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Abstract

Genome-wide association mapping studies (GWAS) are frequently used to detect QTL in

diverse collections of crop germplasm, based on historic recombination events and linkage

disequilibrium across the genome. Generally, diversity panels genotyped with high density

SNP panels are utilized in order to assay a wide range of alleles and haplotypes and to mon-

itor recombination breakpoints across the genome. By contrast, GWAS have not generally

been performed in breeding populations. In this study we performed association mapping

for 19 agronomic traits including yield and yield components in a breeding population of

elite irrigated tropical rice breeding lines so that the results would be more directly applica-

ble to breeding than those from a diversity panel. The population was genotyped with

71,710 SNPs using genotyping-by-sequencing (GBS), and GWAS performed with the ex-

plicit goal of expediting selection in the breeding program. Using this breeding panel we

identified 52 QTL for 11 agronomic traits, including large effect QTLs for flowering time and

grain length/grain width/grain-length-breadth ratio. We also identified haplotypes that can

be used to select plants in our population for short stature (plant height), early flowering

time, and high yield, and thus demonstrate the utility of association mapping in breeding

populations for informing breeding decisions. We conclude by exploring how the newly

identified significant SNPs and insights into the genetic architecture of these quantitative

traits can be leveraged to build genomic-assisted selection models.
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Introduction

Developing new rice varieties that yield well with fewer inputs and under more stressful and

unpredictable climatic conditions is essential for the future of food security, and is the major

challenge for today's rice breeders [1,2]. Fortunately, the rapid development of new sequencing

technologies has created the opportunity to enhance our understanding of the genetic basis of

crop productivity. The utilization of this genetic information offers the plant breeding commu-

nity a range of modern tools and methods for addressing these challenges [3].

Genome wide association studies (GWAS) have been widely used to identify QTL underly-

ing quantitative traits in humans and animals, and has recently also become a popular method

of mapping QTL in plants. Association mapping identifies QTL based on the historic recombi-

nation in a panel of diverse germplasm via the presence of linkage disequilibrium (LD) between

SNPs and QTL, i.e., the non-random association of alleles [4,5,6]. A high density marker panel

that covers the genome is required in order to monitor the density of recombination break-

points in the population [6,7].

GWAS are most commonly performed in diversity panels, i.e., collections of unrelated di-

verse germplasm, in order to maximize the diversity of alleles and haplotypes [8,9,10,11,12,13].

While this is advantageous in terms of identifying novel QTL and candidate genes that underlie

agronomic traits of interest, it also requires that any identified QTL be validated in a breeding

population before they can be used for genomics-assisted selection. For this reason, it is of in-

terest to perform GWAS in a population of adapted lines. QTL identified in this way could be

more directly utilized for marker assisted selection (MAS) and/or genomic selection in applied

breeding programs [14].

Genome-wide prediction, or genomic selection (GS), refers to the process of using genome-

wide DNAmarkers to predict which individuals in a breeding population are most valuable as

parents of the next generation of offspring. GS takes the same inputs as GWAS, a phenotype

dataset and genotype dataset on a population of lines of interest to plant breeders [14,15,16].

As such, it is possible to perform GWAS and GS on the same population, where all that is need-

ed is additional computation analysis. Such an undertaking has clear advantages. The genetic

architecture revealed by association mapping can be used to inform the GS models—for exam-

ple, if highly significant SNPs are revealed by a GWAS, these SNPs could be fit as fixed effects

in a GS model [14,17], and experimenting with different types of genomic selection statistical

methods (i.e., linear versus non-linear, additive versus non-additive) can corroborate infer-

ences about the genetic architecture of a trait.

We performed both GWAS and genomic selection on a population of elite breeding lines

from the International Rice Research Institute (IRRI) irrigated rice breeding program in order

to map QTL for agronomic, morphological and yield-related traits. In this paper, we report the

association mapping results, which are leveraged for MAS and used to inform GS modeling on

the same population.

Results and Discussion

Genotyping and population structure analysis

Genotyping-by-sequencing (GBS) was used to discover and genotype SNPs on 369 advanced

breeding lines from the IRRI irrigated rice breeding program. Raw GBS data were imputed and

the resulting matrix of SNP calls filtered on call rate and minor allele frequency (MAF) to ob-

tain a set of 73,147 SNPs with call rates> = 90% (no MAF filter) and a set of 71,710 SNPs with

call rates> = 75% and MAF> = 0.05. Six individuals with missing data> = 60% were re-

moved from both SNP sets for a total of 363 genotyped lines. Data were transformed to
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numeric values and the minimal remaining missing data filled using the genotypic means of

the lines (S4 Fig., materials and methods).

The majority of the 363 lines were classified a priori based on pedigree records as belonging

to the indica or indica-admixed subpopulation groups. To confirm these classifications, assess

population structure, and identify outlier individuals, principal component analysis (PCA) was

performed using the 73,147 SNP dataset. In rice diversity panels, the first four principle com-

ponents correspond to the five rice subpopulations. The first principle component separates

indica/aus individuals from japonica/aromatic individuals, the second principle component

separates aus and indica individuals, the third principle component separates temperate japoni-

ca individuals from tropical japonica individuals, and the fourth principle component separates

the aromatic individuals from the japonica individuals [11].

In our breeding panel, we did not expect all five rice subpopulations to be represented;

this assumption was confirmed by our PCA results. The first principle component explained

*26.3% of the variance, after which the proportion of variance explained by the remaining

principle components dropped off sharply (*2.7% for PC 2, 2.2% for PC3, and 1.9% for

PC4), indicating that only 2 out of the 5 subpopulations were present: indica and tropical ja-

ponica. Based on a plot of the first two principle components, 13 individuals were identified

as belonging to the japonica subpopulation and excluded from subsequent analyses (S1 Fig.),

in theory, leaving only indica individuals in the dataset. After removing these 13 japonica in-

dividuals, a second PCA was performed to evaluate remaining subpopulation structure. In

this second PCA, the first principle component explained only 5.4% of the variance, indicat-

ing that the majority of the remaining individuals belonged, in fact, to a single population.

Based on the scatterplot matrix of the first four principle components, however, we removed

an additional 18 individuals that showed evidence of admixture (S1 Fig.). After removing

these additional lines, a third PCA suggested that no significant subpopulation structure

remained in the dataset. Thus, the final set of individuals used for the GWAS contained 332

indica individuals.

As a final check that we had adequately controlled for population structure in the dataset,

we ran the GWAS both with and without the first principal component fit as a model covariate

and confirmed that it did not have an effect on the results. The QQ plots for the final model in-

dicate that we effectively control for subpopulation structure (S2 Fig.) (materials and

methods).

GWAS for identification of QTL

A total of 52 QTL were identified for 11 of the 19 agronomic traits evaluated in this study

(Table 1). Peaks for the other eight traits did not pass the significance threshold as determined

by a false discovery rate (FDR) of 0.1; all traits were evaluated during both the 2012 dry and

wet seasons in Los Baños, Philippines (Figs. 1–2, S1 Table, S3 Fig.) (materials and methods).

The Manhattan plots for flowering time (FLW), plant height (PH), and length-breadth ratio

(LBR) in the dry season and yield (YLD) in the wet season are shown in Fig. 1. Manhattan

plots for the rest of the traits are given in S3 Fig.

The genetic effects of the majority of QTL identified were relatively small (<20% phenotyp-

ic variance explained, PVE). The four QTL identified for culm length in the dry season, for ex-

ample, explained a total of*59% of the phenotypic variance. Collectively, the 10 QTL

identified for grain length in the dry season explained only*31% of the phenotypic variance,

the seven QTL for grain width in the dry season explained*28% of the variance, and the five

QTL for lodging explained 26% of the variance in the wet season but only 13% in the dry sea-

son (S1–S2 Tables).
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Table 1. Description of phenotypes and phenotyping.

Trait Description of phenotyping Trait
Ontology
(TO)

TO synonyms Plant Ontology
(PO)

Plant height (PH) actual measurements in cm from soil
surface to tip of tallest panicle (awns
excluded)

TO:0000207 Ht, PTHT, shoot height shoot axis PO
0025029

Flowering date
(FLW)

When 50% of flowers were visible in the
whole plot

TO:0000344 days to flowering, Delay in flowering time,
DTFL

1/2 of flowers
open stage
PO:0007053

Culm length
(CulmL)

Measure from soil surface to panicle base
in cm

TO:0000576 CmL, core length, culm height, culm length,
CULMLG, stem height, STEMLG

stem PO:0009047

Number of
effective tiller or
panicle per plant
(PN)

Count of number of panicles from each
plant

TO:0000152 NOP, NP, number of effective tiller per plant,
number of panicle, panicle number per plant,
panicle number per tiller, PN, PNNB, seed
setting tillers per plant, spike number, TP

inflorescence
PO:0009049

Panicle length
(PL)

Actual measurements in cm of panicle base
to tip of each panicle

TO:0000040 PnL, PNLG inflorescence
PO:0009049

Flag leaf length
(FlgLL)

Flag leaf length measured in cm of all flag
leaves of each panicle per plant

TO:0002757 FLFLG flag leaf
PO:0020103

Flag leaf width
(FlgLW)

Flag leaf width measured in cm of all flag
leaves of each panicle per plant, measured
at the widest portion of the leaf blade

TO:0000370 LFWD, LW flag leaf
PO:0020103

Flag leaf area
(FlgLA)

Calculated as K x L x W., where K is the
"adjustment factor". K is dependent on the
shape of the leaf which, in turn, is affected
by the plant variety, nutritional status, and
growth stage of the leaf. Experimental
studies at IRRI (IRRI, 1972) have indicated
that a value of 0.75 can be used for all
stages of growth except at the seedling
stage and at harvest, where the value of
0.67 should be used instead

TO:0000540 LFAR flag leaf
PO:0020103

Number of
spikelets per
panicle (SPn)

the total number of spikelets (whether filled
or empty) per plant divided by the panicle
number per plant

TO:0000456 number of spikelets per panicle, spikelet
number per panicle, SPKNB

inflorescence
PO:0009049

Number of filled
grain per plant
(FGP)

manual count of the filled grain per plant TO: 0000447 FGRNB, FILGRNB, filled fruit number, filled
grain number per panicle, grain number per
panicle, GRNBPPN, number of grains per
panicle

fruit PO:0009001

Grain length (GrL) Random selection of ten seeds, individually
measured for grain length in mm using an
electronic digital caliper with a precision of
0.1 mm

TO:0002626 grain length, GRLG, pod length fruit PO:0009001

Grain width (GrW) Actual measurement of width in mm as the
distance across the fertile lemma and palea
at the widest point on the same grains
measured for length

TO:0000402 dehulled grain curved width, dehulled-grain
width, DHULGRWD, GRWD, width of grain
without hull

fruit PO:0009001

Grain length-
breadth ration
(LBR)

grain length divided by grain width TO:0002731 dehulled-grain length to width ratio,
DHULGRLGWDRO, GRLHWDRO

fruit PO:0009001

Lodging score
(LG)

percent of plants that lodged TO:0000068 Lg, LOI

Peduncle length
(PedL)

The upper most internode length of the
panicle or peduncle length measured in cm
as the length of peduncle from the base of
the flag leaf to the base of basal spikelet of
a spike

TO:0002691 neck internode length peduncle
PO:0009053

(Continued)
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Large effect QTL were, however, identified for some traits. A very large effect QTL for flow-

ering time was identified on chromosome 3 that explained*43% of the variance for flowering

time during the dry season and 45% during the wet season, and had the effect of decreasing

flowering time by an average of six days. Another large effect QTL was identified for grain

length, grain width, and length-breadth ratio on chromosome 7 that explained*12%,*16%,

and*28% of the variance for grain length, grain width, and length-breadth ratio in the dry

season, respectively, and which had the effect of decreasing grain length by an average of

*0.3 mm, increasing grain width by an average of*0.1 mm, and decreasing the grain length-

breadth ratio by an average of*0.4 mm (S1 and S3 Tables).

Only four out of the 52 identified QTL were significant for both the dry season and the wet

season, three of which were the large effect QTL mentioned above for flowering time, grain

length, and length-breadth ratio. The other QTL identified in both seasons was an additional

QTL for length-breadth ratio on chromosome 2 (qLBR2-2) (S1 Table). A greater number of

QTL were identified in the dry season than the wet season due to the fact that heritability is

generally higher in the dry season due to more stable climactic conditions. Other differences in

the identified QTL and QTL effect sizes between the two seasons are also explained by the di-

vergent environmental conditions of the two seasons, i.e., the wet season is subject to heavy

rains, typhoons, and increased disease/pest pressures, while the dry season has a higher average

solar radiation and generally more favorable conditions (under irrigation). Interestingly, the

one significant QTL identified for yield was identified in the wet season only, suggesting that it

is specific to high yields under wet season conditions (S1 Table).

Many of the QTL regions were significant for more than one trait. In most of these cases,

the traits with co-localized QTL were correlated with each other in one or both seasons (Fig. 3).

For example, the grain morphological traits, grain length, width, and length-breadth ratio were

correlated with each other (r2 = 0.71 for grain length and length-breadth ratio, r2 = −0.75 for

grain width and length-breadth ratio, and r2 = −0.15 for grain width and grain length in the

dry season) and shared the major QTL on chromosome 7 mentioned above (qGrL-7, qGrW-7,

qLBR-7). Grain length and length-breadth ratio also shared a QTL on chromosome 2 (qGRL-2,

qLBR-2-1), and grain width and length-breadth ratio shared a QTL on chromosome 8 (qGrW-

8, qLBR-8-1). Culm length and plant height were highly correlated in both seasons (r2 = 0.95

Table 1. (Continued)

Trait Description of phenotyping Trait
Ontology
(TO)

TO synonyms Plant Ontology
(PO)

Panicle exertion
rate (Exs)

The ratio of the total panicle length that
comes out from flag leaf sheath to the total
panicle length. Scored as 1 for fully exerted,
3 for moderately exerted, 5 for recently
exerted, 7 for partially exerted and 9 for
enclosed

TO:0000165 Exs, PNEX inflorescence
PO:0009049

1000 grain weight
(1000GW)

Measurements in g of 1000 well developed
whole grains, dried to 13% moisture
content, weighed on a precision balance

TO:0000382 1000-grain weight, TGRWT, thousand grain
weight, thousand seed weight, TO:0000533,
TSDWT

fruit PO:0009001

Yield per plant
(YPP)

Measurements in g of total grain for one
plant (randomly selected five plants from
one plot) dried to 13%MC, weighed on a
precision balance

TO:0000449 GRYLDPPL fruit PO:0009001

Grain yield per
plot (YLD)

Yield in kg per hectare at 14% moisture,
calculated from the harvest of a 5 meter
square per plot (boarder rows discarded)

TO:0000396 GRYLD, Yld fruit PO:0009001

doi:10.1371/journal.pone.0119873.t001
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Fig 1. Selected Manhattan plots for flowering time (FLW, top), length-breadth ratio (LBR, topmiddle),
plant height (PH, bottommiddle), and grain yield (YLD, bottom). Dashed line shows the 0.1 FDR
significance threshold.

doi:10.1371/journal.pone.0119873.g001
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and 0.98 for the dry and wet seasons, respectively), and shared a QTL on chromosome 3 along

with the major flowering time QTL (qFL-3, qCulmL-3, qPH-3), a QTL on chromosome 6 along

with a lodging QTL (qCulmL-6, qLG-6-1, qPH-6) and a QTL on chromosome 8 (qCulML-8,

qPH-8) (Figs. 2–3, S1 Table). For such correlated traits with shared QTL, it is likely that either

the same causal polymorphism underlies the identified QTL (pleiotropy) or that the genes un-

derlying the QTL are linked.

Some of the QTL for lodging co-localized with QTL for either plant height, grain length, or

grain length-breadth ratio. In contrast to the above cases, the correlations of these traits were

either absent or weak (r2 = 0.24 for plant height and lodging, 0.02 for grain length and lodging,

and −0.03 for length-breadth ratio and lodging in the dry season), yet in addition to the QTL

described above, a single QTL for grain length and lodging was identified on chromosome 6

(qGrL-6-1, qLG-6-2) and a QTL for grain length-breadth ratio and lodging was identified on

chromosome 12 (qLBR-12, qLG-12) (Figs. 2–3, S1 Table). These results would indicate that

these traits are truly quantitative and teh variance explained by the shared QTL is less signifi-

cant than that explained by loci elsewhere in the genome that segregate independently.

Application to breeding

Performing association mapping on a panel of adapted breeding lines rather than on a diversity

panel provides the opportunity to apply the results directly to breeding programs. Unlike the

results from studies using diversity panels, our association mapping results can be readily used

to identify favorable or unfavorable haplotypes that are currently segregating in our elite breed-

ing material. These haplotypes could be used to determine the most suitable parents for cross-

ing in order to exploit transgressive segregation and/or to increase the frequency with which

favorable haplotypes appear in the progeny. MAS for favorable haplotypes among the progeny

would allow us to increase breeding efficiency and decrease cost by reducing the number of

plants advanced to the next generation of breeding or that need to be phenotyped. In this way,

we aim to increase the rate of genetic improvement by increasing gain from selection.

Fig 2. Physical map of significant GWASQTL. Black points—jittered GBS SNPs, red triangles—physical position of the most significant SNP for a given
peak, blue rectangles—physical position of candidate flowering time genes.

doi:10.1371/journal.pone.0119873.g002
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Fig 3. Graphic representation of the correlationmatrices of phenotype values for the (A) dry season,
and (B) wet season.

doi:10.1371/journal.pone.0119873.g003
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MAS based on the haplotypes identified in an association mapping study such as ours ne-

cessitates a strong association between that haplotype and the phenotype-of-interest, and, ide-

ally, a large effect of the haplotype on the phenotypic variation of the trait. When the

association of haplotype and phenotype is non-perfect, as would be expected in many cases,

there will be an r2 value at or above which marker assisted selection would be more efficient

than phenotypic selection, i.e., at or above this value, the increased efficiency of marker based

selection would be expected to outweigh the drag on gain from selection that would result from

mistakenly eliminating favorable individuals, or vice versa. Below this threshold, phenotypic

selection would be preferable. Breeders generally expect marker assisted selection accuracy to

be high (> = 95%) for traits with major genes or that are easy to phenotype. However, when a

trait is laborious, time consuming, or technically difficult and/or expensive to phenotype, a

lower accuracy*70% could be acceptable to breeders [18].

We used PLINK to identify haplotypes that were associated with the significant peaks iden-

tified in our GWAS for three of our phenotypes that are routinely collected by breeders—flow-

ering time, plant height, and yield (S4–S6 Tables). In many breeding programs in Southeast

Asia, short stature, early flowering time (to allow for plant of multiple crops per year), and, of

course, high yields are desirable breeding goals [19], so we therefore focus on performing selec-

tion to increase the frequency of favorable alleles at QTLs associated with these traits in

our population.

Flowering time. For flowering time in the dry season, 17 significant haplotypes were iden-

tified, all spanning the region of the large-effect QTL on chromosome three, qFL-3. The haplo-

types ranged from 2–124 SNPs in length, and spanned regions ranging from 233 bp—900.4 Kb

(S4 Table). The early-flowering variant of haplotype H1 was the single most significant haplo-

type identified, and explained 34% of the phenotypic variance. Haplotype H1 spanned 58 SNPs

and 202.9 Kb. The most significant haplotype associated with late-flowering was the late vari-

ant of haplotype H3, which consisted of 8 SNPs spanning 49.3 Kb, and explained*33% of the

phenotypic variance. In the wet season, 22 significant haplotypes were identified, all of which

also co-localized with qFL-3 (S4 Table).

Of the 5% earliest flowering individuals in the dry season (17/342), 12 were confirmed to

carry the early H1 haplotype (see S4 Table for exact SNPs/alleles). Only 1 out of the 17 individ-

uals was confirmed not to have this haplotype. The other four individuals had missing data in

the region of the haplotype which did not preclude the presence of the early H1 haplotype, but

prevented confirmation of haplotype presence. For the 5% latest flowering individuals in the

dry season, 6/17 were confirmed to have late haplotype H3, and 5/17 were confirmed to have

other haplotypes (Fig. 4). Due to this high degree of correlation and the large effect of these

haplotypes, a breeder could potentially perform either positive selection for early flowering or

negative selection against late flowering using a set of linked SNPs derived from either of

these haplotypes.

Plant height. For plant height in the dry season, 10 haplotypes were identified, all of

which co-localized with qPH-3 and qFL-3. The haplotypes ranged from 3–35 SNPs in length,

and spanned between 4.2 and 416.2 Kb. The short stature variant of haplotype H2 was the

most significant haplotype associated with shortness, and was 22 SNPs in length, spanned 8.8

Kb, and explained*12% of the phenotypic variance. The tall-stature variant of haplotype H1

was the most significant for tallness. H1 was 11 SNPs in length, spanned 116.6 Kb, and ex-

plained*10% of the phenotypic variance (S5 Table). For the 5% shortest individuals, 9/17

were confirmed to carry the H2 short haplotype, and only 1 was confirmed to carry a different

haplotype. For the 5% of tallest individuals, 10/17 were confirmed to carry the H1 tall haplo-

type, and only 3/17 were confirmed to carry a different haplotype (Fig. 4). These results for the
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Fig 4. Phenotypic distributions for flowering time in the dry season (top), plant height in the dry season (middle), and yield in the wet season
(bottom), showing the most desirable 5% of individuals (red) and least desirable 5% of individuals (blue). The most significant haplotypes associated
with each end of the distribution are shown to the left and right of the histogram with the number of individuals in the best or worst 5% that carry the respective
haplotypes. "Confirmed other" refers to individuals that were known NOT to carry the most significant haplotype. Individuals that were neither confirmed to
carry the significant haplotype or confirmed to carry other haplotypes had missing data at one or more SNPs that did not preclude the possibility of the
individual carrying the significant haplotype.

doi:10.1371/journal.pone.0119873.g004
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tall haplotype, in particular, suggest that markers linked to haplotype H1 could be developed

by breeders to cull undesirably tall individuals from their program.

For the wet season, only one haplotype (H1) was identified that co-localized with qPH-2,

the plant height QTL identified in the WS GWAS. H1 was 3 SNPs in length, spanned 7 bp, and

explained about 7% of the phenotypic variance (S5 Table). All 12 of the shortest 5% of individ-

uals that did not have missing data at the three SNPs that make up the haplotype were con-

firmed to carry the short H1 haplotype. Of the 5% tallest individuals, 4/17 had the tall stature

H1 haplotype, and the 8/17 had the short haplotype. These data suggest that this haplotype

would also be most useful for performing negative selection, i.e., the tall variant of H1 could be

used to select against tall individuals in the wet season (Fig. 4).

Yield. Two significant haplotypes were identified each for the dry season and the wet sea-

son for grain yield. In the dry season, both significant haplotypes were associated with lower

yield and were located at the top of chromosome six, co-localizing with a GWAS peak that

fell just below our significance threshold. The most significant of these two haplotypes, H2,

was 8 SNPs long, spanned a region of 47.9 Kb, and explained*7% of the phenotypic variance

(S6 Table). Of the 5% lowest yielding individuals, 3/17 were confirmed to carry this haplotype,

and 7/17 were confirmed to carry a different haplotype. Of the 5% best yielding, individuals,

however, only 1/17 individuals carried this haplotype, while 13/17 were confirmed to carry

other haplotypes.

The results are more interesting for the wet season. Two significant haplotypes (H1 and H3)

were identified on chromosome 11, one of which, H1, was associated with higher yields. The

H1 high-yield haplotype consisted of only 3 SNPs, spanned 38 bp, and explained*9% of the

phenotypic variance (S6 Table). Of the 5% highest yielding individuals in the wet season, 8/17

were confirmed to carry high-yielding haplotype H1, and only 1/17 individuals were confirmed

to carry a different haplotype, suggesting this could be a particularly useful haplotype for per-

forming positive selection for high yield in the wet season (Fig. 4). Low yielding haplotype H3

spanned 24 SNPs and*90 Kb, and explained*6% of the phenotypic variance, however it

was not possible to confirm its presence among any of the 5% lowest yielding individuals due

to missing data at the relevant loci. 2/17 of the lowest yielding individuals were confirmed to

carry alternative haplotypes.

Candidate genes

To identify candidate genes underlying the above QTLs/haplotypes of interest, we searched

rice genome browsers and existing literature at regions that were either near the most signifi-

cant GWAS SNPs reported in S1 Table, or in the regions spanned by the significant haplotypes

under selection (i.e., early flowering, short stature, high yields) reported in S4–S6 Tables

(materials and methods). For flowering time, the large effect QTL identified on chromosome 3

(qFL-3) corresponds to the location of the QTLHd9 identified in early QTL mapping studies

[20]. While there were a number of possible candidate genes underlying qFL-3 (S7 Table), the

OsMADS50 gene (LOC_Os03g03100), an important activator of flowering in rice, and a homo-

log of Arabidopsis gene the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1)

was identified as the best candidate. QTL for plant height (qPH-3) and culm length (qCulmL-

3) also co-localized with qFL-3, suggesting that OsMADS50may also play a role in the

expression of these traits as well as for flowering time. Indeed, rice plants in which this gene

was knocked down using RNAi exhibited elongated internodes, suggesting true pleiotropy may

underlie these traits in rice [21].

OsMADS50 co-localizes with bothHd9 and our peak association marker (S1 and S7 Tables),

but it does not fall within the most significant flowering time haplotype (S4 Table)

Genome-Wide Association Mapping in a Tropical Rice Breeding Program

PLOSONE | DOI:10.1371/journal.pone.0119873 March 18, 2015 11 / 19



[21,22,23,24]. This suggests that a second genetic feature located*800 Kb downstream of

OsMADS50 is a target of selection in this breeding population. No obvious candidate genes for

flowering time were identified within this haplotype but the data suggest this is potentially a

novel flowering time-related QTL.

Several known, important, rice flowering time genes also underlie the flowering time QTL

identified on chromosome 6 (qFL-6), including Hd1, RFT1 (a.k.a. FT-3), and FT-2.Hd1, how-

ever, is*6Mb away from the peak QTL marker, and thus is not the best candidate (S7 Table)

[25,26,27]. RFT1, a homolog of an Arabidopsis florigen gene, is located directly beneath the as-

sociation peak (S1 Table) [25,26], while FT-2 is located nearby*11 Kb away. The flowering

time QTL on chromosome 8 (qFL-8) also corresponded to a previously mapped QTL, Hd5/

DTH8, which encodes aHAP3 subunit of the CCAAT-box-binding transcription factor and

has been shown to play an important role in early flowering [28,29,30]. Another possible candi-

date gene that encodes a putative cullin protein lies nearby; cullins are F-box protein subunits

with the potential to regulate flowering time (S7 Table)[31]. Additional candidate genes for the

flowering time QTL identified in the wet season only (qFL-2, qFL-9) are shown in S7 Table.

OsMADS50 is also the best candidate gene for the plant height QTL on chromosome 3

(qPH-3), as mentioned previously, although several other candidates were also identified

(S7 Table)[21]. qPH-6 and qPH-8 were both were very near putative zinc finger domain con-

taining proteins that provide likely candidates. qPH-2 was near a putative GA encoding gene,

which makes a good candidate for this wet season QTL (S7 Table).

No best single candidate gene was identified for the wet season yield QTL on chromosome

11 (qYLD-11), but several putative stress tolerance genes were identified in the vicinity of the

significant haplotype which warrant further investigation, see S7 Table.

Toward Genomic Selection for rice improvement

The lack of perfect association between the haplotypes described above and their respective

phenotypes, as well as the limited number of QTL identified for many of the phenotypes in this

study, highlight the complexity of the genetic architecture underlying many agronomic traits

in rice. Even the haplotypes for flowering time, for which we identified a large effect QTL, did

not explain 100% of the phenotypic variance. This poses a problem for the implementation of

MAS in rice breeding programs. While genetic gain could potentially be increased over pheno-

typic selection alone, the probability of eliminating favorable individuals or selecting unfavor-

able individuals will limit overall breeding progress.

Genomic selection (GS), first described by Meuwissen et al., in 2001 could solve this prob-

lem [32]. Instead of making selections based on a subset of previously identified significant

QTL, in a genomic selection breeding scheme, selections are based on the output of statistical

models that are fit using all available high density genotyping data [15,16,32]. Our recently

published study in PLoS Genetics explores the efficacy of performing genomic selection in this

same population [33], but the GWAS results presented here by themselves also suggest that GS

could be an effective strategy for rice improvement. The GWAS results are also informative for

thinking about how GS could best be implemented for this population. The lack of any large-

effect QTL for many of the agronomic traits studied here suggest that for some agronomic

traits, linear, additive statistical models such as RR-BLUP could be the most effective means of

predicting breeding value. The presence of large-effect QTL for other traits such as flowering

time, however, suggest that for other traits in rice, non-additive genomic selection models and/

or models that can account for differences in marker variance may be more accurate than the

simple RR-BLUP models. The results also suggest that a model in which the large effect QTL

identified from this GWAS are fit as fixed effects could further improve accuracy. Simulation

Genome-Wide Association Mapping in a Tropical Rice Breeding Program

PLOSONE | DOI:10.1371/journal.pone.0119873 March 18, 2015 12 / 19



experiments and a preliminary studies in wheat and cattle have shown this to be the case for

high heritability traits with large fixed effects [14,17,34].

GWAS have been used to identify many genes that underlie a variety of agronomic traits in

rice [8,9,10,11,12,13,35,36]. Here we performed a GWAS on a breeding population of elite in-

bred rice lines for the IRRI irrigated rice breeding program in order to a.) more directly apply

the results to MAS in this breeding population, and b.) inform the genomic selection results

presented in the companion paper. The successful identification of haplotypes for flowering

time, plant height, and grain yield, as well as the elucidation of the genetic architecture underly-

ing a variety of the agronomic traits in this population suggests that this can be a powerful

strategy for subsequent rice improvement.

Materials and Methods

Plant material

363 elite breeding lines were selected for genotyping from the International Rice Research In-

stitute (IRRI) irrigated rice breeding program based on the planned inclusion of the lines in the

2011 Multi-Environment Testing Program and in the 2011 and 2012 Replicated Yield Trials

(RYT) at IRRI (Los Baños). Approximately half of the lines were also included in the 2009–

2010 RYTs at IRRI (S1 Table). The other lines were promoted from the observational yield trial

(OYT) to the RYT in 2011. The lines were all derived from the pedigree breeding method. In-

formation on pedigrees and selection history is presented in S8 Table.

Phenotyping

A total of 19 agronomic, morphological, grain and yield-related traits were evaluated in the

panel in 2012 (dry and wet seasons) as described in Table 1. A detailed analysis of these traits

will be reported elsewhere. Briefly, all measurements were performed using two replications

with 5 plants per plot, except plot yield, which was measured using a 6 m2 harvest area. All

measurements were made on a quantitative scale, with the exception of lodging score and pani-

cle exertion rate, which were nominal. Methods used followed IRRI’s standard evaluation sys-

tem (SES) or other routinely used protocols. Predicted means and variance components were

calculated using linear mixed models in Genstat v. 16. Entries were considered as fixed effects

and replication and entry by replication interactions were considered as random effects. A de-

tailed trait analysis will be reported elsewhere.

Genotyping

DNA extraction. Young leaf tissue was collected from each of the 369 breeding lines from

plants grown in Gutterman Greenhouse in Ithaca, NY. DNA was extracted using the Qiagen

96-plex DNeasy kit as per the Qiagen fresh leaf tissue 96-plex protocol (www.qiagen.com/HB/

DNeasy96Plant).

Library preparation. 384-plex genotyping-by-sequencing (GBS) libraries were prepared

using the protocol by Elshire et al. 2011 [37], as described previously in Spindel and Wright

et al 2013 [38].

GBS data analysis. SNPs were discovered and called from the raw 384-plex GBS data

using the TASSEL3.0 GBS pipeline with physical alignment to the MSU version 6.0 Nippon-

bare rice reference genome using Bowtie2, as described in Spindel and Wright et al 2013

[38,39,40] (S4 Fig.). The IRRI breeding materials genotyped here are a collection of multi-par-

ent related and unrelated inbred lines, so the GBS-PLAID algorithm for imputation, which was

developed specifically for imputation of biparental rice mapping populations, was not useful
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[38]. Imputation of missing data was instead performed using the TASSEL3.0 FastImputation-

BitFixedWindow plugin with default settings [41]. The algorithm works by dividing the entire

SNP dataset into small SNP windows, then identifying the most similar inbred line within each

window to fill the missing data. The algorithm takes advantage of small IBD regions shared be-

tween pairs of inbred lines in the collection; if the window from the closest neighbor has more

than 5% difference from the line being imputed, the data point is left as missing [41]. The im-

putation error rate using this algorithm was estimated for each chromosome in our dataset by

masking a fraction of the un-imputed allele calls and comparing the imputed and actual calls.

The average imputation error rate across the twelve rice chromosomes was estimated in this

way to be less than 1%.

SNPs that still had 10% or more data missing after imputation (or call rates of< 90%) were

removed from the dataset along with all monomorphic SNPs, for a total SNP set of 73,147

SNPs. A second genotype dataset was also obtained in which we removed all monomorphic

SNPs, SNPs with call rates< 75%, and SNPs with minor allele frequencies (MAF)< 0.05 for a

total of 71,710 SNPs. Individuals with more than 60% missing data were dropped from both

datasets, which resulted in the removal of six individuals that failed sequencing for the total of

363 genotyped lines used throughout the study (S4 Fig.).

Both final datasets were then transformed from nucleotide genotype coding (i.e., 'A', 'C', 'T',

'G') to numeric coding (1, 0, -1 for class I homozygotes, heterozygotes, and class II homozy-

gotes, respectively) in order to facilitate statistical analysis. The minimal remaining missing

data were filled using the numeric genotype means of each line in order to perform PCA and

GWAS (S4 Fig.).

Subpopulation structure analysis

The majority of the 363 lines were characterized apriori from pedigree records to belong to

the indica or indica-admixed subpopulation groups. In order to identify outlier individuals

belonging to the japonica or japonica-admixed groups, principle components analysis (PCA)

was performed in R (version 3.0.1, function prcomp) using the imputed 73,147 SNP dataset.

The first principle component of high density SNP data in rice can separate the indica and ja-

ponica subgroups [11], so by plotting the first four principle components using JMP Pro 10, 13

japonica outliers were identified as pulled in a tight cluster apart from the rest of the 350 lines

(S1A Fig.). These 13 lines were removed from the dataset, and a second PCA was performed

using the same methodology as the first to identify any admixed outliers, i.e, outlier lines con-

taining greater percentages of japonica derived SNPs. By plotting the first four principle com-

ponents of the second PCA, another 18 lines were judged to be outliers and removed from the

dataset, leaving a total of 332 lines to be used for the cross-validation experiments (S1B Fig.). A

third PCA was performed using the remaining 332 to confirm that there were no additional

subpopulation outliers. Percent variance explained by the first four principle components for

each PCA was produced from the R function output.

Association mapping

Association mapping was performed in R using the GEMMA implementation of the standard

linear mixed model y = Wα + Xβ + u + ε, where y is a vector of phenotypes, W = (w1,..wc) is

an n × c matrix of covariates (fixed effect), α is a c-vector of the corresponding coefficients, β is

the marker effect size, X is a matrix of allele dosages for the imputed variants, u is a vector of

random effects and ε is a vector of errors. u is multivariate normal,*MVNn(0, λτ�1 K), with

τ�
1 as the variance of the residual errors, λ the ratio between the two variance components, and

K the m × m genomic relationship matrix. ε is*MVNn(0, λτ�1In) where In is an n × n identity
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matrix [42]. K was also calculated using GEMMA (parameter-gk = 2). For additional details on

the GEMMA implementation of the mixed model, see Zhao et al., 2012 [43].

GWAS models that included the first principle component (PC) as a covariate were com-

pared to models that did not include the first PC using TASSEL v. 4.3.1, and were found not to

differ significantly, therefore, we did not include the first PC as a covariate when building the

GEMMAmodel. This makes sense given the small percent variance explained by any of the

principle components after removal of outliers (see results). The QQ plots (S2 Fig.) also indi-

cate that the GEMMAmodel fit the data well. The significance of the GWAS results were deter-

mined using a Wald test, and the significance threshold determined by a false discovery rate of

0.1 using the R function p.adjust (method = BH) [44]. Allele effects were calculated as the dif-

ference between the average trait value for all lines that were homozygous for the major allele

(AA) and the average trait value for all lines that were homozygous for the minor allele (BB)

for a given SNP. The percent variance explained by all significant SNPs discovered in each sea-

son was output from GEMMA. The percent variance explained by each individual significant

SNP was calculated as the squared correlation between the phenotype and genotype of the SNP

[45]. QQ plots and Manhattan plots were generated using R. all other plots were produced

using the program JMP v. 10.0.

Haplotype Analysis

Haplotype blocks were calculated for flowering time, plant height, and yield for both seasons of

data in PLINK (command—blocks). For all phenotypes except yield in the dry season, the

input genotype files contained all SNPs that passed the GWAS significance threshold. For yield

in the dry season, the input genotype file contained all SNPs with p-value< = .0001. The re-

sulting PLINK blocks file was then used to calculate the haplotype frequencies in PLINK using

the—hap-freq command. To test haplotypes for significant association with phenotype, we

used the PLINK—hap-assoc command.

For each trait, the most significant haplotype associated with either low phenotypic value or

high phenotypic value (e.g. early flowering and late flowering) was identified. The proportion

of either the individuals with the 5% lowest phenotypic values or the 5% highest phenotypic

values that carried the most significant haplotypes associated with the respective high/low phe-

notype were calculated.

Candidate gene analysis

Candidate genes were identified for the flowering time, plant height and yield QTLs, three of

the most important traits to breeders. Previously identified QTL that co-localized with the

QTL mapped in this study were identified using the Gramene QTL data archive (http://

archive.gramene.org/qtl/). To ascertain whether QTL had been cloned, literature searches were

performed. Regions covered by significant haplotypes (S4–S6 Tables) and SNPs were also

searched for candidates using the MSU v.7 rice genome browser (http://rice.plantbiology.msu.

edu/cgi-bin/gbrowse/rice/). All results are reported in S7 Table.

Supporting Information

S1 Fig. Plots of the first four principle components of selected elite breeding lines using

73,147 SNPs. (A) Initial principle components analysis (PCA) using 363 lines to identify 13 ja-

ponica outliers (purple). (B) PCA on remaining 350 lines after removing 13 outliers identified

in A. An additional 18 outliers (purple) were subsequently identified and excluded.

(EPS)
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S2 Fig. QQ plots for final model for all 19 traits including plant height (PH), flowering

date (FLW), culm length (CulmL), number of effective tiller or panicle per plant (PN), flag

leaf length (FlgLL), flag leaf width (FlgLW), flag leaf area (FlgLA), number of spikelets per

panicle (SPn), number of filled grain per plant (FGP), grain length (GrL), grain width

(GrW), grain length-breadth ratio (LBR), lodging score (LG), peduncle length (PedL), pan-

icle exertion rate (Exs), 1000 grain weight (1000GW), yield per plant (YPP), and grain yield

per plot (YLD), for both the dry (DS) and wet (WS) seasons.

(PDF)

S3 Fig. Manhattan plots for final model for all 19 traits including plant height (PH), flower-

ing date (FLW), culm length (CulmL), number of effective tiller or panicle per plant (PN),

flag leaf length (FlgLL), flag leaf width (FlgLW), flag leaf area (FlgLA), number of spikelets

per panicle (SPn), number of filled grain per plant (FGP), grain length (GrL), grain width

(GrW), grain length-breadth ratio (LBR), lodging score (LG), peduncle length (PedL), pan-

icle exertion rate (Exs), 1000 grain weight (1000GW), yield per plant (YPP), and grain yield

per plot (YLD), for both the dry (DS) and wet (WS) seasons. Dashed line shows the 0.1 FDR

significance threshold. Plots with no dashed line did not have any SNPs that passed the

significance threshold.

(PDF)

S4 Fig. Diagram of genotyping process. 384-plex GBS was used to discover and call SNPs on

369 elite inbred rice lines from the IRRI irrigated rice breeding program. SNPs were discovered

and called from the raw GBS data using TASSEL3 with physical alignment to the MSU version

6 Nipponbare rice reference genome using Bowtie2 (yellow boxes). Imputation of missing data

was then performed using the TASSEL3 fastimputationbitfixedwindow plugin (materials and

methods). After imputation, custom python scripts (green boxes) were used to remove SNPs

with call rates< 90% or<75% (two different datasets), remove monomorphic SNPs, remove

SNPs with MAF< 0.05, drop individuals with more than 60% missing data, and finally, con-

vert the ACTG nucleotide calls to numeric coding (i.e., homozygote class I = 1, homozygote

class II = -1, heterozygote = 0). After genotypes were converted to numeric format, remaining

missing genotype values were filled using the numeric line mean.

(EPS)

S1 Table. All significant QTL identified by the GWAS. Table shows up to the top five most

significant SNPs identified for each season for each QTL, for each trait along with the major

and minor alleles for the SNP and the allele effect of the major allele. rs = SNP identifier,

p_wald = Wald Test p-value.

(XLSX)

S2 Table. The total percent variance explained estimates and standard errors for each trait

in the dry and wet season.

(CSV)

S3 Table. The percent variance explained values for all significant SNPs for all traits in the

dry and wet seasons, where a SNP was considered significant if it passed the FDR threshold

of 0.1.

(CSV)

S4 Table. Significant flowering time haplotypes. Locus = haplotype number assigned by

PLINK, NANAL = number of individuals in analysis, BETA = regression coefficient, R2 =

percent variance explained by haplotype, STAT = T test statistic, P = asymptotic p-value,

pop_freq = frequency of haplotype in population, SNPs = SNPs that make up the haplotype.
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Negative BETA values indicate that the haplotype is associated with earlier flowering, positive

BETA values indicate that the haplotype is associated with later flowering. The most significant

haplotype associated with early flowering and the most significant haplotype associated with

late flowering is highlighted for both seasons.

(XLSX)

S5 Table. Significant plant height haplotypes. Locus = haplotype number assigned by

PLINK, NANAL = number of individuals in analysis, BETA = regression coefficient, R2 = per-

cent variance explained by haplotype, STAT = T test statistic P = asymptotic p-value, pop_freq

= frequency of haplotype in population, SNPs = SNPs that make up the haplotype. Negative

BETA values indicate that the haplotype is associated with shorter stature, positive BETA val-

ues indicate that the haplotype is associated with taller stature. The most significant haplotype

associated with short stature and the most significant haplotype associated with tall stature is

highlighted for both seasons.

(XLSX)

S6 Table. Significant grain yield haplotypes. Locus = haplotype number assigned by PLINK,

NANAL = number of individuals in analysis, BETA = regression coefficient, R2 = percent vari-

ance explained by haplotype, STAT = T test statistic P = asymptotic p-value, pop_freq = fre-

quency of haplotype in population, SNPs = SNPs that make up the haplotype. Negative BETA

values indicate that the haplotype is associated with lower yield, positive BETA values indicate

that the haplotype is associated with higher yield. The most significant haplotype associated

with low yield in the dry season and the most significant haplotypes associated with low yield

and high yield in the wet season are highlighted.

(XLSX)

S7 Table. Candidate genes for flowering time, plant height, and yield. QTL name = name of

QTL from this study, gene name = published name of cloned gene, pos (MSU 7.0) = position

in bp from the MSU v 7.0 rice genome, pos (Gramene) = Ensemble/Gramene position for

cloned genes and historic (reference) QTL. Near (marker or haplotype) = the significant SNP

marker(s) or haplotype(s) identified in this study nearest the identified candidate gene. Refer-

ence QTL name = historic QTL name as recorded in the Gramene QTL archive, Gramene QTL

ID = accession number of QTL in the Gramene QTL archive. Gene product description = de-

scription of gene product from MSU rice genome annotation project and/or Gramene.

Highlighted rows represent particularly good candidate genes.

(XLSX)

S8 Table. Germplasm pedigree for 262/263 individuals included in the GWAS. One sample

could not be tracked.

(XLSX)
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