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Genome-wide association and multi-omic analyses
reveal ACTN2 as a gene linked to heart failure
Marios Arvanitis1,2, Emmanouil Tampakakis2, Yanxiao Zhang 3, Wei Wang4, Adam Auton4, 23andMe

Research Team*, Diptavo Dutta 1,5, Stephanie Glavaris 2, Ali Keramati 2, Nilanjan Chatterjee5,6,

Neil C. Chi 7,8, Bing Ren 3,8, Wendy S. Post2,9 & Alexis Battle 1✉

Heart failure is a major public health problem affecting over 23 million people worldwide. In

this study, we present the results of a large scale meta-analysis of heart failure GWAS and

replication in a comparable sized cohort to identify one known and two novel loci associated

with heart failure. Heart failure sub-phenotyping shows that a new locus in chromosome 1 is

associated with left ventricular adverse remodeling and clinical heart failure, in response to

different initial cardiac muscle insults. Functional characterization and fine-mapping of that

locus reveal a putative causal variant in a cardiac muscle specific regulatory region activated

during cardiomyocyte differentiation that binds to the ACTN2 gene, a crucial structural

protein inside the cardiac sarcolemma (Hi-C interaction p-value= 0.00002). Genome-

editing in human embryonic stem cell-derived cardiomyocytes confirms the influence of the

identified regulatory region in the expression of ACTN2. Our findings extend our under-

standing of biological mechanisms underlying heart failure.
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H
eart failure is a highly prevalent disease1 that constitutes a
major medical and economic burden in the healthcare
system, accounting for ~1–2% of the annual healthcare

budget in developed countries2. Although almost any disease that
directly or indirectly affects myocardial function can lead to the
eventual development of clinical heart failure, it is well-
established that certain intrinsic homeostatic mechanisms like
the renin–angiotensin–aldosterone axis and the sympathetic
nervous system potentiate the effects of a variety of myocardial
insults and cause adverse left ventricular remodeling3, suggesting
that multiple cellular mechanisms that lead to the disease are
shared regardless of the inciting condition.

The increasing appreciation of an underlying strong heritable
component of clinical heart failure further strengthens the argu-
ment for shared, yet unidentified, disease mechanisms whose
discovery could reveal novel targets for its treatment and pre-
vention. Indeed, large recent pedigree studies estimate heart
failure heritability to be 26–34%4. However, large-scale genome-
wide associations studies (GWAS) for heart failure have been
unsuccessful to-date at uncovering a significant proportion of this
estimated heritability underscoring a major unmet need in car-
diovascular genetics. In fact, the largest published GWAS for
heart failure until recently had only identified one genome-wide
significant locus for all-comers with the disease that the investi-
gators attribute to its overlap with atrial fibrillation5. A larger
GWAS performed and published in parallel to our study
increased the number of identified loci to 116. Even within this
important work, however, many of the identified loci appear to be
acting via heart failure risk factors and these loci have not yet
been extensively functionally characterized, thereby limiting
identification of actionable targets that predispose to heart failure
development.

In the current work, we perform a large-scale GWAS for heart
failure and replicate our findings in a comparably sized inde-
pendent cohort. We identify and replicate associations between
heart failure and one known locus in chromosome 4 near the
PITX2 gene and two novel loci near the ABO (chromosome 9)
and ACTN2 (chromosome 1) genes. One of the novel loci near
ABO was also detected in the aforementioned recently published
GWAS6. Heart failure sub-phenotyping and multi-trait condi-
tional analyses show that the novel chromosome 1 locus affects
heart failure and left ventricular remodeling independently of
known risk factors and in response to a variety of initial cardiac
muscle insults. Detailed functional characterization of that locus
using epigenomic, Hi-C, and transcriptomic datasets in differ-
entiating cardiomyocytes reveals a cardiac muscle-specific reg-
ulatory element that is dynamic during cardiomyocyte
differentiation and binds to the promoter of the ACTN2 gene,
whereas genome-editing confirms that ACTN2 expression is
significantly reduced in cardiomyocytes that carry a deletion of
the identified novel regulatory element.

Results and discussion
GWAS meta-analysis identifies novel heart failure loci. We
performed a large-scale GWAS meta-analysis of five cohorts
that study cardiovascular disease and two population genetics
cohorts, all of European ancestry comprising a total of 10,976
heart failure cases and 437,573 controls. We used the 1000
Genomes phase 3 reference panel to impute variants from
single nucleotide polymorphism (SNP) array data and analyzed
a total of 13,066,955 unique genotyped or high-confidence
imputed variants (INFO score > 0.7) with a minor allele fre-
quency >1%. We analyzed each individual cohort using a
logistic mixed model and meta-analyzed all studies with fixed
effects inverse-variance meta-analysis.

The combined meta-analysis revealed one previously identified
and two novel loci associated with clinical heart failure at a
genome-wide significance threshold (p-value < 5e-8) (Fig. 1a,
Table 1, and Supplementary Data 1). All identified leading
variants are common (MAF > 10%) and are located in non-
coding regions of the genome (Supplementary Fig. 1). We
validated our genome-wide significant loci in an independent
cohort of 24,829 self-reported heart failure cases and 1,614,513
controls of European ancestry from the personal genetics
company 23andMe, Inc. with all three sentinel variant associa-
tions successfully replicating at a nominal p-value level (p < 0.05)
(Table 1) and after Bonferroni adjustment. Demographic
information comparing the Discovery and Replication cohorts
is available in Supplementary Table 1.

Analysis links heart failure and musculoskeletal traits. We
subsequently performed linkage disequilibrium (LD) score
regression to estimate heart failure heritability driven by common
variants and the genetic correlation between heart failure and
other complex traits. Liability scale SNP heritability for the dis-
ease assuming a population prevalence of 1.8%7 was 5.9% (SE
0.7%), much lower than the pedigree-based estimates of 26%, a
discrepancy that has been observed for other complex traits8 and
could be explained by multiple factors, including rare variants.
The LD score regression intercept was 0.99, indicating no infla-
tion beyond what can be accounted for by polygenicity. As
expected, we saw significant genetic correlation between heart
failure and known heart failure risk factors, such as hypertension,
ischemic heart disease, adverse lipid profiles, diabetes, and atrial
fibrillation. We also found a strong association between heart
failure and pulmonary, musculoskeletal, and GI traits (Fig. 1b and
Supplementary Table 2). We should note that genetic correlation
analysis should not be viewed as evidence for a causal relationship
between the tested diseases and consequently these results do not
indicate that heart failure is causally influenced by musculoske-
letal disorders. However, these disorders may share some genetic
factors or cellular pathways—since the heart is composed mostly
of muscle and stromal tissue, it is plausible that it could share
regulatory mechanisms with other organs of similar cell type
composition.

Atrial fibrillation’s role in heart failure development. We
investigated each genome-wide significant locus in depth. The
chromosome 4 locus tagged by the SNP rs1906615 is found in
an intergenic region close to the PITX2 gene. This locus was
previously identified as containing the strongest evidence for
association with atrial fibrillation9 and has been reported as a
significant locus in recent heart failure GWAS5,6. However,
that association was thought to be mediated via the relative
enrichment of the heart failure population in atrial fibrillation
cases5. Indeed, via multi-trait conditional and joint analysis
using summary statistics from GWAS of atrial fibrillation,
we confirm that the effect of the PITX2 locus on heart failure
is explained by its effect in atrial fibrillation (Table 2 and
Supplementary Data 2). Mendelian randomization (MR) ana-
lysis using 110 independent (LD r2 < 0.001) genome-wide sig-
nificant atrial fibrillation-associated variants, provides further
evidence for a directional effect of atrial fibrillation on heart
failure development (weighted mode MR effect size 0.21 (odds
ratio 1.23), z-test p < 0.0001). Sensitivity analysis using the
MR Egger and weighted median approach to account for
potential pleiotropy and/or invalid instruments confounding
our MR estimates is statistically significant and supports our
hypothesis for a causal effect of atrial fibrillation on heart
failure (Supplementary Fig. 2). While MR methods alone
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cannot rule out reverse causation, 105/110 of the variants used
here have a larger effect size for atrial fibrillation than heart
failure, and atrial fibrillation displays greater SNP heritability,
supporting that the MR result indicates an effect on Heart
Failure that is mediated through atrial fibrillation rather than
the reverse.

ACTN2 gene enhancer is associated with heart failure. The
chromosome 1 locus tagged by the SNP rs580698 is found near
ACTN2, a gene that encodes for a structural cardiac protein inside
the sarcolemma, at which rare mutations have recently been
associated with the development of cardiomyopathy and conse-
quently heart failure10. Multi-trait conditional and joint analysis
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with common heart failure risk factors (atrial fibrillation,
ischemic heart disease, hypertension, diabetes mellitus) does not
result in a significant change in the effect of the ACTN2 locus on
heart failure, suggesting that the association signal is not pri-
marily mediated via these other diseases (Table 2 and Supple-
mentary Data 2). A phenome-wide association approach
(PheWAS) using echocardiographic and other phenotypic infor-
mation available for a subset of our cohorts and participants
demonstrates that the ACTN2 locus is significantly associated
with both ischemic and non-ischemic heart failure and has a
trend for an effect in left ventricular dilation and heart failure
with reduced ejection fraction, thereby suggesting its potential
role in mechanisms predisposing to left ventricular adverse
remodeling in response to various initial insults (Table 2 and
Supplementary Fig. 3). Chromatin state data for the ACTN2 locus
from Roadmap Epigenomics reveal a broad area of muscle-
specific active enhancer elements in the skeletal muscle, fetal

heart, left and right ventricular tissues (Figs. 2 and 3a, and Sup-
plementary Fig. 4). Integration with expression quantitative trait
loci (eQTL) data does not reveal any compelling evidence of
colocalization between the GWAS signal and altered expression
of nearby genes in adult blood or post-mortem adult heart tissues
(Supplementary Table 3). In addition, no significant association
with the expression of nearby genes is detected in eQTL studies
performed with freshly preserved heart tissue at the time of heart
transplant/donor heart explant11.

Since eQTL analysis in adult tissue did not identify a target
gene for the locus, in an effort to provide a credible hypothesis of
how this locus is associated with heart failure, we proceeded with
additional functional characterization. The first step was to fine
map putative causal variants within the locus. First, we generated
a credible set of SNPs for the ACTN2 locus based on the GWAS
associations and linkage disequilibrium pattern for each region of
interest using CAVIAR12 and selected the 111 SNPs with GWAS
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p-value < 5e-7 from the credible set. Then, we intersected that set
of SNPs with active chromatin states using the Roadmap
Epigenomics ChromHMM 25-state model13 for cardiac tissues
and with candidate cis-regulatory elements (ccREs) from the
ENCODE registry14. Of 111 strongly associated variants in almost
perfect LD within the credible set for ACTN2, only seven

overlapped regulatory elements in both Roadmap and ENCODE
and were, therefore, used in downstream analyses (Supplemen-
tary Data 3).

Next, we verified the presence of active chromatin states
overlapping our ACTN2 locus SNPs in engineered human
embryonic stem cell (hESC) derived cardiomyocytes during
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different stages of differentiation. We showed that one of the
seven target variants, rs535411 (Supplementary Data 4) overlaps
cardiomyocyte-specific ATAC-seq, H3K4me1, and H3K27ac
peaks that start to appear on day 7 of hESC differentiation into
a cardiomyocyte and persist until at least day 80 (Fig. 3b). The
ATAC-seq signal onset at that region coincides temporally with
the onset of ACTN2 expression based on RNA-seq data from the
same differentiation experiment (Fig. 3b), with both occurring
between day 5 and 7. High-resolution chromatin conformation
capture (HiC) analysis of our hESC to cardiomyocyte model on
day 80 of differentiation shows that the ATAC-seq peak is in
contact with the ACTN2 gene promoter (observed/expected
interaction frequency= 1.82, Poisson test p= 0.00002) (Fig. 4a
and Supplementary Table 4) and its interaction is dynamic and
increases during differentiation (Fig. 4b).

Although rare variants within the ACTN2 gene are known to
be associated with cardiomyopathies, the credible set analysis
does not support the coding region as being the primary driver of
the GWAS signal. Moreover, conditioning on the sentinel variant

eliminates the signal for association of the locus with heart failure,
suggesting that the association is driven primarily by a single
causal variant in high LD with the sentinel SNP (Supplementary
Fig. 5). We should note however that we cannot exclude the
possibility that the association signal could be caused or increased
by other rare variants within our identified cardiac muscle
enhancer region that contains rs535411.

We subsequently ventured to experimentally validate the effect
of the putative enhancer element at the 1q43 locus on ACTN2
gene expression in cardiomyocytes. For that purpose, we
generated engineered hESCs with a CRISPR-Cas9-induced
deletion in the ~2200 bp region that delimits the enhancer
element identified in our hESC-CM epigenomic data analyses.
We differentiated these edited hESCs into cardiomyocytes and on
day 15 of differentiation, we compared the expression of ACTN2
to that of isogenic hESC-CMs without the deletion. ACTN2
expression was reduced on average by half in the edited hESC-
CMs compared to controls (Fig. 4c). We then assessed expression
of other nearby genes, and none appeared to be affected by the
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deletion (Supplementary Fig. 6A). These experiments support the
epigenetic predictions of a cardiac enhancer element in that
region and validate the Hi-C data that suggest binding of that
enhancer element to the ACTN2 gene promoter. More impor-
tantly, these results provide a mechanistic hypothesis of the
GWAS association between the ACTN2 locus and heart failure.
Indeed, previous studies have established that reduction of
ACTN2 mRNA levels via a siRNA leads to defects in the number
and size of cardiac sarcomeres along with a phenotype of dilated
heart with thin walls and a decreased heart rate in zebrafish15. It
is therefore plausible that smaller reductions of ACTN2 expres-
sion as those caused by variants within our identified enhancer
could generate subtler cardiac sarcomeric defects in humans that
become apparent later in life in individuals with an additional
genetic or environmental insult to the heart muscle, thereby
providing a tenable explanation for the detected heart failure
association that deserves further exploration in future studies.

Independent experiments support the presence of cardiac
muscle enhancer in the identified region. Specifically, ChiP-seq
data of p300/CREBBP from an independent cardiomyocyte
experiment show a peak at the identified region16 suggestive of
chromatin-accessible active regulatory elements. Since the
ACTN2 gene is known to be induced during cardiomyocyte
maturation17 and our hESC experiments confirm a dynamic
regulatory region that switches on during cardiomyocyte
differentiation, the absence of evidence of cis-eQTL effects of
our putative causal variant with the ACTN2 gene may reflect a
dynamic effect of the enhancer on gene expression during the
maturation process or could be the consequence of insufficient
power, relevant cell type, or other context-specificity in eQTL
studies to-date. Moreover, prior studies support the role of SNPs
in this region in cardiac function. Our fine-mapped variant
rs535411 is associated with left ventricular end diastolic
dimension (beta= 0.022, t-test p= 5.07e-05) in a recent large-
scale GWAS of echocardiographic traits18, which corroborates
our hypothesis for a role of the locus in left ventricular
remodeling. Beyond ACTN2, the data from our genetic correla-
tion analysis (Fig. 1b) support a broader role of common variants
related to structural musculoskeletal proteins in heart failure by
revealing strongly shared heritability between heart failure and
multiple musculoskeletal disorders (including osteoarthritis,
enthesopathies, intervertebral disk disease) and smooth muscle
disorders (esophageal, gastric, and duodenal diseases).

Regulatory variants of ABO predispose to heart failure. Lastly,
the chromosome 9 locus tagged by the SNP rs9411378 is found in
an intron of the ABO gene, a gene that determines blood type and
has been linked to the development of ischemic heart disease19. A
PheWAS of the sentinel variant across 4155 GWAS from the
GWAS Atlas20 shows its significant effects in hematologic (red
blood cell count, white blood cell count, monocyte cell count,
hemoglobin concentration) and metabolic traits (lipid disorders,
diabetes, activated partial thromboplastin time) (Supplementary
Data 5 and Fig. 5a), whereas a similar PheWAS approach on 1448
traits from the UK BioBank reveals its association with venous
thromboembolism (Supplementary Fig. 7). Interestingly, con-
ditioning on several traits associated with our sentinel variant for
which GWAS summary statistics are available or on known heart
failure risk factors does not significantly change the signal of
association between the ABO locus and heart failure (Table 2 and
Supplementary Data 2), suggesting a direct effect of the locus on
heart failure independent of its effect on other human disorders.
In addition, since ABO is a known locus for coronary disease,
which in turn is one of the major disorders leading to heart
failure, beyond conditioning on ischemic heart disease we also

performed a sensitivity analysis in which we excluded all patients
with coronary artery disease (CAD) and tested the association
between the locus sentinel SNP and heart failure (log(Odds
Ratio)= 0.1027, score test p-value= 1.3e-4). Since CAD is only
one of the many causes of heart failure, and individuals can have
both CAD and heart failure from a different cause, the restricted
analysis is conservative and consequently underpowered com-
pared to our discovery GWAS (Ncases= 4137 vs. Ncases= 10,976),
which even at the expected, unrestricted effect size inevitably
makes the association non-significant at a genome-wide p-value
threshold of 5e-8. Nevertheless, the restricted effect size on HF
did remain similar to our unrestricted analysis and the association
remained nominally significant. Taken together, this sensitivity
analysis and the multi-trait conditional analysis suggest the pos-
sibility of a role of the ABO locus on heart failure independent of
its established influence on coronary disease risk. However,
definitive proof of this hypothesis will require further study.

The locus did not show any active enhancer or promoter states
in cardiac tissues but instead overlapped active enhancer states in
primary hematopoietic stem cells and intestinal cells (Supple-
mentary Fig. 8). The sentinel variant was a strong eQTL for ABO
gene expression in eQTLGen and GTEx whole blood, consistent
with our findings of active chromatin state overlap in hemato-
poietic lineage cells. In addition, the eQTL signal had strong
evidence of colocalization with the GWAS signal for the same
locus (posterior probability 96%) (Fig. 5b). Notably, the sentinel
variant in our GWAS is in LD with the most common variant
(rs8176719) associated with O-blood type via a frameshift
mutation that is thought to inactivate ABO (LD r2 0.64 in 1000
Genome Europeans). However, the effects of our lead variants on
the expression of ABO remain after stratifying by rs8176719
genotype (Fig. 5c), suggesting an additional regulatory role for
our variants, which goes beyond tagging the O-blood type variant
rs8176719. Similarly, in our GWAS, a strong signal for
association remains within the locus after conditioning on
rs8176719 (Supplementary Fig. 9). We should note though that
rs8176719 is genotyped or accurately imputed only on a small
subset of our participants (35,836 individuals), which may limit
interpretation of this analysis as definitive evidence of an
independent signal. Since our GWAS locus is intronic, we also
examined whether it could affect splicing of the ABO gene using
whole-blood RNA-seq data from GTEx v8. Indeed, although the
variant’s effect on expression appears stronger than its splicing
consequence, we found that the locus is also associated with
splicing of ABO, promoting a splice variant that skips the exon on
which rs8176719 is found, which provides additional evidence for
a regulatory role not due to linkage disequilibrium with
rs8176719 (Supplementary Table 5 and Supplementary Fig. 10).

Although having non-O blood type via a structural coding
variation in the ABO gene has been linked to cardiovascular
disease and cardiovascular mortality21, the mechanisms under-
lying this association are not fully understood. Our finding that
regulatory variation of the ABO gene’s expression is linked to the
development of heart failure highlights the importance of ABO in
cardiovascular disease and opens the door to further studies to
decipher the cellular mechanisms involved.

In summary, we performed a large-scale genome-wide
association study for heart failure and replicated our findings in
a similarly powered cohort. Our results validate the use of this
approach to discover regulatory variants associated with heart
failure predisposition in response to a variety of cardiac insults,
reveal a new putative mechanism for the disease associated with
the regulation of a structural cardiac muscle protein during
differentiation, underscore the role of the ABO gene in
cardiovascular disease and highlight broadly shared heritability
between heart failure and musculoskeletal disorders.
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Methods
Samples. We performed genome-wide association studies in five cohorts that
study cardiovascular disease (Framingham Heart Study, Cardiovascular Health
Study, Atherosclerosis Risk in Communities Study, Multi-Ethnic Study of Ather-
osclerosis, Women’s Health Initiative) and the eMERGE initiative. Genotype and
phenotype raw data were downloaded from dbGAP (accession numbers
phs000007.v29.p11, phs000287.v6.p1, phs000209.v13.p3, phs000280.v4.p1,
phs000200.v11.p3, phs000888.v1.p1). Our work complies with all relevant ethical
regulations for work with human participants. All individuals provided informed
consent for participation in the individual cohorts. Our GWAS study was approved
by the Johns Hopkins School of Medicine IRB (IRB #00163194). For each indi-
vidual study we performed sample level filtering (excluding samples with assigned
and genotype sex discrepancy, extreme deviations from heterozygosity or miss-
ingness). We also excluded individuals that were not of European Ancestry and for
every group of individuals that were related (identity by descent (IBD) > 0.125) we
randomly selected one.

In addition, for each study SNP level filtering was performed to exclude SNPs
that had significant deviations from Hardy–Weinberg equilibrium in heart failure
controls, minor allele frequency <0.01, missing call rate >0.05 and differential
missingness between heart failure cases and controls22. For studies that analyzed
their populations with different genotyping arrays, we also excluded SNPs that had
significant deviation in minor allele frequencies (MAF) between the different
arrays. For individuals that were genotyped in more than one genotyping array, we
selected the array that had the most extensive genotyping. We proceeded with
imputing and analyzing each array separately for every study.

Imputation. We imputed each study to the 1000 Genomes phase 3 reference panel
using Minimac323 after pre-phasing with Eagle24 on the Michigan Imputation
Server. Prior to imputation, we lifted all SNPs to the hg19 human genome build
using the UCSC liftOver tool, aligned all SNPs to the positive strand and filtered
out SNPs whose minor allele frequencies deviated by >0.2 compared to the
reference panel’s MAF and SNPs A/T or G/C SNPs with MAF > 0.4 as those are
prone to strand alignment errors. After imputation, we excluded all imputed SNPs

with imputation r squared (INFO score) <0.7, SNPs with MAF < 0.01 and SNPs
with Hardy–Weinberg p-value <1e-4. For the eMERGE cohort, imputation was
performed independently prior to the start of this study with procedures detailed
elsewhere25 and we subsequently applied the same post-imputation filters.

Genome-wide association. For each study, we performed a GWAS for heart
failure controlling for age, sex and the first 10 genotype principal components
(PCs). Heart failure definitions in the different cohorts are listed in Supplementary
Table 6. PCs were calculated based on a set of independent (LD r2 < 0.2) genotyped
or high-quality imputed SNPs (INFO score>0.9) in an unrelated population
(IBD < 0.08) and the SNP loadings were subsequently used to calculate the
eigenvectors for all individuals included in the analysis. In the eMERGE cohort,
since the population was collected from multiple different hospitals across the
United States, we included an additional multilevel categorical covariate denoting
the sample source. All GWAS were performed using a linear mixed model with the
saddlepoint approximation (SAIGE)26 to account for any residual relatedness
structure in our analysis and for case–control imbalance, which is inherent in our
phenotype of interest. For the UK BioBank cohort we used the summary statistics
for all cause Heart Failure (PheCode 428) generated by analyzing the UK BioBank
data in the SAIGE paper26.

Meta-analysis. We meta-analyzed the results of all our GWAS using fixed effects
inverse-variance meta-analysis via the software METAL27. We kept only SNPs that
were present in at least three studies and 5000 individuals. The following tools were
used for the GWAS: Python, R, Bcftools, PLINK28, SNPRelate29, SAIGE26,
METAL27.

Replication. We replicated our findings in an independent cohort of 24,829 Heart
failure cases and 1,614,513 controls of European ancestry within the 23andMe
research cohort. 23andMe participants provided informed consent and participated
in the research online, under a protocol approved by the external AAHRPP-
accredited IRB, Ethical and Independent Review Services (E&I Review). Heart
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failure in the replication population was self-reported as an answer to the question
“Have you ever been diagnosed with or treated for Heart failure?”. All three
replication variants were imputed with high quality (imputation r2 > 0.95) using an
imputation panel that combined the 1000 Genomes Phase 3 panel with the UK10k
panel. The variants were analyzed via logistic regression assuming an additive
model with covariates for age, sex, the first five genotype PCs, and indicator
variables to represent the genotyping platform. The p-values were adjusted for an
LD score regression intercept of 1.043.

Phenome-wide association of heart failure subtypes. For each of the five
cohorts in our study and the eMERGE cohort, we classified heart failure individuals
as having ischemic heart failure if they also had a history of diagnosed ischemic
heart disease, myocardial infarction, percutaneous coronary intervention or cor-
onary artery bypass graft surgery and non-ischemic heart failure otherwise. We also
classified individuals as heart failure with reduced ejection fraction if they had heart
failure and at least one echocardiogram showing a left ventricular ejection fraction
(LVEF) <50%, and heart failure with preserved ejection fraction otherwise. Indi-
viduals that did not have information on myocardial infarction history or echo-
cardiographic information were not included in the respective analyses. We also
obtained continuous data of LVEF, left ventricular end diastolic diameter, and
interventricular septum diameter from each individual’s most recent available
echocardiogram. Each of our sentinel variants from the general heart failure GWA
meta-analysis were tested for an effect in each of these variables using SAIGE for
the categorical variables and linear regression assuming an additive genotype effect
for the continuous variables with the same covariates as in our primary GWAS.
The results cross-cohort were meta-analyzed using METAL.

Other phenotype associations. To evaluate if our lead GWAS variants had
associations with other phenotypes we queried the NHGRI-EBI GWAS catalog and
also evaluated the GWAS atlas20, which contains data from 4155 GWAS across
2960 unique traits and the 1488 Electronic Health Record-Derived PheWAS codes
from the Michigan Genomics Initiative26.

Heritability and genetic correlation. We used LD score regression30 with the
1000 Genomes European reference LD to evaluate the liability scale heritability
explained by the common variants in our GWAS assuming a population pre-
valence of 0.0187. We subsequently analyzed our GWAS together with summary
statistics from GWAS studies from the UK biobank31 using the genetic correlation
method of the LD score regression pipeline to quantify the shared heritability
between our phenotype and other traits32. For the genetic correlation analysis we
selected traits to analyze based on the following procedure:

1. Among all summary statistics analyzed in the SAIGE paper26, we first
excluded the categories Injuries and poisonings (as it is unlikely to have a
major heritable component), as well as symptoms and pregnancy
complications (as they are too general to have a meaningful interpretation
of genetic correlation).

2. We excluded general disease bundles that include the work “other” or
“NOS” (e.g., other infectious and parasitic diseases) or are a sign/symptom
(e.g., hematuria) or medication (e.g., chemotherapy).

3. We reclassified all infections into the “Infectious Diseases” category and all
congenital anomalies to their respective organ system.

4. From every organ system or general disease category we selected the three
diseases with the highest number of cases.

5. For every selected disease, we excluded diseases and disorders that are
subsets of the same disease or highly related (e.g., Selected disease:
hypertension-excluded disease: essential hypertension).

6. We excluded diseases whose z-score of observed heritability calculated via
LD score regression was <1.

Conditional analysis based on summary statistics. We used the COJO pack-
age33 from the GCTA pipeline to evaluate the residual association signal within our
genome-wide significant loci after conditioning on our sentinel variants or other
variants of interest using as reference the LD of the eMERGE heart failure dataset.

Multi-trait conditional and joint analysis. We used the mtCOJO package34 from
the GCTA pipeline to evaluate the effects of our variants conditioned to other heart
failure risk factors (e.g., hypertension, atrial fibrillation, ischemic heart disease) and
conditions associated with our sentinel variants in PheWAS studies using the 1000
Genomes Europeans reference LD scores.

Mendelian randomization analysis. We used the MR base package35 to perform
Mendelian Randomization analysis in order to evaluate the effect of atrial fibril-
lation on the development of heart failure using summary statistics from a large-
scale GWAS meta-analysis of atrial fibrillation36. The polygenic risk score was
constructed using independent variants (LD r2 < 0.001) at a genome-wide sig-
nificance threshold (p < 5e-8) using as reference the LD of the 1000 Genomes
European samples.

Variant fine-mapping. We followed a step-wise approach based on epigenomic
annotations and LD structure for our variant fine-mapping efforts. We first used
the Roadmap epigenomics ChromHMM 25-state model13 across all tested cell
types and tissues to visualize our significant loci and identify broad patterns of
active promoter or enhancer elements across tissues. We subsequently used
CAVIAR12 with the 1000 Genomes European reference LD and the assumption of
at most two causal variants per locus to generate a credible set of SNPs for each
locus. The CAVIAR analysis for the ACTN2 locus included all SNPs in a radius of
100 kilobases around the locus sentinel SNP. Since that analysis identified a large
number of SNPs (N= 183), we selected only the 111 SNPs in the set that had a
GWAS p-value < 5e-7 for downstream fine-mapping. Then, we intersected the
SNPs in that set with active enhancer or promoter elements predicted by Roadmap
epigenomics for heart tissues (fetal heart, left ventricle, right ventricle, and right
atrium). Finally, we intersected SNPs selected by the previous step with candidate
cis-regulatory elements predicted by ENCODE14. Bedtools37 was used for all
intersection tests. The WashU Epigenome browser was used for visualization of our
loci in the ChromHMM context38.

Cardiomyocyte differentiation model. To further probe the effects of the ACTN2
locus on cardiomyocyte function, we performed ATAC-seq, ChIP-seq of H3K4me3
and H3K27ac, RNA-seq and HiC experiments39, in an engineered H9 hESC
(WiCell Research Institute) modified into H9 hESC MLC2v:H2B-GFP reporter
transgenic line, which expresses H2B-GFP in differentiated ventricular cardio-
myocytes40. This cell line was differentiated into cardiomyocytes using a well-
established Wnt-based differentiation protocol41. Cardiomyocytes and their
intermediate cell populations were collected and analyzed at different differentia-
tion stages (Day 0, 2,5,7,15, and 80) and epigenomics, transcriptomics and three-
dimensional chromatin conformation assays were performed on these cells39. We
queried our fine-mapped variants by intersecting them with ATAC-seq, H3K4me3,
and H3K27ac peaks in the cardiomyocyte differentiation model and we subse-
quently assessed the HiC contacts between the identified peaks and nearby genes.
HiC contacts were generated at 5 kb resolution. Expected contacts for each bin are
calculated as the genome-wide average of contacts of the same distance, as Hi-C
contacts follow a distance-based decay. The observed/expected value for each bin
shows the enrichment of HiC contacts relative to the background. We tested the
significance of enrichment of observed contacts with respect to the expected
contacts using an upper-tail Poisson test with x equals observed contacts and
lambda equals expected contacts42. The UCSC human genome browser was used to
visualize the sequencing peaks43.

Expression quantitative trait loci (eQTL). We assessed the effect of our genome-
wide significant variants in gene expression of nearby genes using two databases:
(1) Genotype Tissue Expression (GTEx): we obtained whole-genome sequencing
and RNA sequencing data from GTEx version 8. We followed the standard pipeline
proposed by GTEx v744 to normalize gene expression and perform cis-eQTL
analyses. In brief, we filtered out genes with <6 reads or <0.1 counts per million
(cpm) in >20% of participants per tissue, performed normalization of expression
values between samples using TMM45 and for each gene, we normalized gene
expression across samples by an inverse rank-based transform to the standard
normal distribution. The effect of a variant in gene expression was analyzed using
linear regression as implemented in MatrixEQTL46 using age, sex, RNA-seq plat-
form, five genotype PCs and 60 probabilistic estimation of expression residuals
(PEER) factors47 as covariates. Using the methods above, we tested the effect of the
ACTN2 locus fine-mapped variants to the expression of genes within 1 megabase
in left ventricle tissue and the effect of the ABO locus in whole blood. (2) To
increase the power of detecting a cis-eQTL association in whole blood, we obtained
cis-eQTL summary statistics from eQTLGen, which includes eQTL data from
31,684 samples48. We queried our ABO locus sentinel variant in the dataset.

Colocalization analysis. For each identified significant eQTL result for our variants,
we evaluated whether the eQTL and GWAS signals colocalize using a Bayesian
colocalization method as implemented in coloc49 to estimate the posterior probability
of an identical causal variant per locus between eQTL and GWAS. Colocalization
Manhattan plots for Supplementary Fig. 1 were generated using LocusZoom50.

CRISPR-Cas9 enhancer deletion cardiomyocyte model. To generate a deletion
of the candidate causal region within the ACTN2 locus in human embryonic stem
cells (hESCs), we used the CRISPR/Cas9 system. More specifically, we used
CHOPCHOP v251 to find guide RNAs (gRNAs) that in combination with Cas9 will
generate cuts within the ATAC-seq peak detected as causal in our epigenetic hESC-
CM experiments. We then cloned both gRNAs and Cas9 in vectors carrying a
puromycin resistant cassette and used the NEON electroporation system (Ther-
moFisher) to effectively transform hESCs (H9 line, Cat# WA09, WiCell). Cells
were then plated in flasks coated with Gelltrex (LDEV-Free reduced growth factor
basement membrane matrix, Thermofisher) and maintained in Essential 8 medium
(Thermofisher). hESCs underwent electroporation using the Thermo Neon
Transfection system and transformed hESCs were selected using Puromycin for
48 h. Cells were replated and colonies from single cells were manually picked and
expanded. All colonies were subsequently screened using PCR with primers that
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bind outside the expected Cas9 cuts. DNA from colonies carrying the deletion
generated a 490 bp PCR fragment confirming a ~2200 bp deletion in the target
segment (Supplementary Fig. 6B, C). To generate hESC-derived cardiomyocytes,
hESCs with enhancer deletion and hESCs from the parent isogenic line were
differentiated to cardiomyocytes52. For the differentiation protocol, cells were
sequentially treated with two small inhibitors, 6 μM of CHIR99021 (Tocris, GSK3b
inhibitor) for 48 h followed by 2.5 μM of IWR-1 (Tocris, Wnt signaling antagonist)
in RPMI-B27 without insulin medium (Thermofisher). Spontaneous beating was
noted at day 7 of differentiation. Cardiomyocytes were further selected using
sodium lactate53. RNA was isolated from cardiomyocytes at day 15 using Trizol,
complementary DNA (cDNA) was generated using the high-capacity cDNA
reverse transcription kit (Thermofisher) and quantitative PCR was performed
using Sybr select protocol54. Gene expression levels were normalized with GAPDH.
Expression in edited cardiomyocytes and controls was assessed in four replicates
and compared with a two-tailed t-test. Whole list of primers is provided in Sup-
plementary Table 7.

Splice-QTL analysis for the ABO locus. We used LeafCutter55 to perform splice-
QTL (sQTL) analysis for rs550057 (which is an LD surrogate for the sentinel SNP
rs9411378 of the ABO GWAS locus, highly associated with heart failure in the
GWAS discovery cohort). We obtained and normalized intron excision ratios from
binary sequence alignment/map files for whole-blood tissue in GTEx v8 following
the filtering and normalization steps provided with the LeafCutter software. We
then used FastQTL56 to perform nominal sQTL analysis for rs550057 using as
covariates five genotype PCs, ten PCs calculated based on the normalized intron
excision ratios, along with sex, age, and whole-genome sequencing library con-
struction methodology.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Our GWAS summary statistics were made available in a public Zenodo repository

(https://zenodo.org/record/3612522#.XiSE_i2ZOgA), and all the genotype data used to

generate those summary statistics are available from dbGaP (accession numbers

phs000007.v29.p11, phs000287.v6.p1, phs000209.v13.p3, phs000280.v4.p1, phs000200.

v11.p3, phs000888.v1.p1) or via a request to the UK BioBank. Our analysis of eQTL data

from GTEx and eQTLGen are all available in our Supplementary Tables and the

corresponding GTEx v8 sequencing data are available from dbGaP (accession number

phs000424.v8.p2) and on the GTEx project portal (https://gtexportal.org/home/). RNA-

seq, H3K27ac-seq, and Hi-C data from the cardiomyocyte differentiation experiments

have been deposited in the Gene Expression Omnibus under the accession number

GSE116862, whereas the sequencing raw reads for ATAC-seq and H3K4me1-seq, as well

as all processed epigenetic, RNA-seq, and HiC data in hESC-CMs for our loci of interest

were made available at the following Zenodo repository (https://zenodo.org/record/

3612522#.XiSE_i2ZOgA). Lastly, the source data underlying Figs. 1b, 3a, c, 4c and

Supplementary Figs. 2, 6a, c, 10a are provided as a Source Data file.

Code availability
The code used for the GWAS analyses is available on the following Github repository:

https://github.com/marvani88/HF_GWAS. UCSC genome browser plots were created

using the genome browser website (http://genome.ucsc.edu/).
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