glycogen

content individuals. This might enhance the gluconeo-

genesis metabolism process by the transcriptionally

regulating the expressions of phosphoenolpyruvate

carboxykinase (PEPCK) and glucose 6-phosphatase

(G6Pase). Finally, using genetic network analysis, we

found several SAL that control both glycogen and sev-

eral amino acids contents, which will provide important

basis for their molecular breeding.

For GWAS analysis, the traits were usually controlled

by many genes with small effects. Therefore, increasing

the sample size will improve the power to recover mean-

ingful associations [44]. Given this, selected the geo-

graphically distant accessions will maximize the genetic

variance within the samples. Therefore, we have col-

lected 427 individuals from different geographic regions.

The same methods have been used in soybean [45], rice,

pigs [46], etc., which could maximize the genetic

variance. However, for the different environmental fac-

tors, collecting times and oyster ages, it cannot detect

the phenotype directly with 427 individuals. In order to

reduce the environmental effects for phenotype detec-

tion, we have conducted the common garden experi-

ments and produced 427 half-sib families. For the F1
individuals in different families were cultured in the

same marine environments and have the same male par-

ent, their differences will reflect the genetic differenti-

ation of their female parents. So, we have collected 30

individuals from each family, and their average pheno-

typic values were used to represent their female parents’

values. The same phenotypic detection method has been

widely used in many other species [47–49], which indicate

that this progeny-testing scheme used for the genetic

evaluation of parents could reduce the environments noise

which searching for GWAS. According to phenotype ana-

lysis, we found the largest change folds of glycogen and

various amino acids contents ranged from 1.4- to 19.4,

which was comparable with that of various crop varieties

collected from different regions reported previously [40].

Fig. 4 Genome-wide association study of Met and Tau with 427 individuals. a, b The Manhattan and QQ plots of Met and Tau content. The
negative log10-transformed P-values from the genome-wide scan are plotted against position in each of the 10 chromosomes. Red horizontal
dashed line indicates the genome-wide significance threshold. c, f The 0.1-Mb region on each side of the peak SNP in scaffold618 (c) and
scaffold801 (f), the position of peak SNP is indicated by a vertical red line with red triangle. The bottom panel shows the annotated genes of the
100-kb region and the LD analysis of pairwise SNP loci in the 100 kb-region on both sides of the leading SNP obtained by GWAS (P < 2 × 10− 4). d
The candidate genes for Met content with one non-synonymous mutation in the coding region. e The left panel indicates the Met content in
different genotypes of COOA gene. The right panel indicates the mRNA expression of COOA genes in high and low Met content oysters. Different
letters indicate the significant differences (P < 0.05) and the error bars represent ± SD (n = 15). g The candidate genes for Tau content and
different haplotypes with five significant SNP loci. h The left panel indicates the Tau content in different haplotypes of PLC genes. The right panel
indicates the mRNA expressions of PLC genes in high and low Tau content oysters. Different letters indicate significant differences (P < 0.05) and
error bars represent ± SDs (n = 15)
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However, it must be illustrated that the sampling methods

from different sites has the potential to introduce genetic

heterogeneity, including local adaptation and genetic ori-

gin, leading to a non-causative marker being a better de-

scriptor of the phenotype than a causative one [50].

Apart from genetic heterogeneity, another major

challenge for GWAS analysis with our samples is

population structure. It is well known that popula-

tion structure generates associations between pheno-

types and there need to do a statistical analysis of

accounting for structure in GWAS. In our previous

study, it was revealed that oyster could be divided

into four populations based on their resequencing

results [39]. In our results, we have added three

abroad groups collected from Canada, Japan, and

Korea. The structure analysis indicated that these

three populations were different from those in China

(Additional file 10: Figure S1), which was related

with their geographical distribution pattern. The

same result has been reported in several previous

studies in mollusks, which was studied with several

special polymorphism loci. Therefore, the population

structure was used as a covariate within the GWAS

model with the MLM model. Besides, LD decay re-

vealed that oyster was one of the most diverse spe-

cies with considerably rapid decay of LD when

assessed at the genome-wide scale. The rapid decay

of LD in oyster indicated a need for higher-density

SNP panels for performing GWAS effectively. In our

previous studies, it was revealed that 15× sequence

depth was enough to obtain a sufficient number of

accurately genotyped SNPs in oysters with a very

high number of heterozygous sites [51]. However,

20× sequence depth will increase the coverage rate

significantly. Therefore, in our results, we used the

20× sequence depth for resequencing, which was the

first high depth resequencing for GWAS analysis of

glycogen and amino acids contents. This also provide

important references for other marine bivalves with

the high polymorphisms for their GWAS analysis

with genome resequencing.

Glycogen is the major source of glucose reserve stored

in specific vesicular cells and is known to play a central

role in providing energy for the maintenance and gam-

etogenic development of bivalves [52]. The Pacific oyster

C. gigas is rich in glycogen content, which is higher than

Fig. 5 Association networks among different traits in oysters. a The networks were constructed with different traits using Cytoscape. The node
represents traits and their responsible SAL. The edges between the SALs from different traits are linked by LD. The edges with an average LD ≥

0.1 are displayed. b The correlation analysis among glycogen, protein, and Asp content in 427 different oysters. The values indicate the
correlation among different traits. c The number of oysters distributed among different genotypes of the peak SNPs in scaffold340, scaffold426,
and scaffold1243. d The content of glycogen, protein, and Asp in different genotypes. Different letters within the same trait indicate significant
differences (p < 0.05) and the error bars represent SDs
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that in other mollusks [53]. In previous study, several

SNP loci have been identified for glycogen contents, in-

cluding glycogen debranching enzyme, glycogen phos-

phorylase [20] and PPP1R3B [54]. Especially, PPP1R3B

was identified based on our results, which promote

glycogen synthesis together with protein phosphatase

process. However, these results were mainly based on

several candidate genes analysis. In the present study, we

first conducted GWAS analysis with resequencing data

and found the genome wide SNP loci associated with

glycogen contents in molluscan. After filtering, a total of

five genes regions located on three chromosomes were

identified to be associated with glycogen content, which

located on five scaffolds (scaffold1243, 1597, 340, 389

and 426). Further, four regions were also verified with

the other wide populations with 288 individuals, which

were most important candidate genomic regions for oys-

ter breeding. We further conducted the gene function

analysis. Further, for the high LD decay of SNP loci in

these five genomic regions, we have identified 21 genes

as the candidate genes. We mainly focused on the genes

containing the non-synonymous mutations. We found

that CYP17A1 contained a non-synonymous SNP lo-

cated in the enzyme active center and exhibited high ex-

pressions in individuals with higher glycogen content.

CYP17A1 is a single gene-encoded protein that mediates

17α-hydroxylase and promotes gluconeogenesis by acti-

vating the transcriptional activity of the gluconeogenesis

metabolism process in mammals [55]. In the present

study, higher expression of gluconeogenesis genes

(PEPCK and G6Pase) were also observed, which further

indicated the stronger gluconeogenesis capacity of indi-

viduals with higher glycogen content. In previous

studies, the mutations in CYP17A1 may result in the

complete or partial loss of catalytic activities, inducing

phenotypic variation in several species [56]. In the

present study, according to the multiple alignment and

three-dimensional protein structural modeling analysis,

the non-synonymous SNP loci is located at a turn in β-

sheet and formed the substrate-binding pocket. This

mutation might affect the substrate binding activity of

this enzyme. However, further studies should be con-

ducted to analyze this genes function in glycogen metab-

olism process. Without functional validation, we could

not determine whether these increases in glycogen con-

tent are caused by all these genes acting together as a

cluster or by only one of these genes.

The aim of breeding is to aggregate many ideal traits

into one variety, which required to understand the posi-

tive or negative correlation of these candidate traits [31].

Using GWAS analysis, we can explore the genetic regu-

lation networks of different nutrient traits, which will

help breeders to select effective markers to conduct mo-

lecular breeding. In many crops species, the genetic

networks of different traits has been built, which were

used for the breeding of many superior-quality crop

varieties [31, 55]. However, in marine molluscan, the

related studies have not been conducted until now. In

this study, we have constructed the association net-

works across glycogen and many different amino acids.

For example, we have identified three node SNP loci,

which were all related with glycogen, protein, and Asp

content in oysters. These polymorphism information

was very important for oyster breeding of these nutri-

ent traits. The node SNP loci will be used for breeding

of these heritable covariation traits in on variety; how-

ever the specific SAL will be used for breeding of the

specific trait.

Conclusions

In summary, the present study provides a large dataset

of loci and genes responsible for important traits in oys-

ter, such as glycogen, protein, and amino acids, which

will facilitate future functional studies and breeding de-

velopment. Furthermore, we have constructed associ-

ation networks among different traits and identified

some SALs that function as key nodes connecting differ-

ent traits, but most SALs specifically regulated individual

traits. This information will guide breeders attempting

to establish a clear strategy for genetic improvement.

However, the genes associated with nutrient traits were

not involved in their traditional key metabolism path-

ways, indicating the existence of a new regulation mech-

anism of glycogen, protein, and amino acid metabolism

processes in oysters. Further work will be necessary to

verified the functional mechanism of these specific genes

underlying these breeding target traits.

Methods

Sampling and phenotyping for GWAS analysis

For the GWAS, oysters (C. gigas) from 26 different en-

vironmental conditions were collected during the sum-

mer of 2013. After culturing for approximately 1 month

in farms, the gill of 427 females were collected and used

for resequencing. At the same time, these females were

mated with one male cultured in Qingdao, generating

427 half-sub families. These 427 families were cultured

in the same environment for approximately 1 year, and

then 30 F1 individuals from each family line were col-

lected and used for phenotype measurement [11]. For

these F1 individuals have the same male parent and the

same culturing environments, their phenotypic differen-

tiation may be induced by the female parent’s differenti-

ation. The same methods have been widely used in

many other species [47–49]. The breeding, phenotype

and genotype detection methods have been described in

Additional file 10: Figure S1.
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The content of glycogen and protein was analyzed by

near infrared reflectance spectroscopy as previously de-

scribed [56], with minor modifications. The amino acid

content was detected following the method of Mao et al.

(2015) using the automatic amino-acid analyzer (Eppen-

dorf LC-3000, Hamburg, Germany) [42]. The phenotypic

correlation matrix was obtained by Pearson product-mo-

ment correlation coefficients using the “corrplot” pack-

age in R.

DNA isolation and genome sequencing

The genomic DNA of 427 individuals from 26 locations

was extracted from the gills by the phenol-chloroform

method. The DNA (1–15 μg) was fragmented using the

Covaris system (Inc., Woburn, MA) to obtain 200–800

bp fragments. The DNA fragments were then treated ac-

cording to the Illumina DNA sample preparation proto-

col. The fragments were end-repaired, A-tailed, ligated

to paired-end adaptors, and PCR amplified with 500-bp

inserts for library construction. Sequencing was per-

formed to generate 100-bp paired-end reads on the

HiSeq 2000 platform (Illumina) according to the manu-

facture’s standard protocol.

Sequence alignment, SNP calling, and population

structure analysis

The SNP calling and population structure analysis

were conducted as reported previously [33]. The Bur-

rows-Wheeler Aligner (BWA) software was used for

alignment with the reference genome (GenBank ac-

cession No., GCA_000297895.1) (bwa mem –M -t 10

-T 20) [43]. The GATK [57] module Haplotype Caller

and SAMtools [58] were used for variant calling and

the concordance variants were filtered with the par-

ameter “QD < 2.0 || FS > 30.0 || MQ < 40.0 || DP <

6 || DP > 888 || ReadPosRankSum < -8.0 || Base-

QRankSum < -8”. Further, the INDELs were filtered

with “QD < 2.0 || FS > 30.0 || ReadPosRankSum <

-8.0”. The variants were used for population variant

calling using the GATK Haplotype Caller module and

the parameter was set as “--genotyping_mode DIS-

COVERY -stand_emit_conf 10 -stand_call_conf 30”.

The phylogenetic tree was constructed with TreeBeST

(http://treesoft.sourceforge.net/treebest.shtml) using the

SNPs at a population scale. Furthermore, the Discrimin-

ant Analysis of Principal Components (DAPC) analysis

was performed using the R package.

Genome-wide association study

To minimize false positives and increase statistical value,

population structure and cryptic relationships were con-

sidered. The compressed mixed linear model program

GAPIT was used for the association analysis [59]. The

first three PCA values, which were derived from whole-

genome SNPs, were used as fixed effects in the mixed

model to correct stratification. Random effect was esti-

mated from the groups clustered based on the kinship

among all accessions. Only the SNPs with MAF ≥ 0.05

and missing rate < 0.1 in the population were used in the

GWAS. We defined the whole-genome significance cut-

off as Bonferroni test threshold. For SNP GWAS, the

threshold was set as P-value < 10− 6 [60]. The candidate

genes were searched between the most significant SNP

loci within 100 kb in a scaffold.

GWAS results validation using wild 288 individuals

In order to validate the GWAS results, we have con-

ducted association analysis using 288 wild one-year-old

oysters collected from the Jiao Nan Aquaculture Farm in

Qingdao, in May 2014. These juvenile oysters were sam-

pled in the wild and then reared under common condi-

tions. They were genotyped using a 190 K SNP chip,

which was previously described in [41]. The contents of

glycogen, protein, and amino acids were also determined

by the above-mentioned methods. The association ana-

lysis was also performed by GAPID.

Functional analysis of candidate genes in the GWAS

associated loci

We used the following strategy to narrow down can-

didate genes. First, according to the GWAS associated

loci, we estimated the candidate region by pairwise

LD correlation. Second, based on our assembled gen-

ome sequence for C. gigas, we analyzed the SNP

types located in the candidate region. We focused on

the genes with associated non-synonymous SNPs sig-

nificantly associated with the traits in the GWAS and

those that could induce changes in amino acids.

Third, we checked whether these candidate genes

with associated non-synonymous SNPs had different

expression patterns in high and low phenotype indi-

viduals by the real time polymerase chain reaction

(PCR). Finally, we conducted gene-based analysis

(GBA) with PCR-based sequencing to confirm the as-

sociated non-synonymous SNPs. We also conducted

the association analysis with SHEsis Plus Online Ver-

sion-Beta (http://analysis.bio-x.cn/) and classified the

samples into distinct haplotypes.

Association network construction

The software Cytoscape was used to construct associ-

ation networks [61]. The traits with their correspond-

ing SAL were treated as nodes, and the links between

the trait and SAL, and between the SAL and SAL

were treated as edges. The link between two SALs

was represented by their average LD (inter-LD) as fol-

lows [31]:
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Inter‐LD ¼ ½�
LD SAL1; SAL2ð Þ

PmaxLD SAL1ð Þ
þ
LD SAL1; SAL2ð Þ

PmaxLD SAL2ð Þ

where, LD (SAL1, SAL2) is the pairwise LD value (r2)

between all SNPs from SAL1 region to all SNPs from

SAL2 region; PmaxLD (SAL1) or PmaxLD (SAL2) are

the largest possible LD value within the SAL1 or SAL2

region, respectively, obtained by calculating the mean r2

of each SNP to all the SNPs from the SAL1 or SAL2 re-

gion and choosing the maximum mean LD to represent

the region’s PmaxLD; Pairwise r2 values represent all sig-

nificant SNPs. Only the average r2 ≥ 0.1 were selected to

draw the networks.

Real-time PCR

Among the 288 individuals, the top 15 oysters with ex-

treme high and low glycogen or amino acid content

were selected for the real-time PCR. Forty oysters were

collected for RNA extraction. The total RNA was iso-

lated using the Trizol reagent (Invitrogen). The RNA

yield and purity were determined spectrophotometrically

(BioPhotometer; Eppendorf, Hamburg, Germany) at 260

and 280 nm. The RNA integrity was assessed by 1.2%

agarose gel electrophoresis.

For the quantitative real time PCR (q-PCR), the RNA

sample was reverse transcribed using a cDNA synthesis

kit (DRR420; Takara) and qRT-PCR was performed

using the ABI7500 fast Real-Time Detection System

(Applied Biosystems, USA). The elongation factor (EF)

gene was chosen as the internal standard. The qRT-PCR

was carried out in triplicate with a reaction mixture of

total volume 20 μL containing 10 μL of SYBR Green 2X

Supermix (Takara), 1 μL of 1:100 diluted cDNA, 0.4 μL

each of the forward and reverse primers, 0.4 μL of ROX

Dye II, and 7.8 μL of DEPC H2O. The PCR involved two

steps: 95 °C for 30 s, followed by 40 cycles at 95 °C for 3 s

and 60 °C for 30 s. The analysis was based on the Ct

values of the PCR products. Melting curve analysis of

the products was performed at the end of each PCR

amplification. The Ct values for the comparison between

the amplified genes and EF gene (ΔCt) were calculated.

The blank group was used as the reference sample (i.e.,

as calibrator). The ΔCt of each sample was then sub-

tracted from the ΔCt of the calibrator, and this differ-

ence is called the ΔΔCt value. The expression level of

the target genes was then calculated as 2-ΔΔCt.
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amino acids, six DAA accounted for 41% of TAA content. (DOCX 692 kb)
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the GWAS results of the 100 kb-region on both sides of the leading SNP
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Additional file 19: Figure S10 Genome-wide association study of Asp
(A), His (B), Leu (C), Cys (D), and Met (E) content. The first section of each
panel shows the Manhattan plot of traits. The negative log10-transformed
P-values from the genome-wide scan are plotted against position on each of
the 10 chromosomes. Red horizontal dashed line indicates the genome-wide
significance threshold. Second part exhibits the 0.1-Mb region on each
side of the peak SNP and its position is indicated by a vertical red
line with red triangle. The bottom of each panel shows the annotated
genes of the 200-kb region. Significant SNP that surpassed the
threshold is indicated by red plots and peak SNP is indicated by
purple plots. The dotted lines with arrows represent the traits related
to the peak SNP. Gene is indicated by black boxes. If the significant
SNP was located in the gene, the gene name is highlighted in red
bold font and the coding region of the gene was indicated by black
vertical lines. (DOCX 768 kb)
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