
Genome-Wide Association Mapping
in Arabidopsis Identifies Previously Known
Flowering Time and Pathogen Resistance Genes
Marı́a José Aranzana
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There is currently tremendous interest in the possibility of using genome-wide association mapping to identify genes
responsible for natural variation, particularly for human disease susceptibility. The model plant Arabidopsis thaliana is
in many ways an ideal candidate for such studies, because it is a highly selfing hermaphrodite. As a result, the species
largely exists as a collection of naturally occurring inbred lines, or accessions, which can be genotyped once and
phenotyped repeatedly. Furthermore, linkage disequilibrium in such a species will be much more extensive than in a
comparable outcrossing species. We tested the feasibility of genome-wide association mapping in A. thaliana by
searching for associations with flowering time and pathogen resistance in a sample of 95 accessions for which genome-
wide polymorphism data were available. In spite of an extremely high rate of false positives due to population
structure, we were able to identify known major genes for all phenotypes tested, thus demonstrating the potential of
genome-wide association mapping in A. thaliana and other species with similar patterns of variation. The rate of false
positives differed strongly between traits, with more clinal traits showing the highest rate. However, the false positive
rates were always substantial regardless of the trait, highlighting the necessity of an appropriate genomic control in
association studies.
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Introduction

One of the main challenges of modern biology is achieving
a better understanding of the molecular genetic basis for
naturally occurring phenotypic variation. Primarily because
of rapidly decreasing genotyping costs, genome-wide associ-
ation mapping (also known as linkage disequilibrium map-
ping) has emerged as a very promising tool for accomplishing
this. The basic idea is simple: rather than looking for marker–
trait associations in a population with known relationships
(such as the members of a pedigree, or the offspring of an
experimental cross), we look for associations in the general
population of ‘‘unrelated’’ individuals [1]. Because unrelated
individuals are, of course, always related at some distance,
phenotypically similar individuals may be similar because
they share alleles inherited identical by descent, alleles that
will be surrounded by short ancestral marker haplotypes that
can be identified in genome-wide scans. Association mapping
has two main advantages over traditional linkage mapping
methods. First, the fact that no pedigrees or crosses are
required often makes it easier to collect data. Second,
because the extent of haplotype sharing between unrelated
individuals reflects the action of recombination over very
large numbers of generations, association mapping has
several orders of magnitude higher resolution than linkage
mapping.

The drawbacks of association mapping stem from the fact
that it is not a controlled experiment. Power is unpredictable,

partly because the decay of linkage disequilibrium is noisy,
and partly because the genetic architecture of the trait is
unknown (the latter is always a problem in mapping complex
traits, but it is likely to be worse in association mapping
because genetic heterogeneity is not limited by a small
number of founders) [1–3]. The false positive rate is similarly
difficult to predict: it is well known that population structure
can cause strong spurious correlations [4]. The severity of
these problems is not known, because few (if any) genome-
wide association studies have been carried out to date.
Highly selfing organisms, like Arabidopsis thaliana, are ideal

candidates for association mapping. First, they largely exist as
collections of naturally occurring inbred accessions, which
can be genotyped once and phenotyped repeatedly, for the
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same phenotype (to reduce environmental noise) or different
phenotypes (allowing ‘‘in silico mapping’’ [5]). Second,
inbreeding results in a pattern of polymorphism character-
ized by extensive haplotype structure, which should be well
suited for association mapping [6].

Preliminary studies indicated that linkage disequilibrium
in A. thaliana decayed over 50–250 kb [7]. Based on these
results, a genome-wide polymorphism survey in which short
(500–600 bp) fragments were resequenced approximately
every 100 kb in 95 individuals was carried out. Analysis of
these data resulted in two findings of direct relevance to
association mapping [8]. First, linkage disequilibrium appears
to decay faster than predicted, within 50 kb. This means that
the available polymorphism data are not dense enough for a
genome-wide association study. Second, A. thaliana exhibits
substantial population structure. This means that the sample
is less ideal for association mapping for the reasons alluded to
above.

In spite of these problems, we have used the data to
investigate the feasibility of genome-wide association map-
ping in A. thaliana. We considered four phenotypes for which
major loci are known (the vernalization response locus FRI [9]
and the three pathogen resistance loci, Rpm1, Rps5, and Rps2

[10–12]), and asked whether these loci could have been
identified using genome-wide association mapping given a
small, heavily structured sample such as the one available to
us. We found that, in spite of an extremely high false positive
rate, we were able to identify all of them, thus demonstrating
the potential of genome-wide association studies in A.

thaliana, and other species with similar patterns of variation.

Results

Genome-Wide Associations and the False Positive Rate
The data used in this study are summarized in Figure 1,

which shows genotype and associated phenotype for four
genes, for each of the 95 accessions, plotted against a tree

representing the genome-wide relationships among the
accessions (from [8]). The tree illustrates that accessions
whose origins are geographically close tend to be more closely
related, and it is clear by inspection that the phenotypes are
not randomly distributed with respect to this tree. Flowering
time was particularly strongly correlated with geographic
origins, as would be expected for a trait that is likely to be
under clinal selection. It follows that the standard null
hypothesis in association mapping, independence between
marker genotypes and traits, is false in a genome-wide sense.
In other words, we should expect an elevated false positive
rate, and this is precisely what we found. As illustrated in
Figure 2, the distribution of p-values across the genome was
heavily skewed towards zero, with flowering time showing the
strongest deviation from the null expectation. To give some
idea of the magnitude of the deviation, a naive application of
a Kruskal–Wallis nonparametric test of association between
flowering time and each of the approximately 850 sequenced
loci (treating haplotypes as alleles) yielded 7% significant
tests at the (nominal) 0.1% level, 18% significant tests at the
1% level, and 33% at the 5% level. The (nominally)
significantly associated loci were distributed throughout the
genome (Figure 3) and are clearly not all true positives.
Indeed, given that we expect our study to have low power
(due to both insufficient marker density and genetic hetero-
geneity), it is possible that none, except the previously known
loci, are true positives.

We attempted to decrease the false positive rate by taking
population structure into account using so-called structured
association, in which one uses genome-wide markers to infer
population structure, and then carries out association tests
conditional on the inferred structure [13,14]. For the
pathogen resistance phenotypes, structured association re-
duced, but did not eliminate, the elevated positive rate for the
most biased of the phenotypes (response to avrPph3); it had
no effect on the other two rates (see Figure 2B). Similarly, the
false positive rate for flowering time was strongly reduced,
but remained extremely elevated relative to null expectations
(Figure 2C). It is clear from Figure 1 that, at least for
flowering time, much of the elevated false positive rate is due
to the Swedish and Finnish accessions, which are genetically
distinct and phenotypically extreme. Indeed, removing these
accessions from the analysis reduced the false positive rate as
much as using structured association (Figure 2C).

Mapping of Known Loci for Flowering Time and Pathogen
Resistance
In spite of the high false positive rate, the four known loci

were detectable in genome-wide scans (Figure 3). For the
three pathogen resistance phenotypes the strongest associa-
tion was found inside the appropriate R gene regardless of
association method used. For flowering time, strong associ-
ations were evident in multiple locations throughout the
genome, but associations in the FRI region were invariably
among the ten most significant. Furthermore, FRI could
readily be distinguished as true positive by clustering
associations on the basis of which accessions were part of
each association. Our rationale was that false positives due to
population structure are expected to reoccur across the
genome. This is precisely what we saw. Our haplotype-based
association statistics identified loci for which clusters of
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Synopsis

There is currently tremendous interest in using association mapping
to find the genes responsible for natural variation, particularly for
human disease. In association mapping, researchers seek to identify
regions of the genome where individuals that are phenotypically
similar (for example, they all have the same disease) are also
unusually closely related. A potentially serious problem is that
spurious correlations may arise if the population is structured so that
members of a subgroup tend to be much more closely related.
Because few genome-wide association studies have been carried
out, it is not yet known how important this problem will be in
practice.

In one of the first genome-wide association studies to date, this
paper considers the model plant Arabidopsis thaliana. A very large
number of spurious genotype–phenotype correlations are found,
especially for traits that vary geographically. For example, plants
from northern latitudes flower later; however, in addition to sharing
genetic variants that make them flower late, they also tend to share
variants across the genome, making it difficult to determine which
genes are responsible for flowering. This notwithstanding, several
previously known genes were successfully identified in this study,
and the researchers are optimistic about the prospects for
association mapping in this species.



phenotypically similar accessions exhibited excessive haplo-
type sharing. Figure 4 shows the result of clustering these
clusters based on similarity in membership. We found that
the vast majority of all significant associations were due to
haplotype sharing among accessions from Finland and
northern Sweden, sometimes with North American acces-
sions also included. This type of association is thus found
across the genome, and while nominally significant, is not
significant in a genomic sense. Note that this does not mean
that all these associations are false positives, but it does mean
that most of them are. The very late flowering phenotype of

the Finnish and northern Swedish accessions does have a
genetic basis: we have identified a list of candidates, but we
have no way of telling which (if any) of them is true.
Figure 4 also identifies clusters with the property of being

unique across the genome. In a hierarchical clustering, these
would represent the deepest nodes because they are dissim-
ilar from other clusters. Among the small number of
‘‘unique’’ clusters we identified one that corresponds to
haplotype sharing among accessions carrying the Ler loss-of-
function allele at FRI, and one that corresponds to the Col

loss-of-function allele at the same locus [9]. These associations

Figure 1. Summary of the Data Used in the Study

The columns on the left give the genotype and associated phenotype for four loci, for each of the 95 accessions. The four loci are the flowering time
locus FRI (þ, wild-type; 1, Ler null allele; 2, Col null allele [9]), for which the associated phenotype is flowering time in long-day conditions without
vernalization (late flowering is indicated by height and color of bar), and the three pathogen resistance loci Rps5, Rpm1, and Rps2 (þ, wild-type;�, null
allele [10,11,12]), for which the associated phenotypes are hypersensitive response to the appropriate bacterial avr gene (red indicates resistance, black
indicates susceptibility, and missing data are indicated by missing bar). The tree on the right illustrates the genetic relationships between the accessions
[8]. It is clear that phenotypes and genotypes are correlated, genome-wide.
DOI: 10.1371/journal.pgen.0010060.g001
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thus have the property that, in addition to being (nominally)
significant, they are not found repeatedly across the genome.
They are therefore more likely to be true positives.

The above analyses were intended to demonstrate that the

signal of genotype–phenotype association for these four

major loci would have been sufficient for genome-wide

association mapping even in the small, heavily structured

sample used by Nordborg et al. [8]. We have not addressed the

other main aspect of power in association mapping, namely,

the extent of linkage disequilibrium and what it implies about

the marker density required for genome-wide scans. As

mentioned in the Introduction, the marker density in the

data of Nordborg et al. [8]—one resequenced fragment every

100 kb—is insufficient to cover the genome. The results above

were based on denser marker coverage around the four loci,

including markers within each target gene. As it turns out, we

would have detected FRI and Rpm1 without adding additional

markers, the former because (as we shall see below) the

original marker coverage was sufficient to detect FRI, the

latter because of luck. However, the denser marker coverage

around all four loci allowed us to determine the required

marker density by thinning the markers and noting when the

signal disappeared. Figure 5 shows the result of successively

eliminating resequenced fragments so that no markers were

within 10, 25, 50, and 100 kb of the target locus. The

difference between FRI and the three R genes is striking:

while the former was readily picked up with the lowest

marker density (corresponding to the density in the genome-

wide data), the latter were only picked up with 10-kb spacing.

When markers within 25 kb were eliminated, the association

signal for the R genes was typically lost.

Discussion

Genome-Wide Association Mapping and Population
Structure
Our results present a striking demonstration of the

potential effect of population structure in causing an

elevated false positive rate in association mapping. As

genome-wide association studies in humans are becoming

increasingly feasible, the seriousness of this problem has been

the subject of considerable debate [15–19]. In this context,

our study is roughly equivalent to a genome-wide scan for

association with skin color using a world-wide sample of

humans. Most human association mapping studies are likely

to be case–control studies, which, given a judiciously chosen

control, should be less prone to false positives [17].

Nonetheless, more studies like ours are likely to be carried

out, in humans as well as in other organisms, and it seems

likely that population structure will then be a problem. The

extent of the problem will of course depend on the extent to

which the sample is structured, but it will also depend on the

phenotype. Traits that are strongly correlated with popula-

tion structure will display a more highly elevated rate of false

positives. In the present case, flowering time, which is likely

involved in local adaptation [20,21], shows a more highly

elevated rate than pathogen resistance, variation for which

appears to be maintained by frequency-dependent balancing

selection [10–12]. It should be noted, however, that differ-

Figure 2. The Genome-Wide Distribution of p-Values under Different

Scenarios

(A) Cumulative distribution of p-values for association tests across
approximately 850 loci. The sequenced haplotypes at each locus were
treated as alleles (after eliminating singleton polymorphisms), and the
significance of genotype–phenotype associations was tested using
Kruskal–Wallis tests in the case of flowering time (a continuous trait),
and using v2 tests in the case of resistance (a binary trait). Under the null
hypothesis of no association, the cumulative distribution should be a
straight line: the observed distributions are all heavily skewed towards
zero.
(B) The cumulative distribution of p-values for association with pathogen
resistance, with and without correction for population structure using
the program STRAT [13]. The false positive rate is decreased for avrPph3,
but is unaffected for the other two phenotypes.
(C) The cumulative distribution of p-values for association with flowering
time, with and without correction for population structure. ANOVA was
used instead of the nonparametric Kruskal–Wallis test to make it possible
to use population structure as cofactor (cf. [14]). The distribution for
ANOVA with accessions from Finland and northern Sweden removed is
also shown (‘‘ANOVA � northern’’). The false positive rate is decreased
using both approaches.
DOI: 10.1371/journal.pgen.0010060.g002
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ences between the resistance phenotypes were also found: the

false positive rate for avrPph3 is more highly elevated than

for the other resistance-related rates (see Figure 2). Why this

should be the case is not clear, but might tell us something

about the ecology of the pathogens responsible for main-

taining polymorphism at these loci.

Several methods for dealing with false positives due to

population structure have been proposed. The best known

are ‘‘genomic control’’ [22] and ‘‘structured association’’ [13].

We found that structured association based on the approach

of Pritchard et al. [13] and Thornsberry et al. [14] did not

successfully correct the elevated false positive rate in our

sample. This should not be surprising. The model underlying

the approach of Pritchard et al. [13] is one of admixture

between a small number of homogeneous, randomly mating

populations. While this may be a reasonable approximation

for many human samples, it is clearly not valid for our sample

of A. thaliana, which shows all signs of isolation by distance [8].

Genomic control [22] is an alternative approach in which

genome-wide markers are used to estimate the effect of

population structure on association statistics and correct

these statistics to achieve valid significance levels. We did not

try this approach for several reasons. First, it, too, is based on

a simple model of population structure. Second, the

approach has only been developed for relatively simple

contingency table statistics, and it is not clear how it should

be implemented for the haplotype-based methods used here.

Third, it is clear from our FRI results that genomic control

would lack power. Association with FRI is not necessarily

stronger than the false positives due to structure, and any

approach that eliminated the latter based on the strength of

association would also eliminate the former. In contrast,

Figure 4 suggests that methods that simultaneously infer the
structure and the associations should be able to separate true

from false positives.

It is clear that more work is needed in this area. Indeed,

given the difficulty of modeling population histories, it may

be fruitful to abandon the notion of ‘‘population structure’’

(with its implication that unstructured populations actually

exist), and instead view all population samples as members of

a gigantic, unknowable pedigree. Models appropriate for

handling such data have been developed in the animal

breeding community [23], and can be extended to genome-

wide association mapping [24,25].

Figure 3. Genome-Wide Scans for Association with Flowering Time and Pathogen Resistance

For flowering time (A), four different statistical methods were used (described in Materials and Methods): Voronoi focusing on ‘‘late’’ alleles (magenta
line), Voronoi focusing on ‘‘early’’ alleles (blue line), CLASS (green line), and fragment-based Kruskal–Wallis tests (red line; see also Figure 2). For
pathogen resistance (avrRpm1 [B], avrRpt2 [C], and avrPph3 [D]), only the last two tests were used. Higher peaks indicate stronger association (the y-
axes are proportional to the negative log p-values, but have been normalized to the highest value within each test). The dotted lines correspond to the
95% percentile and are mainly intended to facilitate comparison between figures. Yellow vertical lines indicate the positions of the appropriate
candidate loci. Peaks occur at these loci for all methods, but are otherwise distributed throughout the genome.
DOI: 10.1371/journal.pgen.0010060.g003
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The Prospect for Genome-Wide Association Mapping in A.

thaliana
We have demonstrated that FRI, Rpm1, Rps2, and Rps5

could have been detected using genome-wide association
mapping even in the small and heavily structured sample used
by Nordborg et al. [8]. It should be emphasized that these are
genes of major effect: the two loss-of-function alleles at FRI
account for 13% of the variation in flowering time in our
study, and correlation between being susceptible and carry-
ing the known susceptibility allele is 0.66, 0.77, and 0.62 for
Rpm1, Rps2, and Rps5, respectively. To map genes of more
subtle effect, a much larger sample is surely needed.
Furthermore, since power in association mapping is deter-
mined both by the effects of alleles and by their frequencies
[3,26], the structure of the sample matters greatly. In addition
to elevating the false positive rate, the presence of population
structure may increase genetic heterogeneity—avoiding this
problem is one of the main arguments for the use of
population isolates in human genetics [27]. Whether genetic
heterogeneity is a problem or not depends on the genetic
architecture of the trait, which is of course unknown a priori.

In addition to a different sample, it is clear that a denser
marker map than the one generated by Nordborg et al. [8] is
needed. Although we were able to map FRI using 100-kb
marker spacing, it is now clear that linkage disequilibrium
around this gene is unusually extensive, probably because of a
combination of local adaptation and recent selective sweeps
(as was suggested by earlier studies [7]). On the other hand,
the extent of linkage disequilibrium surrounding the R genes
is likely to be smaller than usual because variation at these
loci is due to ancient polymorphism maintained by balancing
selection [10,11]. The observation that we can map these
genes using linkage disequilibrium with markers 10 kb away
suggests that a marker spacing of roughly 20 kb (which
guarantees at least one marker within 10 kb of a causative
polymorphism) would provide reasonable power. This im-
plies that on the order of 6,000 single nucleotide poly-
morphisms (SNPs) chosen to be maximally informative about
the local haplotype structure (so-called tag-SNPs [28,29])
might be sufficient for genome-wide association mapping in
A. thaliana. Needless to say, the marker spacing required will
vary across the genome depending on the local haplotype
structure, and also depends on the sample. Further studies to
investigate the required density are underway.

Materials and Methods

Plant material. The accessions used are described in [8].
Sequencing and genotyping. We used the resequencing data of

Nordborg et al. [8], plus additional fragments resequenced around

the four loci. Genotyping for the loss-of-function deletion alleles at
FRI, Rpm1, and Rps5 was done using PCR assays as previously
described [10,11,21]. Genotyping at Rps2 (not a deletion poly-
morphism) was done by sequencing the entire leucine-rich repeat
region and comparing the results with those of [12]. All data are
available as Datasets S1 and S2.

Measuring flowering time. Flowering time was measured in days
using plants grown under long-day conditions (16 h light, 8 h dark) at
a constant temperature of 18 8C. Measurements were generally taken
for six plants per accession, and the average used in the analysis. The
experiment was stopped at 200 d, and accessions that had not
flowered at that point were assigned a value of 200. The flowering
time data are available as Dataset S1.

Measuring pathogen resistance. Seedlings of each accession were
germinated in flats containing a 1:1 mixture of Premier Pro-Mix and
MetroMix (Premier Horticulture, Red Hill, Pennsylvania, United
States). Flats were first placed at 4 8C for 7 d to promote germination,
then placed in a growth room at 20 8C with short-day lighting (12 h
light, 12 h dark). On the 23rd day of growth, two leaves per plant were
inoculated with 0.1 ml of 108 cfu/ml bacteria in 10 mM MgSO4 buffer
using a blunt-tipped syringe [30]. Leaf collapse was scored at 20 h and
again at 24 h after inoculation. A positive score at either time point
was deemed a hypersensitive response. The four avr genes were tested
using the following transformed strains of Pseudomonas syringae: Pst
DC3000::avrPphB [31], Pst DC3000::avrRpm1 [32], Pst DC3000::avrB
(from J. Greenberg, University of Chicago), and Pst DC3000::avrRpt2
[33]. As a negative control, P. syringae DC3000 without the avr genes
was also tested [33]. Each of the five strains was tested in a separate
experiment consisting of six replicates of each of the 95 accessions,
planted two per cell, for a total of 576 plants and six flats in each test.
Accessions were considered to exhibit a hypersensitive response if at
least eight of the 12 replicate leaves exhibited collapse. Accessions
were considered to lack the hypersensitive response if at least eight of
the 12 replicate leaves exhibited no leaf collapse. Accessions that
exhibited ambiguous responses to a strain were excluded from
further analysis. The negative control strain, P. syringae DC3000
without the added avr genes, caused no hypersensitive response in
any of the lines. Results for avrPphB were almost identical to those
for avrRpm1, and are not shown. The resistance data are available as
Dataset S1.

Association mapping methods. There has been considerable
debate over how much power is gained by using haplotype-based
instead of single SNP methods. In organisms where linkage
disequilibrium decays rapidly (e.g., Drosophila melanogaster [26]), or
where haplotypes have to be inferred (e.g., humans [34,35]), this is
indeed a relevant question. In the present case, the polymorphism
data come in the form of short haplotypes within which linkage
disequilibrium is nearly complete, and it is thus natural to utilize
haplotype-based methods. Indeed, we have found that methods
incorporating longer-range disequilibrium sometimes perform sub-
stantially better [40]. We utilized three different methods here.

Single-fragment haplotypes. After removing singleton polymor-
phisms, each resequenced fragment was treated as a multi-allelic
marker locus with haplotypes corresponding to alleles. Haplotypes
with frequency lower than 5% were grouped. Phenotypic associations
were then tested using either a Kruskal–Wallis test in the case of
flowering time (a continuous trait), or v2 tests in the case of resistance
(a binary trait).

CLASS (cladistic association). We developed a simple clustering
method similar in spirit to what has been proposed by several other
researchers [36–38]. For each resequenced fragment, we first
generated a similarity matrix using the extent of pairwise haplotype
sharing between all pairs of accessions. We then clustered the
accessions using a standard hierarchical clustering algorithm (we used

Figure 4. Haplotypes Significantly Associated with Flowering Time Clustered by Haplotype Membership

To help determine which associations were real and which were due to population structure, the most significantly associated haplotypes (based on
fragment-wise Kruskal–Wallis; see Materials and Methods) were clustered based on similarity in the list of accessions that carry each haplotype.
(A) The tree shows the resulting cluster with tips colored according to average flowering time among the accessions that carry the haplotype
corresponding to each tip (the scale is given on the right along with a histogram showing the distribution of flowering time across the 95 accessions).
(B) The matrix shows the membership list for each haplotype. Each column corresponds to the haplotype (tip) in the tree above it; accessions
highlighted in red carry the haplotype significantly associated with flowering time. The tree thus illustrates the clustering of the columns of the matrix:
clustering was done based on pairwise distance as measured by the absolute value of the correlation in membership between columns. Phenotypes of
the accessions are given on the right, and the rows of the matrix (i.e., the accessions) have been clustered based on pairwise Hamming distance. It is
evident that most of the significant haplotypes, regardless of position in the genome, share similar membership lists that include the accessions from
Finland and northern Sweden. On the other hand, the clusters corresponding to the known major alleles of FRI are unique, indicating that these are
indeed true positives.
DOI: 10.1371/journal.pgen.0010060.g004
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neighbor joining), and heuristically searched for clades of accessions
that were strongly associated with the phenotype (using either
Kruskal–Wallis or v2 tests to evaluate the strength of association). Our
algorithm found clades using the following steps. (1) Search all clades
and choose the one that gives the lowest p-value in a test with one

degree of freedom. (2) Search the tree obtained by removing this
clade for the clade that gives the lowest p-value in a test with three
factors (and two degrees of freedom): the target clade, the clade
identified in the previous step, and the remaining individuals. We
repeated step 2, increasing the degrees of freedom by one each step,
until the p-values no longer decreased.

Voronoi. We utilized a slightly modified version of the spatial
clustering algorithm described elsewhere [39] and that has previously
been used to fine-map FRI [40]. To summarize, each haplotype cluster
searched by Voronoi contains a prototypic haplotype to which all
observed haplotypes are compared, with respect to a starting
location, or center. The simple similarity measure used to compare
the two haplotypes is the calculated shared length identical by state
originating from the center. Standard Markov chain Monte Carlo
techniques were used to identify parameters such as haplotype risks
for each cluster, which could then associate a haplotype cluster to an
observed phenotype.

We deviated from the original version of this algorithm by
assigning haplotypes to a specific cluster in a probabilistic way rather
than a deterministic fashion. At any given step of the Markov chain
Monte Carlo algorithm, a randomly observed haplotype was selected
as the prototypic haplotype. We then assigned haplotype hi to cluster
cn according to the following probability:

Prðhi 2 cnÞ ¼
ssiP
in ssin

ð1Þ

where ssin is the normalized shared length between the hi haplotype
and hcncluster center haplotype. ssin is the ratio of the observed and
the mean shared length at xc, where xc is the putative functional
mutation location in cluster c.

Furthermore, rather than using the Bayes factor as a summary
statistic, we used the posterior likelihood as our final statistic. We
constructed the 95% confidence interval of the likelihood for each
haplotype andconsideredahaplotype tobe significant if theconfidence
interval did not contain zero. This procedure also allowed the
distinction between positive and negative effects. For those significant
haplotypes, if the confidence interval was above zero, we concluded a
positive association to late flowering; otherwise, the haplotype was
negatively associated with early flowering. The posterior likelihood
distribution of the functional mutation associated with the significant
haplotypes gave likelihood for both positive and negative effects.

Significance thresholds. To generate the clustering in Figure 4, the
75 most significant fragments were selected, and, from among these,
all haplotype clusters with a Bonferroni-corrected p-value less than
0.005 were selected. Note that the p-value for a fragment reflects all
haplotypes observed for that fragment (the number of categories in
the Kruskal–Wallis tests equals the number of haplotypes), whereas
the p-value for a particular haplotype reflects the contribution of that
haplotype only (two categories). These thresholds were chosen to
yield an interpretable figure.

Correcting for population structure. We attempted to decrease the
false positive rate due to population structure using structured
association, in which one looks for associations conditional on
inferred population structure [13]. We used the population structure
estimate from the program STRUCTURE [41], with K ¼ 8 clusters,
generated as described in [8].

For the binary pathogen resistance phenotypes, association
analysis was then carried out using the program STRAT [13].
However, since STRAT only works with binary data, it could not be
used with the quantitative flowering time phenotype. Thornsberry et
al. [14] extended the structured association approach to quantitative
phenotypes, but their method is restricted to binary (SNP) genotypes,
and cannot be used with the haplotype data available to us. Instead,
we used a simple modification, in which the cluster assignment
produced by STRUCTURE (the Q matrix) was used as a cofactor in a
standard ANOVA. Basically, we carried out a likelihood ratio test of
two models: H0 was FT ; Q and H1 was FT ; as.factor(marker
genotype)þ Q. The p-values were based on the v2 distribution of the
likelihood ratio test statistic.

Supporting Information

Dataset S1. Genomic Alignments

Found at DOI: 10.1371/journal.pgen.0010060.sd001 (1.3 MB ZIP).

Dataset S2. Genotypes and Phenotypes

Found at DOI: 10.1371/journal.pgen.0010060.sd002 (3 KB CSV).

Figure 5. The Strength of Association (Using CLASS) around the Four

Candidate Loci for Various Marker Densities

For each locus (FRI [A], Rpm1 [B], Rps2 [C], and Rps5 [D]), the bottom
panel shows the pattern of association using all available fragment
markers around the locus (the position of which is given by a grey
vertical line), and the panels above show the effect of successively
reducing the marker density so that no markers are within 10, 25, 50, and
100 kb (FRI only) of the causative polymorphisms. The dotted grey line
represents the 95th percentile of all associations across the genome.
Because we used an association statistic that utilizes the pattern of
haplotype sharing across multiple fragments, the relative significance of
any particular fragment may change depending on the presence or
absence of other fragments. The FRI region (A) remains strongly
associated with flowering time even for the lowest marker density,
while the signal of association around the R genes (B–D) disappears as
one goes from 10- to 25-kb spacing.
DOI: 10.1371/journal.pgen.0010060.g005
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