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Drought stress (DS) is a major constraint to maize yield production. Heat stress (HS)

alone and in combination with DS are likely to become the increasing constraints.

Association mapping and genomic prediction (GP) analyses were conducted in a

collection of 300 tropical and subtropical maize inbred lines to reveal the genetic

architecture of grain yield and flowering time under well-watered (WW), DS, HS, and

combined DS and HS conditions. Out of the 381,165 genotyping-by-sequencing SNPs,

1549 SNPs were significantly associated with all the 12 trait-environment combinations,

the average PVE (phenotypic variation explained) by these SNPs was 4.33%, and 541

of them had a PVE value greater than 5%. These significant associations were clustered

into 446 genomic regions with a window size of 20 Mb per region, and 673 candidate

genes containing the significantly associated SNPs were identified. In addition, 33

hotspots were identified for 12 trait-environment combinations and most were located

on chromosomes 1 and 8. Compared with single SNP-based association mapping, the

haplotype-based associated mapping detected fewer number of significant associations

and candidate genes with higher PVE values. All the 688 candidate genes were

enriched into 15 gene ontology terms, and 46 candidate genes showed significant

differential expression under the WW and DS conditions. Association mapping results

identified few overlapped significant markers and candidate genes for the same traits

evaluated under different managements, indicating the genetic divergence between

the individual stress tolerance and the combined drought and HS tolerance. The GP

accuracies obtained from the marker-trait associated SNPs were relatively higher than
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those obtained from the genome-wide SNPs for most of the target traits. The genetic

architecture information of the grain yield and flowering time revealed in this study, and

the genomic regions identified for the different trait-environment combinations are useful

in accelerating the efforts on rapid development of the stress-tolerant maize germplasm

through marker-assisted selection and/or genomic selection.

Keywords: maize, association mapping, genomic prediction, drought stress, heat stress, combined drought and

heat stress

INTRODUCTION

Maize is the major source of food security and economic
development in the major developing countries in sub-Saharan
Africa, Latin America and Asia (Cairns and Prasanna, 2018).
Drought stress (DS) has long been recognized as a major
constraint to maize yield production in these regions, which
affects approximately 20% of the tropical and subtropical maize
in any given year in the developing countries (Heisey and
Edmeades, 1999; Cairns et al., 2013a; Cerrudo et al., 2018).
Climate projections suggest decreasing precipitation, increasing
temperatures, and a higher intensity and frequency of extreme
events. Heat stress (HS) alone and in combination with DS are
likely to become the increasing constraints to maize production
in the region of maize-dependent countries (Cairns et al., 2013a).
This highlight the need to develop and deploy climate-resilient
maize varieties in the tropical world.

While genetic gain for grain yield (under experimental
conditions) under DS in sub-Saharan Africa is similar to other
regions of the world, absolute yields in farmers’ fields remain low
(Masuka et al., 2017a,b). Breeding for HS inmaize in sub-Saharan
Africa was only initiated in 2011 and, to date, genetic gain in
grain yield has not been quantified under HS. Increasing genetic
gain for yield under climate related stresses will be an important
component of offsetting future losses under climate change. Lead
times for maize breeding in sub-Saharan Africa are currently too
slow to adapt to climate change (Challinor et al., 2016; Atlin et al.,
2017). Molecular breeding offers the ability to expand the size of a
breeding program, thereby increasing selection intensity, without
increasing phenotyping requirements (Olsen et al., unpublished).
Genotypic information can be used to select germplasm prior
to the phenotyping stages and the capability to increase this
phenotypically untested layer will allow the total number of
genotypes within a breeding program to be expanded (Cooper
et al., 2014). Understanding the genetic architecture of DS or HS
tolerance alone or in a combination, by identifying and validating
genomic regions conferring tolerance to stresses and developing
production molecular markers can significantly accelerate the
development of stress-resilient maize varieties through marker-
assisted selection or genomic selection (GS).

The genetic studies for understanding the genetic architecture
of DS tolerance in maize have been conducted on grain yield
(GY) and secondary traits with strong genetic correlation with
GY over a wide range of genetic mapping populations with
different population sizes, marker types, and marker densities,
where the phenotypic data were collected from the inbred lines
and their testcross hybrids (Hao et al., 2010; Semagn et al., 2013;

Cerrudo et al., 2018). These studies showed that maize is highly
susceptible to DS during flowing and early grain filling stages,
secondary traits including anthesis date (AD) and anthesis silking
interval (ASI) are always with strong genetic correlation with GY
and these traits are highly heritable and cost-effective to measure,
which are potential to be included in the breeding program to
facilitate indirect selection for GY.

The quantitative trait loci (QTL) conferring tolerance to DS
in maize were investigated in several linkage mapping studies
to reveal the genetic architecture of the GY and the secondary
traits (Lu et al., 2006; Hao et al., 2010; Semagn et al., 2013;
Cerrudo et al., 2018). Lu et al. (2006) mapped 21 additive
QTL and 61 epistatic QTL pairs in a recombinant inbred line
populations using 261 simple sequence repeat markers, these
QTL significantly associated with the GY and the secondary
traits under well-watered (WW) and DS conditions. In a F2
population consisted of 234 individuals, two consensus QTL
controlling GY and the secondary traits were identified by Hao
et al. (2008) in bin 1.03 and bin 9.03 – 9.05, where 130 simple
sequence repeat markers and 190 amplified fragment length
polymorphism markers were used for genotyping. Recently,
Cerrudo et al. (2018) detected new QTL regions associated with
GY and the secondary traits in bins 1.02 and 1.03 in a bi-
parental doubled haploid population. In addition to individual
population-based linkage mapping, few meta-analyses were also
performed in multiple bi-parental populations. A meta-analysis
in twelve bi-parental populations revealed 39 and 36 consensus
QTL significantly associated with GY and secondary traits under
DS andWW condition, respectively (Hao et al., 2010). In another
meta analyses study with 18 populations, Semagn et al. (2013)
found 68 consensus QTL significantly associated with GY and
the secondary traits. Compared with individual population-based
linkage mapping analysis, the meta-analysis reduced the number
of QTL detected by 68% and increased the mapping resolution by
12-fold (Semagn et al., 2013).

Genome-wide association study (GWAS) in a panel consisted
of 350 tropical and subtropical maize inbred lines using 57647
SNPs revealed 33 candidate genes associated with GY and the
secondary traits for WW and DS conditions(Xue et al., 2013).
Thirunavukkarasu et al. (2014) detected 52 candidate genes in
another GWAS panel consisted of 240 maize inbred lines, which
were associated with seven agronomic traits including GY and
the secondary traits evaluated under WW and DS conditions.
Moreover, GWAS were also conducted in panels of multiple
bi-parental populations. Li et al. (2016) conducted association
analysis in a panel consisted of 5000 nested association mapping
recombinant inbred lines. In total, 169 QTL and 220 QTL were
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detected, which significantly associated with the seven target
traits under DS and WW condition, respectively. Similarly,
Wallace et al. (2016) also conducted association mapping in
fifteen tropical maize bi-parental populations to reveal the genetic
architecture of plant height and flowering time evaluated under
WW and DS conditions. In addition, joint linkage-association
mapping approach was used for improving mapping power and
resolution for revealing the genetic architecture of DS tolerance
in maize. Lu et al. (2010) performed joint linkage-association
mapping in three recombinant inbred line populations and a
panel consisted of 305 inbred lines, where the QTL detection
power and mapping resolution were improved, and the results
also suggested that the haplotype-based method improved the
QTL detection power of association mapping.

Candidate genes identified from the genetic studies are
possible to be validated by expression profiling analysis with
RNA-seq data. Xu et al. (2014) validated 262 out of the 271 DS
response candidate genes using RNA-seq data, these candidate
genes expressed differentially between the drought tolerant line
and the drought sensitive line, which were treated under different
water stress conditions. Li et al. (2016) also validated 52 of the
354 DS tolerance relevant candidate genes in another study, these
candidate genes showed significant differential expression in the
inbred lines B73 under the WW and DS conditions.

Genomic selection, also named as genomic prediction (GP),
incorporates all available marker information into a prediction
model to predict the genomic estimated breeding values of
the unknown-phenotype breeding materials for selection, where
all the alleles with both major effects and minor effects are
captured simultaneously (Meuwissen et al., 2001). Therefore,
GS is an effective approach to improve the complex traits,
several studies showed the effectiveness of implementing GS
for DS tolerance improvement in maize (Beyene et al., 2015;
Zhang et al., 2015; Vivek et al., 2016; Wallace et al., 2016;
Zhang A. et al., 2017; Zhang X. et al., 2017). Low to medium
prediction accuracy were reported in maize on GY and the
secondary traits under DS, where the results suggested that the
prediction accuracy values were mainly affected by breeding
population types, training population size, trait complexities,
marker densities, and genotyping platforms (Zhang et al., 2015).
Incorporating known marker-trait associations into prediction
model is also beneficial to increase the prediction accuracy.
In fifteen bi-parental maize populations, Wallace et al. (2016)
showed that the SNPs identified from the association mapping
analysis had prediction accuracies equivalent to the genome-wide
SNPs for plant height and flowering time under DS and WW
conditions.

In contrast to intensive genetic studies on DS tolerance in
maize, relatively less effort has been made for HS tolerance,
and the tolerance to combined drought and heat stress (Cairns
et al., 2013a). Most of the HS research is focused on high
yield production in temperate maize germplasm. Efforts on
understanding the tolerance to HS and tolerance to combined
drought and heat stress (DHS) in tropical and subtropical maize
has been initiated recently (Cairns et al., 2013a; Alam et al., 2017).
In this study, the DTMA (Drought Tolerant Maize for Africa)
association-mapping panel including 300 tropical maize inbred

lines was genotyped with genotyping-by-sequencing (GBS), and
the testcross performance of these maize inbred lines were
evaluated in multi-environment trials under the conditions of
WW, managed DS, HS, and DHS. The main objectives of this
study are: (1): to perform the GWAS by single-SNP-based and
haplotype-based methods to reveal the genetic architecture of
GY, AD and ASI under different managements conditions; (2) to
identify the marker-trait associations SNPs and candidate genes
for all the trait-environment combinations, and validate the
candidate genes with expression profiling analysis using the
RNA-seq data; (3) to predict the performance of lines for GY, AD
and ASI under different management conditions with genome-
wide high density SNPs and marker-trait associated SNPs, and
compare their prediction accuracies.

MATERIALS AND METHODS

Plant Materials and Experimental
Management
The DTMA panel consisted of 300 tropical and subtropical maize
inbred lines was used in this study for association mapping
and GP analyses (Wen et al., 2011; Cairns et al., 2013a).
The testcrosses were formed by crossing each of the inbred
line in the panel with the tester CML539, a broadly adapted
tropical maize inbred line. In total, 15 multiple environment
trials were performed at the field experimental stations in
Mexico, Kenya, Thailand, Zimbabwe and India in 2008–2011
as previously described (Cairns et al., 2013a) under conditions
of WW, managed DS, HS, and DHS. Briefly, experiments were
planted during the dry season in all locations except for India
to ensure DS to be imposed at the anthesis stage. The α-lattice
experimental design was applied with three replicates in 2009 and
two replicates in 2010 and 2011. The managed DHS condition
was with daily maximum temperatures exceeded 35◦C for more
than 30d and vapor pressure deficit was very low compared to
individual HS condition during the reproductive stage.

The target traits in the current study are GY, AD, and ASI. In
total, 12 trait-environment combinations between the three target
traits and the four evaluation conditions were investigated. For
each of the target trait evaluated under the different conditions,
the estimated best linear unbiased prediction values (Cairns et al.,
2013a) were applied to the following analyses. More details on
phenotypic analyses of these traits were previously described
(Cairns et al., 2013a). The phenotypic data of the estimated best
linear unbiased prediction values is available from the following
repository: http://hdl.handle.net/11529/10548156. The Pearson’s
correlation coefficients were calculated by using R function
cor.test () and the pair-wise correlations were visualized with
function pairs ().1

GBS SNPs
A GBS protocol developed by Elshire et al. (2011) was applied
in this study, which is commonly used by the maize research
community. For each of the inbred line in the DTMA panel,

1https://www.r-project.org/
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the total genomic DNA was extracted from the bulked young
leaves with a CTAB method (CIMMYT Applied Molecular
Genetics Laboratory, 2003). The genotyping work was performed
at the Biotechnology Resource Center of Cornell University
(Ithaca, NY, United States) by multiplexing 96 samples on each
sequencing lane. The SNP calling was performed following the
TASSEL GBS workflow, and the GBS 2.7 TOPM (tags on physical
map) file downloaded from Panzea2 was used to anchor reads to
the B73 reference genome (Elshire et al., 2011; Glaubitz et al.,
2014; Wu et al., 2016). In total, 955,690 SNPs were generated
and the imputation of the missing markers were performed with
FILLINmethod by accepting the default parameters (Swarts et al.,
2014; Cao et al., 2017). The SNP data is available from the
following repository: http://hdl.handle.net/11529/10548156.

SNP-Based Association Mapping and
Candidate Gene Annotation
The imputed SNP dataset was filtered with minor allele frequency
greater than 1% and a missing rate less than 25%. The SNPs
with known physical position and good quality were subjected
to further analysis. The filtered SNP dataset was used to perform
the GWAS, where the associations between the SNPs and the
interested traits were detected by employing the R package
Genome Association and Prediction Integrated Tool (GAPIT)
(Lipka et al., 2012). In order to control the false associations
and to solve the computational problem, the SUPER (Settlement
of MLM Under Progressively Exclusive Relationship) method
integrated in GAPIT, was employed to perform the association
mapping analysis by incorporating the population structure
analysis and the relative kinship matrix (Wang et al., 2014). The
principal component analysis was used to stratify the population
structure, and the relative kinship matrix was used to assess the
relatedness among individuals in the association mapping panel.
The first eight principal components estimated in GAPIT was
used to stratify the population structure, and a subset of SNPs
extracted by SUPER method was used to calculate kinship matrix
by assessing the relatedness among individuals in the DTMA
panel. The parameter of “sangwich.top” and “sangwich.bottom”
was set as MLM and SUPER, respectively. Compared with
the FaST-LMM (Factored Spectrally Transformed Linear Mixed
Model), the SUPER method not only retains the computational
advantage, but also increases statistical power (Lippert et al., 2011;
Wang et al., 2014).

A moderate p-value with a threshold of 1 × 10−4 was used
to declare the significant associations. The quantile–quantile plot
and Manhattan plot generated with customized R scripts were
used to visualize the observed P (−log10

p−values) of SNP-trait
associations. The candidate genes were identified as the genes that
the significant SNPs located in or adjacent to (<3kb) against B73
AGPV2 (MaizeGDB)3. The significant SNPs and candidate genes
were visualized using R package “VennDiagram” for comparison.
The significantly associated SNPs were then grouped in genomic
regions with sliding windowmethod (window size = 20Mb) from
the first significant SNPs on each chromosome for each trait.

2www.panzea.org
3http://www.maizegdb.org/

The hotspot regions were identified as the top 5% quantile of
density of significant SNPs for each trait.

Haplotype-Based Association Mapping
The gene-based-haplotype method was applied to perform
association analysis as well, where each gene was regarded as a
window and the SNPs within each gene were used to construct
the haplotypes (Ding et al., 2015). Only the genes containing at
least two SNPs were included into the analysis, five randomly
selected SNPs of each gene were used to build the haplotypes,
when the target genes contain more than five SNPs (up to 81
SNPs within GRMZM2G002559). In total, 301,897 haplotypes
were built on the 19,674 annotated genes, with an average of
15 haplotypes/gene. The haplotypes were filtered with frequency
greater than 5% and missing rate less than 25%. A haplotype-
based associationmapping was carried out in TASSEL 3.04, where
the principal component and the kinship matrix calculated with
the filtered SNP dataset above were incorporated into the MLM
model. Amoderate p-value with a threshold of 1× 10−4 was used
to declare the significant.

Functional Annotation and Expression
Profiling Analysis of the Candidate
Genes
For functional annotation analysis, the DNA sequence
information of the candidate genes identified from the
association mapping analyses was submitted to NCBI5 and
Phytozome6 to search the best match. The summarized flowering
time related genes and the reported loci underlying related
traits were collected in this study to evaluate the association
results (Wallace et al., 2016). Simultaneously, information of the
candidate genes were submitted to the web-based tool AgriGO7

to perform gene ontology-based functional enrichment analysis
(Xu et al., 2014). Briefly, singular enrichment analysis tool was
selected to carry out GO (gene ontology) enrichment analysis,
and the Fisher’s exact test coupled with the Bonferroni for
multi-test adjustment method (FDR < 0.05) was used to select
enrichment GO terms.

Expression profiling analysis was conducted by using the
transcriptomic sequencing data of four tropical maize inbred
lines as previously described (Xu et al., 2017). The four inbred
lines including one drought tolerant line (AC7643), one drought
sensitive line (AC7729/TZSRW), one drought tolerant RIL
(RIL208) and one drought sensitive RIL (RIL64) derived from
the above two parental lines, were cultivated in nutrient solution
under simulated DS and WW conditions. After treated with
10% (w/v) polyethylene glycol PEG 8000 (Sigma-Aldrich) for
24 h at the three-leaf stage, the simulated DS condition, the
roots from three seedling plants for each of the four inbred lines
under different conditions were collected for RNA extraction
separately using TRIzol R© reagent (Invitrogen, United States) (Xu
et al., 2017). A cutoff of the absolute value of fold-change > 2

4https://sourceforge.net/projects/tassel/files/Tassel%203.0/2013-04-25/
5https://blast.ncbi.nlm.nih.gov/Blast.cgi
6https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Zmays
7http://bioinfo.cau.edu.cn/agriGO/index.php
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(|log2
fold−change| > 1) and q-value ≤ 0.01 (1% FDR) (Trapnell

et al., 2013) of the ratio of expression levels under DS
vs. WW for each candidate genes, at least in one line,
were used to determine whether the candidate genes were
differentially expressed genes (DEGs) or DS responsive genes.
The raw RNA sequencing data is available from the following
repository in the NCBI Sequence Read Archive under accession
number PRJNA294848 (SRP063383): https://www.ncbi.nlm.nih.
gov/bioproject/?term=PRJNA294848.

Genomic Prediction
Genomic prediction was performed by using rrBLUP model,
implemented in R with rrBLUP package for all the traits
evaluated under different conditions (Endelman, 2011). Pre-
diction accuracies of the complex traits were estimated from the
genome-wide markers and the significant SNPs. Two kinds of
marker density were applied for GP analyses. A genome-wide
marker dataset including 10,108 high quality SNPs with minor
allele frequency greater than 5 and 0% of missing, were selected
to perform the GP for all the traits. In parallel, the significantly
associated SNPs detected in the SNP-based association mapping
analyses, were used to perform the GP for each traits. A five-
fold cross-validation scheme with 100 replications was used
to generate the training and validation subsets and assess the
prediction accuracy for each trait. The average value of the
correlations between the phenotypic and the genomic estimated
breeding values was defined as the rMG to assess the prediction
accuracy.

RESULTS

Phenotypic Variation and Correlation
Among the Target Traits
For each of the target traits, the range of phenotypic
distribution was large under each management, indicating that

the broader diversity in the panel (Figure 1). For each trait,
the mean performance and the range was varied with different
management conditions (Figure 1). The mean performance
for all the target traits evaluated under WW conditions were
significantly different with those evaluated under the stress
conditions. The mean value and the phenotypic distribution of
GY evaluated under WW condition were greater than those
evaluated under the stress conditions. However, the phenotypic
variations for AD and ASI evaluated under WW condition
were narrow than those evaluated under the stress conditions.
The mean value of AD evaluated under WW condition was
greater than that evaluated under the stress conditions, with an
exception of DHS management. Nevertheless, the mean value
of ASI evaluated under WW condition was lower than that
evaluated under the stress conditions. Broad sense heritability
for all the target traits evaluated under different conditions were
moderate to high (Cairns et al., 2013b). This suggests that the
managed stress tolerance evaluation in this study is effective and
reliable.

The phenotypic correlations differed among the same trait
evaluated under the different management conditions (Figure 2).
The phenotypic correlations for GY under different management
conditions were moderate, positive and significant except for
DHS with DS and HS (Figure 2). For AD, the correlations
were positive and highly significant between all management
conditions. For ASI, phenotypic correlations were significant
only with WW, DS, and HS, whereas ASI under DHS was
significantly correlated with DS. Other combinations of stress
were not significant. The phenotypic correlations of the same
trait evaluated under the different conditions depend on the
complexity level of the target traits. For the less complex trait
like AD, all the correlations among the different conditions
were ranged from 0.55 to 0.95. For the complex traits like
GY and ASI evaluated under the different conditions, most of
the correlations were ranged from 0.14 to 0.60. However, GY
evaluated under DHS condition was not correlated significantly
with either of the traits evaluated under DS or HS condition,

FIGURE 1 | The boxplots of the phenotypic distribution of all the 12 target trait-environment combinations between the three target traits, i.e., grain yield

(ton/hectare); anthesis date (day); anthesis-silking interval (day), and the four evaluation conditions, i.e., well-watered (WW), drought stress (DS), heat stress (HS), and

combined drought and heat stress (DHS).
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FIGURE 2 | The pairwise correlations among the 12 trait-environment combinations based on the BLUP values. The traits of GY, AD and ASI are abbreviated from

grain yield, anthesis date and anthesis–silking interval, respectively. The environments of WW, DS, HS, and DHS are abbreviated from well-watered, drought stress,

heat stress and combined drought and heat stress management conditions. The numbers with one or more star(s) represents the Pearson correlation coefficients at

different significances (∗: 0.05; ∗∗: 0.01; ∗∗∗: 0.001) and the word size of them indicate the correlation level. The blank boxes indicate that there was no significant

correlation for the corresponding traits.

the indirect relationships were observed for GY evaluated under
the DHS with that evaluated under the single stress condition
(DS or HS). The ASI evaluated under WW condition was
positively correlated with that evaluated under the single stress
condition (DS or HS), and the ASI evaluated under the HS
condition was not correlated with that evaluated under the DS
and DH conditions. It meant that ASI is also a very complex
trait.

The phenotypic correlations also differed among the different
target traits evaluated under the same condition. In general,
the GY was negatively and significantly correlated with ASI
significantly under each evaluation condition with a range of
−0.32 to −0.67, this is consistent with the previous observation
(Ribaut et al., 2009). However, the consistent correlations were
not observed between GY and AD, and between AD and ASI
evaluated under the same condition.
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The SNP-Based Genome-Wide
Associations
In total, 381,165 filtered SNPs were used to perform the
GWAS for the 12 trait-environment combinations. Number
of the significantly associated SNPs of each trait-environment
combination ranged from 8 for ASI-HS to 335 for AD-DS,
and 1661 associations in total were identified with the p-value
threshold of 1 × 10−4 for all the 12 trait-environment
combinations. The average PVE for 1661 associations was
4.33% and 589 of them had a PVE value greater than 5%
(Table 1 and Supplementary Table S1). At the p-value threshold
of 2.6 × 10−6 (1/n, n indicates the number of SNPs),
83 associations in total were identified for all the 12 trait-
environment combinations, except for ASI-HS and ASI-DH.
Number of significantly associated SNPs identified above the
p-value threshold of 2.6 × 10−6 ranged from 2 for GY-DH and
AD-DH to 32 for AD-DS (Table 1, Supplementary Table S1,
Figure 3, and Supplementary Figures S1, S2). The average PVE
value of these 83 associations was 4.88% and 5 of them had a PVE
value greater than 10%.

The number of overlap SNPs for the same trait evaluated
under the different conditions showed in Figure 4. The analysis
of the number of overlap SNPs was highly consistent with
the phenotypic analysis. Number of the overlap SNPs between
different conditions related with the complexity level of the target
traits. For the less complex trait like AD evaluated under the
different conditions, number of the overlap SNPs ranged from
0 to 40, the maximum number of overlap SNPs were observed
betweenWW and DS conditions. For ASI, only two overlap SNPs
were observed between WW and DS conditions. For GY, no
overlap SNPs were observed among all the evaluation conditions.
This information indicated the genetic divergence between the
individual stress tolerance and the combined drought and heat
stress tolerance.

Genomic regions significantly associated with the target trait
were identified by using a sliding window size of 20 Mb on
each chromosome by merging the neighbor SNPs. In total, 446
genomic regions were identified for all the 12 trait-environment
combinations. The numbers of genomic regions associated with
the target traits were ranged from 7 for ASI-HS to 64 for AD-
WW. Number of genomic regions identified for GY evaluated
under WW, DS, HS and DHS conditions were 47, 22, 40, and
30 with the SNP density of 4.06, 1.64, 3.75, and 2.53 per genomic
region, respectively. Compared to GY, more genomic regions and
higher SNP densities were found for AD except for AD-HS, and
less genomic regions and lower SNP densities were identified
for ASI except for ASI-HS evaluated under the same condition
(Table 1 and Supplementary Table S1). For the 12 trait-
environment combinations, 33 hotspot regions were identified,
and the number of hotspot region for each trait-environment
combination ranged from one to four (Supplementary Table S2

and Supplementary Figure S3). For GY, the hotspot regions were
distributed on chromosomes 1, 2, 4, 5, 8 and 10. The largest
number of hotspot regions were observed on chromosome 8,
which harbored eleven hotspot regions significantly associated
with GY evaluated under different conditions. The second largest
number of hotspots were observed on chromosome 1, which
harbored six hotspot regions for GY.

The Haplotype-Based Genome-Wide
Associations
In total, 301,897 haplotypes formed from the 19,674 annotated
genes were used to perform the haplotype-based association
mapping. Compared with the SNP-based association mapping
method, the haplotype-based associated mapping method
detected fewer number of significantly associated SNPs with
higher PVE values (Table 2 and Supplementary Table S3). At the
significant threshold (p < 1 × 10−4), 311 haplotypes associated

TABLE 1 | The genome-wide association mapping results of the 12 trait-environment combinations in the DTMA panel using 381,165 filtered SNPs.

Trait- No. of candidate No. of significant No. of

Environment∗ No. of significant SNPs genes genomic region of 20 Mb SNPs per region

p < 10−4 R2
> 5% p < 2.6 × 10−6 in genic region

GY-WW 191 88 5 126 82 47 4.06

GY-DS 36 9 3 20 17 22 1.64

GY-HS 150 37 4 89 55 40 3.75

GY-DHS 76 17 2 50 41 30 2.53

AD-WW 274 112 5 167 128 64 4.28

AD-DS 335 100 32 225 147 61 5.49

AD-HS 69 24 2 51 36 28 2.46

AD-DHS 302 107 22 189 132 56 5.39

ASI-WW 53 21 5 24 18 25 2.12

ASI-DS 101 46 3 65 45 40 2.53

ASI-HS 8 0 0 6 6 7 1.14

ASI-DHS 66 25 0 39 27 26 2.54

Total 1661 586 83 1038 734 446 3.72

∗The traits of GY, AD, and ASI are abbreviated from grain yield, anthesis date and anthesis–silking interval, respectively. The environments of WW, DS, HS, and DHS are

abbreviated from well-watered, drought stress, heat stress and combined drought and heat stress management conditions.
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FIGURE 3 | The Manhattan plots and Q-Q plots of the SNP-based (gray dots) and the haplotype-based (green and yellow dots) association mapping for grain yield

(GY) under different conditions. WW, DS, HS, and DHS are abbreviated from well-watered, drought stress, heat stress and combined drought and heat stress

management conditions. The red colored candidate genes are the previously reported, and the blank colored are novel candidate genes.

for all the target trait-environment combinations, except for the
three traits under HS condition, i.e., GY-HS, AD-HS, ASI-HS
were detected. Number of significantly associated haplotypes for
each trait-environment combination ranged from 3 for ASI-WW
to 26 for both AD-DS and GY-WW. The average PVE values was
10.56% with a range from 5.63 to 19.71%, which was higher than
that in the SNP-based association mapping analysis.

The Candidate Genes Associated With
the Target Traits Evaluated Under
Different Conditions
In the SNP-based association mapping analysis, 120 significant
associations had a pleiotropy effects for at least two trait-
environment combinations, 1038 significant associations were

in the genic region of 673 candidate genes, and the average
number of SNPs per candidate gene was 1.36, i.e., (1038-
120)/673. The max number of SNPs per candidate gene,
i.e., 13, observed for GRMZM2G700686 associated with trait-
environment combination of GY-HS (Supplementary Table S1

and Figures 3, 4). Number of candidate genes differed among
the 12 trait-environment combinations, more candidate genes
were detected for the less complex traits. The total number
of candidate genes detected for the target trait across all the
evaluation conditions was 193, 95, and 405 for GY, ASI, and AD,
respectively.

Few candidate genes overlapped for the same traits evaluated
under the different conditions, indicating the genetic divergence
between the individual stress tolerance and tolerance for DHS.
Two candidate genes were overlapped for GY evaluated under the
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FIGURE 4 | The number of overlapping SNPs (A,C,E) and candidate genes (B,D,F) for each trait evaluated under different conditions. GY, AD, and ASI indicate

grain yield, anthesis date, and anthesis–silking interval, respectively. WW, DS, HS, and DHS are abbreviated from well-watered, drought stress, heat stress and

combined drought and heat stress management conditions.

different conditions, i.e., one common candidate gene between
WW and DS conditions, and one common candidate gene
between WW and HS conditions. Only one overlap candidate
gene was observed for ASI evaluated under WW and DS
conditions. Number of the overlap genes for AD evaluated
under the different conditions ranged from zero to 14, with
the maximum number of genes overlapped for AD evaluated
between WW and DS conditions.

In the haplotype-based association mapping analysis, 19
candidate genes were identified for the 12 trait-environment
combinations, and 156 SNPs were in the genic region of these
candidate genes, 87 SNPs were used to build the haplotypes
of the candidate genes, the haplotypes of each candidate gene
was built with two to five SNPs in the genic region. The
number of the candidate genes for all the trait-environment
combinations ranged from zero to five, and the total number
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TABLE 2 | The haplotype-based genome-wide association mapping results of the 12 trait-environment combinations in the DTMA panel.

Trait- No. of significant No. of genic No. of candidate Overlap candidate gene between haplotype-based

Environment∗ haplotypes SNPs genes Average R2 and SNP-based association mapping analyses

GY-WW 46 13 2 11.73%

GY-DS 22 6 2 9.16%

GY-HS 0 0 0 0.00%

GY-DHS 6 2 1 10.03%

AD-WW 34 23 2 11.04% GRMZM2G109651; GRMZM2G313009

AD-DS 89 41 5 10.91% GRMZM2G109651; GRMZM2G043764

AD-HS 0 0 0 0.00%

AD-DHS 13 16 1 7.98%

ASI-WW 3 4 1 6.70%

ASI-DS 73 41 5 9.15% GRMZM2G329229

ASI-HS 0 0 0 0.00%

ASI-DHS 25 10 1 19.71%

Total 311 156 20

∗The traits of GY, AD, and ASI are abbreviated from grain yield, anthesis date and anthesis–silking interval, respectively. The environments of WW, DS, HS, and DHS are

abbreviated from well-watered, drought stress, heat stress and combined drought and heat stress management conditions.

FIGURE 5 | The results of gene ontology (GO)-based functional enrichment analysis (A) and the expression profiling analysis (B). The GO terms in brown, yellow,

and green colored boxes are cellular component, molecular function, and biological process categories, respectively. AC7643 and RIL208 are drought tolerance

maize inbred lines, AC7729/TZSRW and RIL64 are drought sensitive maize inbred lines, and RIL 208 and RIL64 are derived from the cross of AC7643 and

AC7729/TZSRW.

of candidate genes detected for the target trait across all
evaluation conditions was 5, 7, and 8 for GY, ASI, and AD,
respectively.

Four candidate genes, i.e., GRMZM2G329229,
GRMZM2G313009, GRMZM2G043764, and GRMZM2G10
9651, overlapped in both the SNP-based and the haplotype-based
association mapping analyses (Table 2 and Supplementary

Table S3). Three of them were associated with AD evaluated
under different conditions, the other one was overlapped
between GY-HS and ASI-DS. The PVE value of these four genes
were > 9.13%. The relatively high PVE for these candidate genes
indicated their major effect on trait expression.

The Biological Metabolic Processes
Involved by Candidate Genes and the
Differentially Expressed Candidate
Genes Under Drought Stress
The results of gene ontology-based functional enrichment
analysis shown that the 688 candidate genes were significantly
(FDR < 0.05) enriched to 15 GO terms related with different
biological processes (Figure 5A). Two terms, GO: 0043231
and GO: 0043227, were involved in cellular components.
One term of GO: 0030528 was involved in the molecular
function with transcription regulator activity (Figure 5A and
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Supplementary Figure S4). The biological process was mainly
involved in metabolic process, including regulation of metabolic
process (GO: 0019222), macromolecule metabolic process
(GO: 0043170) and primary metabolic process (GO: 0044238)
(Supplementary Figure S4). In the last layer, 60 genes involving
drought (17), heat (11), combined drought and heat stress (17)
and normal (11) conditions were enriched to regulation of
transcription (GO: 0045449) (Supplementary Tables S1, S4 and
Supplementary Figure S4). In addition, most of the 60 genes (41,
68.33%) were transcription factors, such as WRKY, bHLH, Zinc
finger, bZip, et al.

The expression profiling analysis was used to assess the
response of candidate genes to DS tolerance. Among the
genes with expression profile successfully identified, 46 of
them were determined as DEGs under DS vs. WW conditions
(log2

foldchange
> 1 and FDR < 0.01) in at least one line

(Supplementary Table S4 and Figure 5B). Out of all the 46
DEGs, 16 (35%) were significantly associated with the traits
under drought condition, and 12 (26%) were significantly
associated with the traits under combined drought and heat
stress condition (Supplementary Table S4). The expression
profiles of the determined DEGs were highly consistent at
different levels among the four maize lines with big difference
on DS tolerance. In all the four maize lines, the expression
levels of the candidate genes including GRMZM2G156861,
GRMZM2G035153, and GRMZM2G094304 expressed under
DS were much lower than those expressed under WW (fold
change values < -1). The expression levels of some candidate
genes including GRMZM2G103972, GRMZM2G016290, and
GRMZM2G060544 expressed under DS were much higher than
that expressed under the WW condition. In addition, two
valuable DEGs (GRMZM2G429113 and GRMZM2G088613)
were observed, the expression trends of these two DEGs was
consistently expressed with the DS tolerance levels of the four

tested maize lines. The above results indicated that the genes
conserved in the four maize lines, plays an important role in the
physical and biological process in response to drought tolerance.

Genomic Prediction Under Different
Conditions
GP for all the 12 trait-environment combinations were shown in
Table 3, with different marker densities. The mean and range
of rMG differed among the 12 trait-environment combinations
under both marker densities. Under the same management
condition, the rMG mean of the complex trait (GY and ASI)
was consistently lower than that of the less complex trait (AD).
For the same trait evaluated under the different management
conditions, the rMG mean of the target trait evaluated under the
WW condition was consistently higher than that evaluated under
different stress conditions, i.e., DS, HS, and DHS.

The number of trait associated SNPs used for different trait-
environment combination were ranged from 8 to 339, whereas
for random genome-wide markers we used 10,108 high-quality
SNPs. Interestingly, the mean accuracy was higher when the
prediction was based on trait linked markers obtained through
GWAS than the random whole genome wide high-quality SNPs
for all 12 trait-environment combinations except for GY-DS. The
average rMG value obtained from the trait associated SNPs was
0.75, 0.43, 0.69, and 0.58 for the GY evaluated under WW, DS,
HS, and DHS condition, respectively. The corresponding rMG

mean value obtained from the whole genome wide high-quality
SNPs was 0.59, 0.50, 0.38, and 0.35 for the GY evaluated under
WW, DS, HS, and DHS condition, respectively. Similar trend
was also observed for AD and ASI evaluated under the different
conditions. This result indicated that the trait associated SNPs
corresponding to the target trait is more effective than the whole
genome wide randomly selected SNPs for GP.

TABLE 3 | The genomic prediction accuracies (rMG) of the 12 trait-environment combinations using two kinds of marker density of marker-trait associated SNPs, and

randomly selected SNPs filtered with minor allele frequency greater than 0.05 and 0% missing.

Trait-Environment∗ Marker-trait associated SNPs Randomly selected SNPs

Mean Range ¶SD +CV (%) Mean Range ¶SD +CV (%)

GY-WW 0.75 0.53–0.87 0.06 7.39 0.59 0.35–0.77 0.08 13.85

GY-DS 0.43 0.11–0.71 0.13 29.02 0.50 0.23–0.68 0.09 18.58

GY-HS 0.69 0.49–0.86 0.06 9.36 0.38 0.04–0.70 0.12 30.31

GY-DHS 0.58 0.37–0.74 0.08 13.81 0.35 0.05–0.62 0.12 34.95

AD-WW 0.78 0.62–0.89 0.05 6.77 0.64 0.46–0.82 0.07 10.90

AD-DS 0.77 0.64–0.90 0.06 7.45 0.62 0.41–0.77 0.07 11.46

AD-HS 0.61 0.24–0.79 0.09 14.42 0.45 0.20–0.65 0.09 19.52

AD-DHS 0.72 0.54–0.84 0.07 9.12 0.51 0.22–0.72 0.10 19.78

ASI-WW 0.65 0.35-0.84 0.10 14.41 0.40 0.07–0.71 0.12 29.50

ASI-DS 0.62 0.39–0.81 0.08 12.83 0.55 0.21–0.77 0.10 18.48

ASI-HS 0.28 −0.21–0.62 0.15 50.96 0.13 -0.20–0.47 0.15 114.62

ASI-DHS 0.60 0.29–0.77 0.08 13.59 0.29 0.07–0.56 0.10 34.60

∗The traits of GY, AD, and ASI are abbreviated from grain yield, anthesis date and anthesis–silking interval, respectively. The environments of WW, DS, HS and DHS are

abbreviated from well-watered, drought stress, heat stress and combined drought and heat stress management conditions. ¶SD, standard deviation; +CV, coefficient of

variation.
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DISCUSSION

DS, HS, and DHS have been recognized as the major abiotic
constraints to maize yields in the main production regions.
Previous studies indicated that maize is highly susceptible to
abiotic stresses during flowering time, secondary traits including
AD and ASI, with strong genetic correlation with GY, are
potential to be included in the breeding program to facilitate
the effective selection on GY (Bennetzen and Hake, 2008; Lu
et al., 2010). The information on phenotypic variation for GY
and flowering time and revealing the correlations between the
GY and the secondary traits, is helpful for understanding how
to use secondary traits to facilitate the selection on GY. Results in
the present study showed that the genetic diversity at phenotypic
level for all the 12 trait-environment combinations is broad in the
DTMA panel, and the heritability of all the target traits evaluated
under the different conditions were moderate to high. These
information is consistent with the results of the previous studies
(Sivakumar et al., 2005; Cairns et al., 2013a), which indicated that
the GY improvement through phenotypic selection is effective
by reliable phenotypic evaluation. The phenotypic analysis also
showed that GY was negatively and significantly correlated with
ASI under each evaluation condition, this corroborates with
the previous observation (Ribaut et al., 2009). It indicated that
ASI is an appropriate secondary trait to facilitate the selection
on GY.

The information of dissecting the genetic architecture of
GY and secondary traits evaluated under different conditions
and identifying their significantly associated important genomic
regions is helpful in accelerating the efforts on rapid development
of the stress-tolerant maize germplasm either through marker
assisted selection and/or GS. The SNP-based associationmapping
results showed 1549 SNPs significantly associated with all 12 trait-
environment combinations at the p-value threshold of 1 × 10−4.
The average PVE of all the significant SNPs was 4.33%, and 541
of them had a PVE value greater than 5%. These observations
indicate that the GY and secondary trait of flowering time under
optimal and stress conditions are complex in nature, controlled
by multiple minor QTL with small effects distributing across
the maize genome. It also shown the difficulty of improving
maize GY and the secondary trait of flowering time under
the stress conditions by using marker assisted selection due
to the genetic architecture complexity of the target traits. In
addition, the previous phenotypic analysis also observed that
the tolerance to DHS in maize was genetically distinct from
tolerance to individual stresses, and tolerance to either stress
alone did not confer tolerance to DHS (Cairns et al., 2013a).
The SNP-based association mapping results observed in the
current study are highly consistent with the observations of the
phenotypic correlation analysis. Few SNPs and candidate genes
were overlapped for the same trait under the different conditions.
For the GY, no overlapping SNPs were observed among all the
evaluation conditions, and one overlapping candidate gene each
was observed betweenWWandDS conditions, and betweenWW
and HS conditions. This information indicates the difficulty of
improving maize GY simultaneously response to multiple abiotic
stress tolerances.

Compared to single SNP-based association mapping, the
haplotype-based association mapping detected fewer number of
significant associations and candidate genes but with higher
PVE for haplotypes, indicating the improved mapping power
by employing the candidate-gene-haplotypes constructed with
the GBS SNPs in the genic regions. The previous studies
also showed that the GBS has emerged as a powerful
tool for genetic diversity analysis, linkage mapping, GWAS
and GS (Zhang et al., 2015; Wu et al., 2016; Cao et al.,
2017), where the average linkage disequilibrium decay distance
over all ten chromosomes in tropical association mapping
panel was less than 5 kb at r2 = 0.1. The mapping
power of the single SNP-based association mapping in the
previous studies were improved due to the smaller linkage
disequilibrium decay distance. The present study showed that
both the single SNP-based and haplotype-based association
mapping analyses are powerful for revealing the genetic
architecture of the complex traits using high density GBS
SNPs. In total, 673 and 19 candidate genes were identified
from SNP-based and haplotype-based association mapping,
respectively. Some of these candidate genes were validated by
the expression profiling analysis. Four overlap candidate genes,
i.e., GRMZM2G329229, GRMZM2G313009, GRMZM2G043764,
and GRMZM2G109651, were observed in both the SNP-
based association mapping and the haplotype-based association
mapping analyses (Table 2 and Supplementary Table S3). These
reliable candidate genes, with PVE of above 9.13%, will be further
validated in the linkage mapping analysis and gene function and
mechanism analysis.

Some candidate genes reported in the previous studies were
also observed in the current study. In total, eight candidate
genes related with GY (Salvi et al., 2007; Zhang et al., 2014; Liu
et al., 2016), two candidate genes related with AD (Sawers et al.,
2004; Hirsch et al., 2014), and one candidate genes related with
ASI (van Nocker et al., 2000), were highlighted in Figure 3 and
Supplementary Figures S1, S2, respectively. In the previous
reported QTL interval of qKRN8-1 controlling kernel row
number (Liu et al., 2016), several candidate genes significantly
associated with GY were identified, i.e., candidate gene
GRMZM2G331566 encoding glycosyl hydrolase 9B13 associated
with GY-WW, serinc-domain containing serine and sphingolipid
biosynthesis protein gene GRMZM2G088356 and ubiquitin-
conjugating enzyme gene GRMZM2G007276 associated with
GY-DH. Gene GRMZM2G700665 was associated with GY-WW,
however, it was annotated as ZmRap2.7, a candidate gene
involved in flowering time control (Salvi et al., 2007). In the
previous reported QTL interval of qKRN1 at bin 1.10 controlling
kernel row number, GRMZM5G881950, significantly associated
with GY-WW, were identified (Liu et al., 2016). In the previous
reported QTL interval on chromosome 3 effecting the maize
kernel thickness, candidate gene GRMZM2G104081 encoding
hexokinase 1, was identified and significantly associated with
GY-WW (Zhang et al., 2014). For the target traits of AD
and ASI, candidate gene GRMZM2G171650 and ZmLD,
located on chromosome 3, was reported previously and
significantly associated with AD-DH and ASI-WW, respectively.
GRMZM2G171650, encoding MADS-box family protein
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with MIKC∗ type-box and effecting flowering time, was
previously identified in an association mapping analysis by
Hirsch et al. (2014). ZmLD, encoding homeodomain-like
superfamily protein, was identified by van Nocker et al. (2000),
it expressed in the shoot apex and developing inflorescences
in maize. ZmHy2, located on chromosome 8 and associated
with AD-DH in the current study, was also reported in the
previous studies (Sawers et al., 2002, 2004; Dong et al., 2012).
This gene prevents the synthesis of the phytochrome chromo-
phore 3E-phytochromobilin (P8B), and effects the flowering
time.

Besides the previous reported candidate genes, new candidate
genes with different functions were also identified in the current
study. In total, nine new candidate genes related with GY, 10 new
candidate genes related with AD, and seven new candidate
genes related with ASI, were highlighted in Figure 3 and
Supplementary Figures S1, S2, respectively. GRMZM2G131611,
encoding zinc finger protein, was significantly associated with
GY-WW. GRMZM2G048733 (a regulatory component of
ABA receptor) and GRMZM2G145458 encoding jasmonate-
ZIM-domain protein, were significantly associated with
GY-DS. GRMZM2G151863, encoding GDT1-like protein,
was significantly associated with GY-DH with the most
significant p-value. GRMZM2G068294, encoding phytochrome
A-associated F-box protein, was associated with AD-WW,
AD-DS and AD-HS simultaneously. ZmGR2c, associated with
AD-DS, is a gibberellin responsive gene. Seven SNPs harbored
by GRMZM5G866432 were associated with ASI-DS with
average PVE value of 5.17%. WRKY DNA-binding protein gene
GRMZM2G076657 was associated with ASI-DH.

Genomic selection incorporates all the available molecular
marker information by capturing both the minor and major
QTL of the target trait simultaneously. GS become an effective
approach for complex trait improvement. In this study, the
target traits of GY, AD and ASI are polygenic traits, and
ASI and GY are more complex than AD, as demonstrated by
the heritability (Cairns et al., 2013a; Zhang A. et al., 2017).
In GS, the less complex trait AD had higher rGM compared
to the other two traits, which is consistent with the nature
of complexity (Zhang A. et al., 2017). Incorporating the trait
associated markers into the prediction model has potential to
improve the prediction accuracy of the complex traits as observed
in this study. However, the prediction accuracy is possible to
be overestimated, and further analysis have to be performed to
validate this, when the training population and the breeding
population are different.
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FIGURE S1 | The Manhattan plots and Q-Q plots of the SNP-based (gray dots)

and the haplotype-based (green and yellow dots) association mapping for AD

under different conditions. WW, DS, HS, and DHS are abbreviated from

well-watered, drought stress, heat stress and combined drought and heat stress

management conditions. The red colored candidate genes are the previously

reported, and the blank colored are novel candidate genes.

FIGURE S2 | The Manhattan plots and Q-Q plots of the SNP-based (gray dots)

and the haplotype-based (green and yellow dots) association mapping for ASI

evaluated under different conditions. WW, DS, HS, and DHS are abbreviated from

well-watered, drought stress, heat stress and combined drought and heat stress

management conditions. The red colored candidate genes are the previously

reported, and the blank colored are novel candidate genes.

FIGURE S3 | The genome-wide landscape of significant SNPs (blue and red

vertical lines) for the 12 trait-environment combinations. The red lines indicate the

SNPs are in hotspot regions, where the thresholds are shown in Supplementary

Table S2. The light and dark gray colored rectangles are chromosomes and the

corresponding centromeres, respectively. GY, AD, and ASI indicate grain yield,

anthesis date and anthesis-silking interval, respectively. WW, DS, HS, and DHS

indicate well-watered, drought stress, heat stress and combined drought and heat

stress management conditions.

FIGURE S4 | Hierarchical tree graph of overrepresented gene ontology (GO)

terms in biological process category generated by singular enrichment analysis.

Boxes in the graph represent GO terms labeled by their GO ID, term definition and

statistical information. The significant (adjusted p ≤ 0.05) and non-significant
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terms are marked with color and white boxes, respectively. The diagram, the

degree of color saturation of a box is positively correlated to the enrichment level

of the term. Solid, dashed, and dotted lines represent two, one, and zero enriched

terms at both ends connected by the line, respectively. The rank direction of the

graph is set to from left to right.

TABLE S1 | The SNP-based genome-wide association mapping results of the 12

trait-environment combinations in the DTMA panel.

TABLE S2 | The hotspot information of the significantly associated SNPs of all the

12 target-environment combinations in the DTMA panel.

TABLE S3 | The haplotype-based genome-wide association mapping results of

the 12 target trait-environment combinations in the DTMA panel.

TABLE S4 | The log2 fold-change (WS/WW) of the differentially expressed

candidate genes identified in association mapping analysis in four maize lines with

different drought tolerance.
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