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Abstract

Pulmonary function measures reflect respiratory health and predict mortality, and are used in the

diagnosis of chronic obstructive pulmonary disease (COPD). We tested genome-wide association

with the forced expiratory volume in 1 second (FEV1) and the ratio of FEV1 to forced vital

capacity (FVC) in 48,201 individuals of European ancestry, with follow-up of top associations in

up to an additional 46,411 individuals. We identified new regions showing association (combined

P<5×10−8) with pulmonary function, in or near MFAP2, TGFB2, HDAC4, RARB, MECOM

(EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15,

CFDP1, and KCNE2. Identification of these 16 new loci may provide insight into the molecular

mechanisms regulating pulmonary function and into molecular targets for future therapy to

alleviate reduced lung function.

Introduction

Pulmonary function, reliably measurable by spirometry, is a heritable trait reflecting the

physiological state of the airways and lungs1. Pulmonary function measures are important

predictors of population morbidity and mortality2-4, and are used in the diagnosis of chronic

obstructive pulmonary disease (COPD), which ranks among the leading causes of death in

developed and developing countries5,6. A reduced ratio of forced expiratory volume in 1

second (FEV1) to forced vital capacity (FVC) is used to define airway obstruction, and a

reduced FEV1 is used to grade the severity of airway obstruction7.

Recently, two large genome-wide association studies (GWAS), each comprising discovery

sets of more than 20,000 individuals of European ancestry identified novel loci for lung
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function8,9. Recognizing the need for larger datasets to increase the power to detect loci of

individually modest effect size, we conducted a meta-analysis of 23 lung function GWAS

comprising a total of 48,201 individuals of European ancestry (Stage 1) and followed-up

potentially novel loci in 17 further studies comprising up to 46,411 individuals (Stage 2).

We identified 16 additional novel loci for lung function, and provided evidence

corroborating association of loci previously associated with lung function8-11. Our findings

implicate a number of different mechanisms underlying regulation of lung function and

highlight loci shared with complex traits and diseases, including height, lung cancer, and

myocardial infarction.

Results

Genome-wide analysis (stage 1)

Meta-analyses for cross-sectional lung function measures were undertaken for

approximately 2.5 million genotyped or imputed SNPs across 23 studies with a combined

sample size of 48,201 adult individuals of European ancestry. Characteristics of the cohort

participants and the genotyping are shown in Supplementary Tables 1A and 1B. FEV1 and

FEV1/FVC were adjusted for ancestry principal components, age, age2, sex, and height as

covariates. Association testing of the inverse-normal transformed residuals for FEV1 and

FEV1/FVC assumed an additive genetic model and was stratified by ever-smoking (versus

never-smoking) status. Meta-analyses of the smoking strata within study, and the study-

specific results, were undertaken using inverse variance weighting (the inverse of the

standard error squared was used as the weight). We applied genomic control twice at study

level (to each smoking stratum separately and to the study level pooled estimates) and also

at meta-analysis level to avoid inflation of test statistics due to cryptic population structure

or relatedness (see Supplementary Table 1A for study level estimates). Our application of

genomic control at the three stages is likely to be overly conservative because it has recently

been shown that in large meta-analyses, test statistics are expected to be elevated under

polygenic inheritance even when there is no population structure12. Test statistic inflation

(λGC) prior to applying genomic control at meta-analysis level was 1.12 for FEV1 and 1.09

for FEV1/FVC. Genomic inflation estimates increase with sample size, as has been shown

for other traits13-15; standardised estimates to a sample of 1000 individuals (λGC_1000) were

1.002 for FEV1 and 1.002 for FEV1/FVC. Plots of meta-analysis P-values for FEV1 and

FEV1/FVC against a uniform distribution of P values expected under the null hypothesis

showed deviations which were attenuated, but persisted, after removal of SNPs in loci

reported previously, consistent with additional loci being associated with lung function

(Supplementary Figure 1A).

Follow-up analysis (stage 2)

Twenty-nine new loci showing evidence of association with lung function (P<3×10−6) in

Stage 1 were followed up in Stage 2 by utilizing in silico data from seven studies, and by

undertaking additional genotyping in 10 studies for the 10 highest-ranked SNPs (Figure 1).

Full details of the SNP selection are given in the Online Methods. Inverse variance

weighting meta-analysis was performed across Stages 1 and 2, and two-sided p-values were

obtained for the pooled estimates. Sixteen new loci reached genome-wide significance

(P<5×10−8) and showed consistent direction of effects in both stages, comprising 12 new

loci for FEV1/FVC, 3 new loci for FEV1, and one new locus reaching genome-wide

significance for both traits (Figure 2, Table 1). To assess the heterogeneity across studies

included in Stage 1 and Stage 2, Chi-square tests were undertaken for all 16 SNPs; and none

of them was statistically significant after applying a Bonferroni correction for 16 tests. The

sentinel SNPs at these loci were in or near the genes MFAP2 (1p36.13), TGFB2/LYPLAL1

(1q41), HDAC4/FLJ43879 (2q37.3), RARB (3p24.2), MECOM (EVI1) (3q26.2), SPATA9/
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RHOBTB3 (5q15), ARMC2 (6q21), NCR3/AIF1 (6p21.33), ZKSCAN3 (6p22.1), CDC123

(10p13), C10orf11 (10q22.3), LRP1 (12q13.3), CCDC38 (12q22), MMP15 (16q13), CFDP1

(16q23.1) and KCNE2/C21orf82 (21q22.11) (Supplementary Figures 1B and 1C). The

strongest signals in AGER (rs2070600)8,9 and two of the novel signals (rs6903823 in

ZKSCAN3 and rs2857595, upstream of NCR3) lie within a~3.8Mb interval at 6p21.32-22.1

which is characterised by long-range linkage disequilibrium. Nevertheless, the leading SNPs

in these regions which are within the major histocompatibility complex (MHC) were

statistically independent (Supplementary Note).

Gene expression

We investigated mRNA expression of the nearest gene for each of the 16 novel loci in

human lung tissue and in a range of human primary cells including lung, brain, airway

smooth muscle cells and bronchial epithelial cells. Transcripts were detected for all selected

genes in lung tissue except CCDC38 and transcripts for most genes were also detected in

airway smooth muscle cells and in bronchial epithelial cells (Table 2). As we were unable to

detect expression of CCDC38 in any tissue, we also examined expression of SNPRF, which

is the adjacent gene (Table 2), and found expression in all four cell types. TGFB2, MFAP2,

EVI1 and MMP15 were expressed in one or more lung cell types but not in peripheral blood

mononuclear cells providing evidence that these genes may exhibit tissue-specific

expression.

We assessed whether SNPs in these new regions, or their proxies (r2>0.6), were associated

with gene expression using a database of expression-associated SNPs in lymphoblastoid cell

lines16. Four loci showed regional (cis) effects on expression (P<1×10−7, Supplementary

Note). A proxy for our sentinel SNP in CFDP1, rs2865531, coincided with the peak of the

expression signal for CFDP1 and the strongest proxy for rs6903823 in ZKSCAN3 coincided

with the peak of expression for ZSCAN12.

Plausible pathways for lung function involving new loci

The putative function of the genes within, or closest to, the association peaks identify a

range of plausible mechanisms for impacting lung function. The most statistically significant

new signal for FEV1/FVC (P=7.5×10−16) was in the gene encoding MFAP2, an antigen of

elastin-associated microfibrils17, although correlated SNPs in the region potentially

implicate other genes that could plausibly influence lung function, such as CROCC, which

encodes rootletin, a component of cilia18. Our second strongest new signal, also for FEV1/

FVC, was in the gene encoding the retinoic acid receptor beta (RARB). Rarb-null knockout

mice exhibit premature alveolar septation19. The third most statistically significant new

signal for FEV1/FVC, and the most statistically significant new signal for FEV1, was in

CDC123. This was the only novel region to show genome-wide association with both traits.

CDC123 encodes a homologue of a yeast cell division cycle protein which plays a critical

role in modulating Eukaryotic initiation factor 2 in times of cell stress20. The fourth signal

for FEV1/FVC is downstream of HDAC4 which encodes a histone deacetylase; reductions in

the expression of other histone deacetylases (specifically HDAC2, HDAC5 and HDAC8)

have been noted in COPD21. The regions we observed in the MHC are much more difficult

to localize with multiple genes being tagged by the top SNP, including non-synonymous

SNPs in ZKSCAN3, PGBD1, ZSCAN12, ZNF323, TCF19, LTA, C6orf15 and GPANK1

(also known as BAT4) (Supplementary Table 2). At 6p21.33, the strongest association with

lung function was observed for rs2857595, which is in linkage disequilibrium (LD, r2=0.47)

with a non-synonymous SNP in LTA (encoding lymphotoxin alpha) and with a SNP in the

upstream promoter region of TNFA (encoding tumour necrosis factor alpha, r2=0.86), both

of which are plausible candidates22,23. Our top SNP in MMP15 is in strong LD (r2=1) with a

non-synonymous SNP (rs3743563, which has an association with FEV1/FVC at
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P=1.8×10−7) within the same gene. Plausible mechanisms implicated by the other novel

signals of association with lung function reported here include TGF-beta signalling; TGFB2

expression is upregulated in bronchial epithelial cells in asthma24. The putative function of

key genes (as defined by LD with the leading SNP) in each of the 16 loci, and relevant

findings from animal models, are summarised in Table 2 and detailed in Supplementary

Table 2.

Associations with lung function in children

Alleles representing 11 of the 16 novel loci showed directionally consistent effects on lung

function in 6,281 children (7 to 9 years of age) (Supplementary Table 3A) suggesting that

genetic determination of lung function in adults may in part act via effects on lung

development, or alternatively, that some genetic determinants of lung growth and lung

function decline are shared.

Association of lung function loci with other traits

Although we stratified for ever-smoking versus never-smoking, we did not adjust for the

amount smoked. In order to investigate the possibility that the associations at any of our 16

novel regions were driven by an effect of the SNP on smoking behaviour, we evaluated in

silico data for associations with smoking amount from the Ox-GSK consortium25 for the

leading SNPs in these 16 regions. None of these 16 SNPs showed statistically significant

association with the number of cigarettes smoked per day (Supplementary Table 3B).

In addition, in our Stage 1 and Stage 2 datasets combined, we assessed whether the

estimated effect sizes of the variants on lung function phenotypes differed substantially

between ever-smokers and never-smokers (Supplementary Table 4) across the 16 loci. For

the most strongly associated trait at each locus, we tested the SNP interaction with ever-

smoking (versus never-smoking). None of the 16 novel loci showed a significant interaction

(Bonferroni corrected threshold for 16 independent SNPs P=0.003125). These analyses

suggest that the genetic effects we have identified underlie lung function variability

irrespective of smoking exposure.

Our lung function associations were adjusted for height, but there are some overlaps

between loci associated with height and those associated with lung function. Therefore, we

evaluated in silico data for height associations of our novel regions in the GIANT

consortium14 dataset. The G allele of rs2284746 (MFAP2, intron), which was associated

with decreased FEV1/FVC was associated with increased height (Supplementary Table 3C).

Given reported associations between lung cancer and either COPD or lung function decline,

we also assessed in silico data for sentinel or proxy SNPs in these 16 regions for

associations with lung cancer in the International Lung Cancer Consortium (ILCCO) GWAS

meta-analysis26. Alleles associated with reduced lung function were associated with risk of

lung cancer at the strongest available proxy SNP for rs2857595 (upstream of NCR3) at

6p21.33 (rs3099844, r2=0.67), and the strongest proxy SNP for rs6903823 (SNP in intron of

ZKSCAN3 and ZNF323) at 6p22.1 (rs209181, r2=0.69) (lung cancer associations,

P=2.2×10−7 and P=3.4×10−5, respectively, Supplementary Table 3D). No significant

associations with lung cancer were seen at the other new loci (proxy SNPs were available

for 15 of the 16 loci, Bonferroni corrected P<0.0033).

In addition to the effects on height, smoking and lung cancer described above, we examined

the literature for evidence for associations with other traits for each of the 16 new loci

(detailed in Supplementary Table 2). Genome-wide significant associations (P<5×10−8)

have been reported in KCNE2 with myocardial infarction27, and at 6p21.33 near NCR3/

AIF1, with neonatal lupus28 and with systemic lupus erythematosus29. Other significant
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complex disease associations have also been noted in the regions of CDC123 (type 2

diabetes30), CFDP1 (type 1 diabetes31) and MECOM (blood pressure32,33), but with weaker

LD (r2<0.3) between the reported SNP and the sentinel SNP for lung function in the region

(Supplementary Table 2).

Proportion of variance explained by loci discovered to date

Associations in 10 loci previously reported for lung function8,9 reached genome-wide

significance (P<5×10−8) in our Stage 1 data, namely loci in or near TNS1, FAM13A,

GSTCD/NPNT, HHIP, HTR4, ADAM19, AGER, GPR126, PTCH1, and TSHD4

(Supplementary Table 5A). Thus, a total of 26 regions showed genome-wide significant

association with lung function in our study. In aggregate, variants at these 26 regions explain

approximately 3.2% of the additive polygenic variance for FEV1/FVC and 1.5% for FEV1

(see Supplementary Note). Following the approach described by Park et al.34 we estimated

that there is a total of 102 (95% CI 57-155) independent variants with similar effect sizes to

the 26 variants we report. In combination these 102 variants, comprising 26 discovered

variants and 76 putative undiscovered variants, collectively explain around 7.5% of the

additive polygenic variance for FEV1/FVC and 3.4% for FEV1 (see Supplementary Table 6,

Online Methods and Supplementary Note).

Discussion

In meta-analysis of 23 studies comprising 48,201 individuals of European ancestry and

follow-up in 17 studies comprising up to 46,411 individuals, we report genome-wide

significant associations with an additional 12 regions for FEV1/FVC, an additional three

regions for FEV1 and one additional region associated with both FEV1 and FEV1/FVC. We

also confirm genome-wide association with 10 regions previously associated with lung

function, bringing to 26 the total number of loci associated with lung function in these data.

Most of the new loci are in regions not previously suspected to have been involved in lung

development, the control of pulmonary function or risk of developing COPD. Elucidating

the mechanisms through which these regions influence lung function should lead to a more

complete understanding of lung function regulation and the pathogenesis of COPD. Four of

the new loci (MFAP2, ZKSCAN3, near NCR3 and near KCNE2) we show to be associated

with lung function are also associated with other complex traits and diseases (P<5×10−8 for

the other trait at a SNP with r2>0.3 with the top lung function SNP in the region).

Understanding the intermediates underlying these pleiotropic effects could also reveal

crucial insights into the pathophysiology of lung disease. One potential explanation is that

these loci underlie control of the mechanisms regulating the development and resolution of

inflammation and subsequent tissue remodelling in a range of tissues.

The effect sizes of the variants in the 26 loci associated with lung function explain a modest

proportion of the additive genetic variance in FEV1/FVC and in FEV1, even after accounting

for putative undetected variants with a similar distribution of effect sizes34. Our findings are

consistent with those from other common complex traits, where it is thought that many as

yet unidentified common and rare sequence variants, and potentially structural variants

could explain the remaining heritability35. That our study more than doubled the number of

loci known to be associated with lung function underlines the utility of large sample sizes to

achieve the power to detect common variants associated with complex traits. Nevertheless, it

is likely that additional variants with similar effect sizes remain undiscovered14. In addition,

our study was not designed to detect rare variants or structural variants associated with lung

function. Identification of rare variants associated with lung function could be helpful in

narrowing the scope of ongoing functional work to those genes most likely to be causally

related to the association signals we detected.
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Our study focused on cross-sectional measures of lung function. Adult lung function at a

particular time point is influenced by the peak lung function achieved by 25-35 years of age,

as well as the rate of decline of lung function after that peak36. The 26 loci now confirmed

to be associated with lung function could affect either pre- or post-natal lung development

and growth or decline in lung function during adulthood, or both. We showed consistent

directions of estimated effects on lung function between adults and children at 7-9 years of

age for SNPs at 11 of the 16 new loci, and eight of 10 previously reported loci

(Supplementary Table 3A). The results we show for lung function in children provide some

indication that these loci affect lung function development, although studies in larger

populations of children would provide greater clarity for SNPs in the new loci. Further

investigations will be required in large populations with longitudinal data to delineate the

influence of these variants on the rates of development of, and decline in, lung function and

on the risk of developing COPD.

Of the sentinel SNPs at the 16 new loci associated with lung function, only rs2284746

(MFAP2) was associated with height in the GIANT consortium14 dataset. The G allele of

rs2284746 was associated with both increased height and reduced lung function. A similar

relationship between lung function and height was previously reported for the G allele of

rs3817928 in GPR1268,14, which is associated with decreased height, but with increased

FEV1/FVC. A further three of the 180 loci found to be associated with height14 showed

association (for 180 loci, Bonferroni corrected threshold P=2.8×10−4) with either FEV1

(CLIC4 and BMP6) or FEV1/FVC (PIP4K2B) (Supplementary Table 3E). In each case, the

allele associated with an increase in height was associated with a decrease in lung function.

This is not the case for the association of rs1032296 near HHIP, which has shown consistent

directions of effects on lung function and height14,11. However, the strongest SNP

associated with height in the HHIP region lies within an intron of HHIP but shows no

association with FEV1 or FEV1/FVC. Furthermore, while height is an important predictor of

FEV1, this is not true for its ratio to FVC37. These observations argue against the

associations with lung function at these loci being simply due to incomplete adjustment for

height.

We stratified by ever- and never-smoker status in our analyses and in our investigation of

amount smoked in the Ox-GSK consortium25 none of the sentinel SNPs in the 16 new

regions showed association with the number of cigarettes smoked per day. Additionally,

none of these regions was associated with ever-smoking in the Ox-GSK consortium data

(Supplementary Table 3B). Thus the SNP associations with lung function we observed are

unlikely to have arisen simply as a consequence of inadequate adjustment for smoking.

We did not observe any interactions with ever-smoking for any of the sentinel SNPs in the

16 new regions that exceeded a Bonferroni-corrected significance level (for 16 SNPs). Thus,

the effects on lung function of the novel variants we identified are apparent in both ever-

smokers and in never-smokers, and the effects of smoking and of these genetic variants may

be independent and additive.

In other common complex diseases, follow up studies that incorporate common genetic risk

variants into models to predict disease have not been shown to add substantially to existing

risk models, particularly when such models already include family history38,39. The same

may also prove to be true for the 26 genetic variants described in this paper, as the effect

size of any individual variant is small, but further work is required in this area. The major

utility of our findings will be in the knowledge they provide about previously unknown

pathways underlying lung function. Elucidating the mechanisms that these genes are

involved in will lead to improved understanding of the regulation of lung function and

potentially to new therapeutic targets for COPD.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Online Methods

Study design

The study consisted of two stages. Stage 1 was a meta-analysis conducted on directly

genotyped and imputed SNPs from individuals of European ancestry in 23 studies, with a

total of 48,201 individuals. Supplementary Table 1A gives details of these studies. Thirty-

four SNPs selected according to the results in Stage 1 were followed up in Stage 2. The ten

leading SNPs were followed up in up to 46,411 individuals of European origin and the

remaining 24 SNPs were followed up in a subset of up to 21,674 individuals (Figure 1).

Stage 1 samples

A total of 23 studies, 17 from the SpiroMeta consortium and six studies from the CHARGE

consortium, formed Stage 1: AGES, ARIC, B58C T1DGC, B58C WTCCC, BHS1, CHS,

ECRHS, EPIC (obese cases and population-based studies), the EUROSPAN studies

(CROATIA-Korcula, ORCADES and CROATIA-Vis), FHS, FTC (incorporating the

FinnTwin16 and Finnish Twin Study on Aging), Health 2000, Health ABC, KORA F4,

KORA S3, NFBC1966, RS-I, RS-II, SHIP and TwinsUK-I (see Supplementary Table 1 for

definitions of abbreviations). Measurements of spirometry for each study are described in

the Supplementary Note. The genotyping platforms and quality-control criteria implemented

by each study are described in Supplementary Table 1B.

Imputation

Imputation of non-genotyped SNPs was undertaken with MACH47, IMPUTE48 or

BIMBAM49 with pre-imputation filters and parameters as shown in Supplementary Table

1B. SNPs were excluded if the imputation information, assessed using r2.hat (MACH), .info

(IMPUTE) or OEvar (BIMBAM), was <0.3. In total, 2,706,349 SNPs were analyzed.

Transformation of data and genotype-phenotype association analysis

Linear regression of age, age2, sex, height and ancestry principal components was

undertaken on FEV1 (milliliters) and FEV1/FVC (percent). The residuals were transformed

to ranks and then transformed to normally distributed z-scores. These transformed residuals

were then used as the phenotype for association testing under an additive genetic model,

separately for ever-smokers and for never-smokers. The software used is specified in

Supplementary Table 1B. Appropriate tests for association in related individuals were

applied where necessary, as described in the Supplementary Note.
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Meta-analysis of Stage 1 data

All Stage 1 study effect estimates, both for ever-smokers and never-smokers were corrected

using genomic control50 and were oriented to the forward strand of the NCBI build 36

reference sequence of the human genome, consistently using the alphabetically higher allele

as the coded allele. Study-specific lambda estimates are shown in Supplementary Table 1.

For each study, effect estimates and standard errors for ever-smokers and never-smokers

were meta-analysed using inverse variance weighting. Genomic control was applied again to

the pooled effect-size estimates for each study. Finally effect-size estimates and standard

errors were combined across studies using inverse variance weighting meta-analysis, and

genomic control was applied to the pooled effect-size estimates. To describe the effect of

imperfect imputation on power, for each SNP we report the effective sample size (N

effective); the sum of the study-specific products of the sample size and the imputation

quality metric. Meta-analysis statistics and figures were produced using R version 2.9.2.

Selection of SNPs for Stage 2

All regions selected for follow-up in Stage 2 contained a lead SNP with novel evidence of

association (all with P<3×10−6) with FEV1 and/or FEV1/FVC, an N effective ≥70% of the

total Stage 1 sample size and the association signals from surrounding SNPs were consistent

with their correlation (linkage disequilibrium) with the leading SNP. Twenty-nine

independent regions with a leading SNP meeting these criteria were assessed in Stage 2.

Regions were defined as independent if the leading SNP from one region was >500kb from

the leading SNP of any other region. Long range linkage disequilibrium was also

investigated between leading SNPs of regions in or near the MHC on chromosome 6

(Supplementary Note). For two regions, the leading SNP had an N effective ≥70% but

<80% of the Stage 1 sample size and therefore a proxy SNP (r2=1 and 0.97) was also taken

forward. For three regions, there were different leading SNPs for FEV1 and FEV1/FVC and

so both leading SNPs were assessed. A total of 34 SNPs were analysed in Stage 2 and are

listed in Supplementary Table 5B. Previously reported regions8-11,51,52 were not followed

up. We present association test statistics in Stage 1 only for relevant SNPs from previously

reported regions in Supplementary Table 5A.

Stage 2 samples

The 34 SNPs were followed up in up to 11,275 individuals from seven studies with in silico

data; CARDIA, CROATIA-Split, LifeLines, LBC1936, MESA-Lung, RS-III and TwinsUK-

II (Supplementary Table 1). SNP rs2647044 was not available from TwinsUK-II.

The 34 SNPs were ranked by P value (for association with either FEV1 or FEV1/FVC) and

the top ten leading SNPs selected for follow up by genotyping in up to 35,136 individuals

from ADONIX, BHS2, BRHS, BWHHS, Gedling, GS:SFHS, HCS, Nottingham Smokers,

NSHD and SAPALDIA (Supplementary Table 1). If a SNP within the top ten had an N

effective <80%, only the proxy SNP was included in the top ten for follow up. For regions

which showed association with both FEV1 and FEV1/FVC, only the leading SNP with the

lowest P value for either trait was included if it was within the top ten SNPs. The study

design is illustrated in Figure 1.

Meta-analysis of Stage 2 data

All Stage 2 studies provided effect estimates for ever-smokers and never-smokers, apart

from Nottingham Smokers since they only had smokers. Studies with family data (BHS2

and GS:SFHS) analysed ever- and never-smokers together to account for the family

correlation, adding the smoking status as a covariate in the model, and therefore provided

smoking adjusted effect estimates. All Stage 2 study effect estimates were oriented to the
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forward strand of the NCBI build 36 reference sequence of the human genome, consistently

using the alphabetically higher allele as the coded allele. For each study with separate results

for ever- and for never-smokers, effect estimates and standard errors for ever- and never-

smokers were meta-analysed using inverse variance weighting. Genomic control was

applied to the pooled effect sizes of those studies with in silico data that undertook the

analysis genome-wide. Effect estimates and standard errors were combined across Stage 2

studies using inverse variance weighting meta-analysis.

Combined analysis of Stage 1 and Stage 2 samples

Meta-analysis of Stage 1 and Stage 2 results was undertaken using inverse variance

weighting. We described associations as genome-wide significant if P<5×10−8.

PCR expression profiling

The mRNA expression profiles of TGFB2, MFAP2, HDAC4, EVI1, RARB, SPATA9,

ARMC2, NCR3, CDC123, LRP1, CCDC38, SNRPF, MMP15, CFDP1, ZKSCAN3,

KCNE2 and C10orf11 were determined in human lung tissue and primary cell samples using

RT-PCR, including RNA from lung (Ambion/ABI), brain, airway smooth muscle cells and

human bronchial epithelial cells (Clonetics42). Primer sequences are listed in

Supplementary Table 2. Full details are provided in the Supplementary Note.

Lung function associations in our data of SNPs previously associated with lung function

In order to permit comparison of findings with recent studies of relevance to the field, we

present association test statistics (in Stage 1 only) for relevant SNPs from previously

reported regions (Supplementary Table 5A). We included regions: (i) reported as showing

genome-wide significant association (P<5×10−8) with lung function; (ii) reported as

showing genome-wide significant association with COPD, providing that there was

additional evidence of association with lung function and; (iii) DAAM2, which reached

borderline significance in the SpiroMeta consortium9. Within each of these regions, if

multiple SNPs had been reported, we included all relevant SNPs and also the SNP that

showed the strongest association in our data.

Association to other traits of lung function associated SNPs

Regions associated (P<5×10−8) with lung function or COPD (and also associated with lung

function) were looked up for other traits. Where multiple SNPs were reported for different

traits or by different investigators, we aimed to include all relevant SNPs, except those with

r2>0.9 with another SNP in the region. We also included the SNPs that showed the strongest

association in our data for each region. The following related traits were assessed: (i) lung

function in children (Supplementary Table 3A); (ii) smoking amount and ever-smoking

versus never-smoking in the Ox-GSK consortium25 dataset (Supplementary Table 3B); (iii)

height in the GIANT consortium14 dataset (Supplementary Table 3C and 3E) and (iv) lung

cancer in the International Lung Cancer Consortium (ILCCO) GWAS meta-analysis26

(Supplementary Table 3D).

Estimation of the number of undiscovered variants and calculation of the proportion of
variance explained

We used the approach proposed by Park et al.34 to estimate the number of independent

variants associated with lung function measures that have similar effect sizes to the variants

already reported, and to calculate the proportion of the variance explained by them. We

excluded discovery data when estimating effect sizes to avoid winner’s curse bias, and

obtained the number of undiscovered variants using the discovery power to detect the

unbiased effect sizes (Supplementary Table 6 and Supplementary Note).
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Additional analyses

The top SNPs from our novel loci, and proxies, were searched for correlation with known

common copy number variants and expression SNPs. Analyses to identify common

pathways underlying the association signals for lung function were undertaken using

MAGENTA v253 and GRAIL54. Full methods and results are given in the Supplementary

Note.
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Figure 1.

Study design. A total of 34 SNPs showing novel evidence of association (P<3×10−6) with

FEV1 and/or FEV1/FVC in a meta-analysis of the Stage 1 studies were followed up in Stage

2. Studies with a combined total of 24,737 individuals undertook genotyping and association

testing of the top 10 SNPs. Seven studies (*) with a combined total of 11,275 individuals

had genome-wide association data and provided results for up to 34 SNPs. #GS:SFHS

undertook genotyping on a 32-SNP multiplex genotyping platform and so included the 32

top ranking SNPs (including proxies and both SNPs from regions which showed association

with both FEV1 and FEV1/FVC). This assay failed for one SNP (rs3769124) which was

subsequently replaced with the 33rd SNP (rs4762767). SNP rs2284746 was excluded due to

poor clustering. Although rs3743563 was chosen as proxy for rs12447804 which had N

effective <80% in the Stage 1 meta-analysis, BHS2 were unable to genotype rs3743563 and

so undertook genotyping for rs12447804 instead. See Table 1 for definitions of

abbreviations.
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Figure 2.

Manhattan plots of association results for (a) FEV1/FVC and (b) FEV1. Manhattan plots

ordered by chromosome position. SNPs for which −log10P>5 are indicated in red. Novel

regions which reached genome-wide significance after Stage 1 + Stage 2 are labelled.
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