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Heat stress during the seedling stage of early-planted winter wheat (Triticum aestivum L.)

is one of the most abiotic stresses of the crop restricting forage and grain production in

the Southern Plains of the United States. To map quantitative trait loci (QTLs) and identify

single-nucleotide polymorphism (SNP) markers associated with seedling heat tolerance,

a genome-wide association mapping study (GWAS) was conducted using 200 diverse

representative lines of the hard red winter wheat association mapping panel, which was

established by the Triticeae Coordinated Agricultural Project (TCAP) and genotyped

with the wheat iSelect 90K SNP array. The plants were initially planted under optimal

temperature conditions in two growth chambers. At the three-leaf stage, one chamber

was set to 40/35◦C day/night as heat stress treatment, while the other chamber was

kept at optimal temperature (25/20◦C day/night) as control for 14 days. Data were

collected on leaf chlorophyll content, shoot length, number of leaves per seedling,

and seedling recovery after removal of heat stress treatment. Phenotypic variability for

seedling heat tolerance among wheat lines was observed in this study. Using the mixed

linear model (MLM), we detected multiple significant QTLs for seedling heat tolerance

on different chromosomes. Some of the QTLs were detected on chromosomes that

were previously reported to harbor QTLs for heat tolerance during the flowering stage

of wheat. These results suggest that some heat tolerance QTLs are effective from the

seedling to reproductive stages in wheat. However, new QTLs that have never been

reported at the reproductive stage were found responding to seedling heat stress in

the present study. Candidate gene analysis revealed high sequence similarities of some

significant loci with candidate genes involved in plant stress responses including heat,

drought, and salt stress. This study provides valuable information about the genetic

basis of seedling heat tolerance in wheat. To the best of our knowledge, this is the first

GWAS to map QTLs associated with seedling heat tolerance targeting early planting of

dual-purpose winter wheat. The SNP markers identified in this study will be used for

marker-assisted selection (MAS) of seedling heat tolerance during dual-purpose wheat

breeding.
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INTRODUCTION

Wheat (Triticum aestivum L.) is one of the most important
feed and food crops in the world and it covers more cultivable
land globally than any other crop. Moreover, it provides food
for 36% of the world’s population (Cossani and Reynolds, 2012;
Prerna et al., 2013; Kim and Anderson, 2015). In the southern
Great Plains of the United States, including Oklahoma and
Texas, dual-purpose wheat grown for cool season grazing is
seeded at least 2–3 weeks earlier than wheat grown for grain
only to increase fall to winter forage production. However,
early planting in the fall often coincides with high temperatures
that affect seed germination, seedling growth, and development,
eventually resulting in reduced forage and grain yield. As the
global climate continues to change, the severity and frequency
of high temperature stress is likely to increase, thereby resulting
in reduction of productivity of important crops including
wheat. Climate predictions show that, by the end of the 21st
century, the average global temperature is expected to increase
by 1–4◦C (Driedonks et al., 2016). Therefore, development
of dual-purpose wheat cultivars with tolerance to heat stress
during the seedling stage is crucial for early planting in the
region.

Several studies have outlined the effects of heat stress on
plant morphological, physiological, and biochemical processes
at various growth stages of wheat (Cossani and Reynolds, 2012;
Paliwal et al., 2012; Feng et al., 2014; Chaturvedi et al., 2017).
The effects of heat stress during the seedling stage include
reduction of photosynthesis, chlorophyll content, respiration
rate, and death of the seedlings due to excessive dehydration
of leaves beyond the permanent wilting point (Ristic et al.,
2007; Cossani and Reynolds, 2012). Research findings in the
past indicated that heat stress causes swelling of the thylakoid
membrane and malfunction of photosystem II involved in
photosynthetic activity (Ristic et al., 2007; Talukder et al., 2014).
Chlorophyll is harbored in the thylakoid membrane and when
this membrane is damaged by the stress, chlorophyll content
is reduced (Ristic et al., 2008). However, phenotypic variability
for heat tolerance among genotypes has been studied during the
reproductive stage but limited information is available for the
seedling stage.

High temperature stress at the grain filling stage has been
reported to reduce the yield and quality of wheat (Wardlaw
et al., 2002; Schapendonk et al., 2007; Stratonovitch and Semenov,
2015), sorghum [Sorghum bicolor (L.) Moench] (Prasad et al.,
2008), maize (Zea mays L.) (Yang et al., 2015), and rice (Oryza
sativa L.) (Shi et al., 2016). Heat stress has been found to
reduce wheat yield by 33.6% and by more than 50% (Chatrath
et al., 2007; Joshi et al., 2007). The yield potential of wheat is
rarely attained, particularly when moderate heat stress occurs
and alternates with periodic extreme heat stress (Mason et al.,
2011). Heat tolerance is a polygenic trait that is controlled by
many genes with minor effects on the phenotype. Therefore,
selection of heat stress tolerance under field conditions is very
challenging because of its genetic complexity, weather variability
and the influence of genotype-by-environment interaction
effect. In this regard, identification of QTLs and molecular

markers associated with tolerance to heat stress is crucial for
improving breeding efficiency using marker-assisted selection
(MAS).

To date, dissection of QTLs for heat tolerance in wheat
has been mainly conducted during the grain filling stage
using bi-parental mapping populations (Mason et al., 2010;
Vijayalakshmi et al., 2010; Talukder et al., 2014). These studies
identified various major and minor QTLs for vegetative and
reproductive stage traits on different wheat chromosomes. For
example, five QTLs for heat tolerance in wheat were detected on
chromosomes 1B, 1D, 2B, 6A, and 7A (Talukder et al., 2014).
Similarly, two QTLs for heat tolerance have been detected on
chromosomes 2B and 5B in a spring wheat mapping population
(Butler, 2002). Again in other studies, QTLs for heat tolerance
during the grain filling stage have been found on several
chromosomal regions including 1A, 1B, 2B, 3B, 5A, and 6D
(Mason et al., 2010). In addition, QTLs associated with yield
components and physiological traits, such as stay green and
senescence of wheat, were found on chromosomes 2A, 3A, 4A,
6A, 6B, and 7A (Vijayalakshmi et al., 2010).

Moreover, using a meta-analysis strategy, major QTLs
associated with heat tolerance were detected on chromosomes
1B, 2B, 2D, 4A, 4D, 5A, and 7A (Acuña-Galindo et al.,
2015). Similarly, another significant locus on chromosome
3B, associated with the heat susceptibility index of yield
components, was identified using a bi-parental mapping
population (Mason et al., 2010). Although linkage mapping
using bi-parental mapping populations has successfully
identified heat tolerance QTLs, it requires a large amount
of resources and time to develop mapping populations such
as recombinant inbred lines (RILs). In addition, it relies on
recent recombination resulting in low mapping resolution and
only alleles differing in the parents are considered with this
approach. On the other hand, with GWAS, diverse individuals
are used without developing new mapping populations, making
it less expensive. Historic recombination events existing in the
population are leveraged in GWAS, thereby resulting in high
mapping resolution compared with linkage mapping. However,
GWAS requires higher marker density than traditional QTL
mapping because linkage disequilibrium (LD) is in general
much lower in a GWAS population than in a bi-parental
population.

The GWAS approach has been used to discover genes
controlling both polygenic and monogenic traits. For example,
QTLs associated with important traits such as disease resistance
(Tadesse et al., 2015; Arruda et al., 2016; Liu et al., 2017), yield,
and grain quality traits (Tadesse et al., 2015) in wheat have been
discovered with GWAS. QTLs associated with heat tolerance
in wheat have also been detected using GWAS (Mondal et al.,
2015).

Although heat tolerance during the reproductive stage of
wheat has been well characterized, heat stress during the seedling
stage is not studied. Therefore, the objectives of this study were:
(1) to map QTLs associated with seedling heat tolerance in
wheat and (2) to identify SNP markers for MAS of seedling heat
tolerance during dual-purpose wheat breeding in the southern
Great Plains of the United States.
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MATERIALS AND METHODS

Genetic Materials and Phenotyping
A set of 200 lines, selected based on genetic diversities from a hard
red winter wheat association mapping panel consisting of 299
wheat lines from the Triticeae Coordinated Agricultural Project
(TCAP1), was used in this study. The association mapping panel
is composed of representative winter wheat lines across the Great
Plains (Grogan et al., 2016). The experiments were conducted in
two growth chambers. A high-temperature treatment (40/35◦C
day/night) to mimic heat stress was induced at the three-leaf
stage for 14 days in one chamber, and an optimal-temperature
treatment (25/20◦C day/night) was used as a control in the
other chamber. Photoperiod and light intensity in both growth
chambers were set at 16 h and 400µmlm−2 s−1, respectively. The
plants were planted in 72-well flat trays in a randomized complete
block design with three biological replicates of each line. The trays
were randomly arranged and periodically moved around to avoid
positional effect. Throughout the experimentation, plants were
watered as needed in both growth chambers to ensure no drought
stress.

Data were collected on leaf chlorophyll content, shoot
length, number of leaves per seedling, and seedling recovery.
Leaf chlorophyll content was measured using a self-calibrating
SPAD chlorophyll meter (Model 502, Spectrum Technologies,
Plainfield, IL, United States). Three measurements of leaf
chlorophyll content were taken per line, and the average was used
for statistical analysis. Shoot length was measured from the soil
surface to the tip of the longest leaf. Leaf chlorophyll content and
shoot length were measured 10 days after heat stress treatment.
Number of leaves per seedling was recorded as the average
number of leaves counted from three seedlings, 14 days after the
seedlings were exposed to heat stress. Seedling recovery was the
percentage of seedlings that were able to recover 7 days after
removal of heat stress treatment. Heat stress response, referred to
as trait relative difference (TRD), was calculated as the difference
between trait performance at optimal and high temperatures,
and then divided by performance at optimal temperature. The
experiment was repeated six times (i.e., six runs) using the same
two chambers.

Phenotypic Data Analysis
Analysis of variance of the phenotypic data was performed using
the Statistical Analysis System (SAS) software V9.3 (SAS Institute,
2011) to assess the effects of genotype, run, and genotype-by-run
interaction. All sources of variation were considered as random
effects. All other variances besides genotype and experimental
run were pooled as residuals.

SNP Genotyping
The wheat lines were genotyped using the wheat iSelect 90K SNP
genotyping array (Wang et al., 2014; Guttieri et al., 2017), which
generated 21,555 SNPs. After SNPs with minor allele frequency
(MAF) of less than 5% and missing data of more than 10% were
filtered out, a total of 15,574 SNPs remained and were used for

1http://www.triticeaecap.org

analysis. The genetic positions of the SNP markers used in this
study were based on the consensus map developed using eight
wheat mapping populations (Wang et al., 2014).

Population Structure, Kinship, and
Linkage Disequilibrium Analyses
The genetic structure of the panel was assessed using the
STRUCTURE program, principal component analysis (PCA),
and neighbor-joining (NJ) tree analysis. The STRUCTURE
program version 2.3.4 (Falush et al., 2003) was used to estimate
the number of groups (K) and the membership coefficients.
A model-based Bayesian clustering approach was performed,
where the number of assumed groups was set from k = 1
to 10. During STRUCTURE analysis, a Markov chain Monte
Carlo (MCMC) of 15,000 burn-in replicates followed by 15,000
iterations was run and repeated five times using an admixture
model. Due to lots of admixtures in the panel, the STRUCTURE
results were verified by comparing the results to other analyses.
The optimal number of groups in this panel was determined
based on the point where the posterior probability [LnP(D)]
began to plateau from the STRUCTURE analysis (Casa et al.,
2008) and the NJ tree analysis. The principal components (PCs)
were calculated using the R function princomp, while the NJ tree
analysis was performed in TASSEL version 5.2.28 (Bradbury et al.,
2007). To determine the number of PCs to use in clustering
and GWAS analysis, a scree plot was generated by plotting the
percentage of variances explained by the first 10 PCs against
the number of PCs. Based on this, the optimal number of PCs
(where the “elbow” point occurred) was selected. The analysis of
K between lines was performed following the identity-by-state
method (Endelman and Jannink, 2012).

Linkage disequilibrium among pairs of SNP markers was
performed with the TASSEL software using 3,484 tag SNPs
selected using the R package SNPRelate (Zheng, 2013). LD for
within and across the three wheat genomes (A, B, and D) was
estimated as a squared allele frequency correlation (r2) between
SNP marker pairs. All SNP marker pairs with p-values of less
than 0.001 were considered to be in significant LD. LD decay
distance was estimated by plotting the scatterplot of LD r2 values
between marker pairs and the genetic distance (in cM) using the
R package SNPRelate (Zheng, 2013), while the trend line was
fitted by second-degree LOESS (Cleveland, 1979). To determine
whether significant SNPmarkers associated with the trait on each
chromosome were in LD with the highest −log10(p-value) SNP
hit, LD analysis was performed on every chromosome where
significant QTLs were detected.

Genome-Wide Association Mapping
Analysis
Genome-wide association mapping was performed with the
Genome Association and Prediction Integrated Tool (GAPIT)
(Lipka et al., 2012). For the Q model, three PCs that were
selected based on scree plot generated from PCA were included
in the model as fixed-effect covariate (Zhao et al., 2007) to
correct for population structure. In the K model, the K matrix
between individuals was calculated and included in the model as
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random-effect covariate. For mixed linear model (MLM), both
the population structure (PCs) and K matrix were included in
the model as fixed and random-effect covariates, respectively (Yu
et al., 2006).

For the Q model, the following equation was used:

Y = Xβ + e

Y is the vector of phenotypic values, X is the design matrix, β
is the vector consisting of SNP markers and population structure
(PCs) included in the model as fixed effects, and e is the random
error.

For the K and MLMmodels, the following equation was used:

Y = Xβ + Zµ + e,

where Z is the design matrix and µ is the vector comprising
additive genetic effects considered as random. In the K-model, β
contains only markers and µ contains the K-matrix, while in the
MLM, β has both markers and population structure (PCs), and
µ has the K matrix. Significant QTLs were initially tested based
on a false discovery rate (FDR)-adjusted p-value of 0.05 following
a step-wise procedure (Benjamini and Hochberg, 1995), which is
very stringent (Müller et al., 2011). However, a lower threshold,
unadjusted significance p-value <0.001, was eventually used to
declare significance since the FDR is too stringent in the current
study. Visualization of the significant QTLs and SNPs was done
using Manhattan plots, generated using the R package qqman
(Turner, 2018).

Candidate Gene Analysis
A BLAST search was performed against the newly released
wheat reference sequence hosted by the URGI-INRA2 and
the National Center for Biotechnology Information (NCBI)
database to identify candidate genes or related proteins with
DNA sequences similar to the SNPs significantly associated with
seedling heat tolerance-related traits detected in this study.

RESULTS

Phenotypic Data Analysis
Phenotypic variation was observed among genotypes for all traits
in both temperature regimes (Table 1). Frequency distribution of

2https://urgi.versailles.inra.fr/

the lines for the investigated traits at optimal and heat-stressed
growth conditions are presented in Figure 1. Mean leaf
chlorophyll content at optimal temperature was 38.3 with a
range from 31.8 to 44.9, while for heat-stressed plants, mean
leaf chlorophyll content was 26.7, ranging from 17.0 to 37.1. At
optimal temperature, mean shoot length was 44.9 cm, ranging
from 35.0 to 56.5 cm, whereas at heat-stressed growth condition,
the mean value was 33.8 cm, and the range was from 23.5
to 44.4 cm. Mean number of leaves per seedling was six at
optimal temperature compared with four at heat-stressed growth
condition. For the number of leaves per seedling, phenotypic
variation among lines was very small as shown in Figure 1

because almost all plants were at three-leaf stage when the
experiment started. As a result, variation in number of leaves
per seedling among lines was very small by the end of 14-day
temperature treatment. As for seedling recovery, on average,
52.3% of seedlings were able to recover after the removal of
heat stress treatment (Table 1). Overall, heat stress reduced leaf
chlorophyll content, shoot length and number of leaves per
seedling by 30.3, 25.0, and 32.2%, respectively.

Population Structure Analysis
Three different clustering methods, PCA, NJ tree analysis, and
STRUCTURE analysis, were compared to assess their agreement
in the pattern of structuring of this panel. PCA divided the
panel into four main groups with lots of admixture (Figure 2).
However, the PCA revealed that the population structure in
this panel is very low since the first three PCs collectively
explained only about 19.4% of the total variance. The first
principal component (PC1) explained about 9.4%, while the
second (PC2) and the third (PC3) explained about 6.2 and
3.8% of the total variance, respectively (Figure 2). According
to the NJ tree analysis, this panel can also be divided into four
major groups (G1, G2, G3, and G4), based mainly on geographic
origins and pedigree information (Supplementary Figure S1A).
For example, in the first main group (G1), majority of the lines
were from the Oklahoma State University and the Texas A&M
University. Most lines with a common parent in their pedigree
tended to cluster into the same group. For example, the majority
of the lines assigned to G1 had “Jagger” as one of the parents in
their pedigree. The largest number of lines forming G2 originated
from the University of Nebraska breeding program, followed by
the Kansas State University and the Colorado State University.
Group G3 was dominated by wheat lines from the AgriPro
Syngenta followed by those from the University of Nebraska

TABLE 1 | Seedling trait performance of the winter wheat lines under optimal and high temperatures in the present study.

Trait Optimal temperature (25/20◦C) Heat stress (40/35◦C)

Mean Range SD Mean Range SD

Leaf chlorophyll content (SPAD) 38.30 31.82–44.89 2.60 26.70 17.03–37.14 3.85

Shoot length (cm) 44.87 35.00–56.50 4.28 33.83 23.50–44.38 3.64

Number of leaves per seedling 6 3–9 1.14 4 3–5 0.25

Seedling recovery (%) N/A N/A N/A 52.32 6.25–89.59 18.48

SD, standard deviation; N/A, not applicable.
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FIGURE 1 | Frequency distribution of the seedling traits observed at optimal (OT) and heat-stressed (HS) growth conditions in the panel. (A,B) Leaf chlorophyll

content at optimum and heat-stressed growth conditions; (C,D) shoot length (cm) at optimum and heat-stressed growth conditions; (E,F) number of leaves at

optimum and heat-stressed growth conditions; (G) seedling recovery after removal of the heat stress.
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FIGURE 2 | Scatter plots of the first three principal components (PCs). (A,B)

The distribution of the 200 winter wheat lines in PC1 vs. PC2, and PC1 vs.

PC3; (C) the scree plot shows the variance explained by the first 10 PCs.

wheat breeding program. Finally, the largest number of lines in
G4 came from the Texas A&MUniversity, followed by those from
the Oklahoma State University.

The STRUCTURE program also stratified panel into four
groups but with a lot of admixtures (Supplementary Figure

S1B). The lack of a distinct clustering pattern observed in
this panel is because there is a high degree of relatedness
among lines included in this study due to sharing genetic
materials among wheat breeding programs. For GWAS analysis,
we used the three PCs from the PCA as a fixed-effect

covariate in the Q and MLM to correct for population
structure.

Linkage Disequilibrium Analysis
After filtering using the R package SNPRelate (Zheng, 2013),
3,484 tag SNPs were obtained for LD analysis. The majority of
SNP markers were distributed across the wheat A and B genomes
with 41% (1439 SNPs) and 45% (1568 SNPs), respectively,
while the D genome had the lowest number (343) of SNPs
(10%). In addition, the B genome had the highest number of
SNP markers per cM (7.19), seconded by A genome (5.97)
and D genome (1.53). On A genome, 29.5% of SNP marker
pairs were in significant LD (p < 0.001), while on B and D
genomes, 32.8 and 14.0% of SNP marker pairs were in significant
LD (Supplementary Table S1). The scatter plots of the allele
frequency correlations (r2) between the SNPmarker pairs and the
genetic distance (in cM) within each of the three wheat genomes
(A, B, and D) are presented in Supplementary Figure S2. The
data showed that LD decayed to <0.1 at 9.7 cM in A genome,
9.8 cM in B genome, and 10.9 cM in D genome.

Genome-Wide Association Mapping
Analysis
Compared to Q and K models, MLM has high statistical
power for controlling false positives. Therefore, in this study
MLM was chosen as the appropriate model for reporting QTL
mapping results. The quantile–quantile (Q–Q) plots of p-values
comparing the uniform distribution of the expected –log10(p)
to the observed –log10(p) of all evaluated traits are presented as
Supplementary Figure S3. Genome-wide association mapping
analysis results for all traits using the MLM are presented
in Figures 3–6. The QTLs and the SNP markers significantly
associated with seedling traits at optimal and heat-stressed
growth conditions, as well as heat stress responses of all traits
are presented in Supplementary Table S2. Although, no QTLs
were declared significant at a FDR of 0.05, some SNPs were
significant at unadjusted significance p-value <0.001 at optimal
and/or heat-stressed growth conditions.

For leaf chlorophyll content at the optimal temperature, five
QTLs, represented by 15 SNPs, were detected significant based
on unadjusted significance p-value <0.001 in chromosomes 1B,
2B, 3B, 5B, and 6B (Figure 3A and Supplementary Table S2).
The first QTL (QLCCOT.nri-1B) region was represented by six
SNPs, which were mapped within genetic distance of 78–82 cM
on chromosome 1B, and together accounted for 42.9% of the
total phenotypic variation in leaf chlorophyll content at the
optimal temperature. The second QTL region (QLCCOT.nri-2B),
represented by four SNPs, was mapped at the genetic position
of 119 cM on chromosome 2B. The four markers together
explained 23.3% of the phenotypic variation in leaf chlorophyll
content. On chromosome 5B, one QTL (QLCCOT.nri-5B) was
mapped at 171–184 cM, which explained 18.6% of the phenotypic
variation. On chromosomes 3B and 6B, two QTLs, QLCCOT.nri-
3B (124 cM) and QLCCOT.nri-6B (121 cM) were detected
collectively accounted for 11.7% of the phenotypic variation.
Overall, the most significant SNPs for the trait were IWB9175
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FIGURE 3 | Manhattan plots of GWAS conducted on leaf chlorophyll content of the association mapping panel. (A) Optimal temperature; (B) heat stressed

temperature; and (C) heat stress response using the trait relative difference between the two temperature treatments.

(80 cM), IWB14950 (80 cM), and IWB27292 (78 cM) on
chromosome 1B, which collectively explained about 23.8% of
the total phenotypic variation in leaf chlorophyll content under
optimum growth temperature.

For leaf chlorophyll content at the heat-stressed growth
condition, six QTLs were detected on chromosomes 2B, 2D,
4A, and 4B (Figure 3B and Supplementary Table S2). The
first QTL (QLCCHS.nri-2B) was located on chromosome 2B,
and explained 12.1% of the phenotypic variation of the trait.
On chromosome 2D, one QTL, QLCCHS.nri-2D (71–86 cM)

was detected. This QTL was represented by 37 SNPs, explaining
phenotypic variation in leaf chlorophyll content at heat-stressed
growth condition ranging from 5.7 to 7.8%. On chromosome
4A, one QTL (QLCCHS.nri-4A) was found and mapped at 9 cM.
This QTL explained about 5.8% of the phenotypic variation.
In addition, three QTLs (QLCCHS.nri-4B.1, QLCCHS.nri-4B.2,
and QLCCHS.nri-4B.3) were detected at 42, 60, and 76 cM
on chromosome 4B, respectively. The phenotypic variation
explained by these QTLs ranged from 5.8 to 17.5%. The
most significant SNP markers associated with leaf chlorophyll
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FIGURE 4 | Manhattan plots of GWAS conducted on shoot length of the association mapping panel. (A) Optimal temperature; (B) heat stressed temperature; and

(C) heat stress response using the trait relative difference between the two temperature treatments.

content under heat-stressed growth condition were IWB28109
(71 cM) and IWB65632 (77 cM) on chromosome 2D, and
IWB55435 (27 cM) on chromosome 2B (Supplementary Table

S2). These three SNPmarkers together accounted for 21.4% of the
phenotypic variation of leaf chlorophyll content at heat-stressed
growth condition.

For heat stress response of the leaf chlorophyll content,
i.e., the relative difference under the two growth temperatures,
seven QTLs were identified on chromosomes 2B, 2D, 4A, 4B,
and 5B (Figure 3C and Supplementary Table S2). The QTLs

were represented by 39 SNPs significantly associated with heat
stress response. A single QTL (QLCCHR.nri-2B) was detected
on chromosome 2B, and it was mapped at a genetic position
of 27 cM. The phenotypic variation explained by this QTL was
6.8%. On chromosome 2D, twoQTLs:QLCCHS.nri-2D.1 (22 cM)
and QLCCHS.nri-2D.2 (71–85 cM) were identified. The two
QTLs on 2D were represented by 29 SNPs, which accounted for
5.8–7.1% of the total phenotypic variation in heat stress response
of leaf chlorophyll content. Furthermore, one QTL was mapped
at 9 cM on chromosome 4A, and it accounted for 6.6% of the
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FIGURE 5 | Manhattan plots of GWAS conducted on number of leaves per seedling of the association mapping panel. (A) Optimal temperature; (B) heat stressed

temperature; and (C) heat stress response using the trait relative difference between the two temperature treatments.

phenotypic variation in heat stress response of leaf chlorophyll
content. On chromosome 4B, two QTLs (QLCCHR.nri-4B.1 and
QLCCHR.nri-4B.2) were detected at genetic positions of 40 and
76 cM, respectively. Similarly, on chromosome 5B, one QTL
(QLCCHR.nri-5B) was mapped at 182–189 cM. The QTL on 5B
was represented by four SNPs which together explained about
25.1% of total phenotypic variation in heat stress response of
the trait (Figure 3C and Supplementary Table S2). The most
significant SNPs were IWB28109 at 71 cM on 2D, IWB55435 at
27 cM on 2B and IWB48055 at 40 cM on 4B. These SNP markers

accounted for 6.6–7.1% of the phenotypic variation in heat stress
response of leaf chlorophyll content.

Overall, the data suggest that the leaf chlorophyll content
QTLs associated with heat stress or heat response are located
on chromosomes 2B, 2D, 4A, 4B, and 5B based on the QTLs
detected for heat response of the trait, or the QTLs detected under
heat-stressed but not under the optimum condition (Table 2).

For shoot length at the optimal growth temperature, twoQTLs
represented by four SNPs were detected significant at unadjusted
p-value <0.001 (Figure 4A and Supplementary Table S2).
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FIGURE 6 | Manhattan plot of GWAS conducted on seedling recovery after removal of heat stress treatment of the association mapping panel.

TABLE 2 | Heat stress responding QTL at the seedling stage of wheat in the present study.

Trait Chr Position (cM) QTL for heat stress only1 QTL for heat response2

QTL Name R2 (%) QTL Name R2 (%)

Leaf chlorophyll content 2B 27.2 QLCCHS.nri-2B 12.13 QLCCHR.nri-2B 6.80

Leaf chlorophyll content 2D 22.46 QLCCHR.nri-2D.1 5.80

Leaf chlorophyll content 2D 70.65–85.97 QLCCHS.nri-2D 24.64 QLCCHR.nri-2D.2 18.78

Leaf chlorophyll content 4A 8.61 QLCCHS.nri-4A 5.82 QLCCHR.nri-4A 6.58

Leaf chlorophyll content 4B 39.93–41.65 QLCCHS.nri-4B.1 5.96 QLCCHR.nri-4B.1 6.59

Leaf chlorophyll content 4B 59.94 QLCCHS.nri-4B.2 5.83

Leaf chlorophyll content 4B 75.65 QLCCHS.nri-4B.3 17.53 QLCCHR.nri-4B.2 18.51

Leaf chlorophyll content 5B 182.15–188.58 QLCCHR.nri-5B 24.85

Shoot length (cm) 3B 9.7 QSLHR.nri-3B.1 6.21

Shoot length (cm) 3B 67.17 QSLHR.nri-3B.2 5.64

Shoot length (cm) 7D 26.92 QSLHR.nri-7D 12.55

Shoot length (cm) 2A 150.11 QLNHR.nri-2A.2 8.29

Number of leaves per seedling 3A 111.62 QLNHS.nri-3A 6.22

Number of leaves per seedling 3A 177.24 QLNHR.nri-3A 6.71

Number of leaves per seedling 3B 65.72 QLNHS.nri-3B 5.91

Number of leaves per seedling 4B 68.45–71.46 QLNHR.nri-4B 13.06

Number of leaves per seedling 5A 114.97 QLNHS.nri-5A 6.12

Number of leaves per seedling 5B 49.02 QLNHR.nri-5B.1 12.88

Number of leaves per seedling 5B 144.26 QLNHR.nri-5B.2 5.93

Number of leaves per seedling 7B 145.29 QLNHR.nri-7B 6.11

Seedling recovery (%) 2A 95.75 QSRHS.nri-2A 32.98 N/A

Seedling recovery (%) 2B 19.16 QSRHS.nri-2B 6.48 N/A

Seedling recovery (%) 2D 26.05 QSRHS.nri-2D 18.55 N/A

Seedling recovery (%) 3A 123.05–128.87 QSRHS.nri-3A 12.33 N/A

Seedling recovery (%) 7A 42.08–43.47 QSRHS.nri-7A 13.41 N/A

Seedling recovery (%) 7B 89.82 QSRHS.nri-7B 23.35 N/A

(1) QTL detected under heat stressed temperature but not at optimum temperature; (2) QTL detected using heat response, which is the trait relative difference between

the two temperature treatments; QTL were declared significant based on unadjusted p-value <0.001; R2 is phenotypic variance explained by each QTL expressed as a

percentage.

Frontiers in Plant Science | www.frontiersin.org 10 September 2018 | Volume 9 | Article 1272

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Maulana et al. GWAS of Heat Stress Tolerance in Wheat

The first QTL (QSLOT.nri-4B), represented by three SNPs, was
mapped at 57–63 cM on chromosome 4B, explaining 17.4% of
the phenotypic variation of shoot length at the optimal growth
temperature. The other QTL (QSLOT.nri-7B) was mapped at
54 cM on chromosome 7B with about 5.3% of the phenotypic
variation in shoot length.

On the other hand, at heat-stressed growth condition,
the same two QTLs for shoot length were also found on
chromosomes 4B and 7B (Figure 4B and Supplementary Table

S2). On chromosome 4B, the QTL (QSLHS.nri-4B) was mapped
at genetic position ranging from 57 to 60 cM. This QTL explained
12.8% of the phenotypic variation in shoot length. The QTL
(QSLHS.nri-7B) on chromosome 7B was represented by two
SNPs and mapped within 54–58 cM. Together, the two SNP
markers explained 10% of the phenotypic variation in shoot
length at heat-stressed growth condition. The most significant
markers were the same markers that were detected at optimal
growth condition, located on chromosomes 4B and 7B, indicating
that the detected shoot length QTLs are expressed under both
optimum and heat-stressed growth conditions, thus they are not
necessarily related to heat stress.

For heat response of shoot length, three QTLs were detected
on chromosomes 3B and 7D (Figure 4C and Supplementary

Table S2). On chromosome 3B, two QTLs (QSLHR.nri-3B.1 and
QSLHR.nri-3B.2) were found, one mapped at 10 cM and the
second one at 67 cM, together explaining 11.8% of the phenotypic
variation in heat stress response of shoot length. The third QTL
(QSLHR.nri-7D) was located at 27 cM on chromosome 7D. This
QTL was represented by two SNPs, which collectively explained
12.8% of the phenotypic variation in heat stress response. In
short, as the same QTLs were detected under optimal and
heat-stressed growth conditions, shoot length QTLs responding
to heat stress were only found by mapping heat stress response of
the trait on chromosomes 3B and 7D (Table 2).

At optimal growth condition, four QTLs associated with the
number of leaves per seedling were detected at genetic positions
of 56, 77–78, 177–181, and 68–72 cM on chromosomes 1B, 2A,
3A, and 4B, respectively (Figure 5A and Supplementary Table

S2). The SNPmarkers representing the QTLs explained 5.8–8.9%
of total phenotypic variation in the number of leaves per seedling
at the optimal growth condition. The two most significant SNP
markers (IWB40186 and IWB25267) were co-localized at 78 cM
on chromosome 2A, explaining 17.2% of the phenotypic variation
in the number of leaves per seedling. The third most significant
SNP was mapped at 68 cM on chromosome 4B, which accounted
for 7.4% of phenotypic variation.

At heat-stressed growth condition, four QTLs significantly
associated with number of leaves per seedling were detected
(Figure 5B and Supplementary Table S2). The first QTL
(QLNHS.nri-1B) was mapped at 112 cM on chromosome 3A,
and explained about 6.2% of the phenotypic variation. The
second (QLNHS.nri-3B), third (QLNHS.nri-4B), and fourthQTLs
(QLNHS.nri-5A) were located at genetic positions of 66, 64,
and 115 cM on chromosomes 3B, 4B, and 5A, respectively,
and collectively explained 24.2% of the phenotypic variation
in number of leaves per seedling at heat-stressed growth
condition.

For heat stress response of number of leaves per seedling,
seven QTLs, represented by 26 significant SNPs, were detected
on chromosomes 2A, 3A, 4B, 5B, and 7B (Figure 5C and
Supplementary Table S2). On chromosome 2A, two QTLs were
found; one (QLNHR.nri-2A.1) mapped at 77–78 cM, and the
other QTL (QLNHR.nri-2A.2) was located at 150 cM. The QTL
(QLNHR.nri-3A) on 3A was located at 177 cM, while the one on
4B (QLNHR.nri-4B) was mapped at genetic position of 68–71 cM.
Furthermore, two QTLs, QLNHR.nri-5B.1 and QLHR.nri-5B.2
were located at 49 and 144 cM, respectively, on chromosome
5A, while one QTL, QLNHR.nri-7B was found at 145 cM
on chromosome 7B. The most significant SNP markers were
IWB40186 and IWB25267, which were co-localized at 78 cM on
chromosome 2A, and IWB61157, which was mapped at 150 cM
on the same chromosome. The two markers mapped at 78 cM
together explained 15.2% of the phenotypic variation, while the
marker located at 150 cM accounted for 8.3% of the phenotypic
variation in heat stress response of number of leaves per seedling.
Overall, the data suggest that heat stress or heat response QTLs
associated with the number of leaves per seedling are located on
chromosomes 2A, 3A, 3B, 4B, 5A, 5B, and 7B according to QTLs
detected for heat stress response of the trait, or by comparing
the QTLs detected under heat-stressed vs. the optimum condition
(Table 2).

For seedling recovery after removal of heat stress treatment,
six QTLs were detected on chromosomes 2A, 2B, 2D, 3A, 7A,
and 7B, and these were represented by 16 SNPs (Figure 6 and
Supplementary Table S2). The phenotypic variation explained
by these SNPs varied from 6.5 to 8.5%. On chromosome 2A,
one QTL (QSLHS.nri-2A) was located at genetic position of
96 cM. This QTL was represented by five SNPs, which collectively
explained 33% of the phenotypic variation in seedling recovery
after heat stress. The second QTL (QSLHS.nri-2B) was found
on chromosome 2B at 19 cM, which accounted for 6.5% of
the phenotypic variation. Another QTL (QSLHS.nri-2D) was
found on chromosome 2D at the genetic distance of 26 cM,
and it was represented by three SNP markers, which together
explained 18.6% of the phenotypic variation. On chromosome
3A, one QTL (QSLHS.nri-3A) was detected and mapped at
123–129 cM. The QTL on 3A explained 12.4% of the phenotypic
variation in seedling recovery after removal of heat stress
treatment. In addition, one QTL (QSLHS.nri-7A) was identified
on chromosome 7A at position 42–43 cM, while another one
(QSLHS.nri-7B) was found at 90 cM on chromosome 7B. The
QTLs on 7A and 7B accounted for 13.4 and 23.3% of the
phenotypic variation in seedling recovery, respectively.

DISCUSSION

Wheat is one of the most important food and feed crops in the
world. In the Southern Plains of the United States including
Oklahoma and Texas where livestock and forage production are
the largest contributors to agricultural income, winter wheat is
often used for cool season grazing, which needs early planting for
increased fall to winter forage production. Winter wheat under
a dual-purpose management system could be planted as early
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as the end of August, when the temperature is often still very
high for the crop to establish. Therefore, improving seedling heat
tolerance for winter wheat grown for forage and grain production
will have a huge economic impact in the region. We conducted a
GWAS to map QTLs and identify SNP markers associated with
seedling heat tolerance for MAS of seedling heat tolerance during
wheat breeding. Identification of QTLs associated with seedling
heat tolerance will facilitate the introgression of heat tolerance
alleles into elite wheat cultivars through MAS.

In the present study, the association mapping panel showed
significant phenotypic variation in leaf chlorophyll content, shoot
length, number of leaves per seedling at optimal and high
temperature regimes, and seedling recovery after removal of heat
stress treatment. In addition, variation in heat stress response, i.e.,
relative performance difference between the two temperatures,
for all traits was also observed. These results suggest that there
is a great potential that these lines can be used to mine alleles for
seedling heat tolerance for introgression into elite winter wheat
lines for seedling heat tolerance improvement.

Population structure and familial relatedness can result in false
positives in GWAS (Crossa et al., 2007; Matthies et al., 2012).
Therefore, when GWAS is conducted, these parameters need to
be considered in the model. In the present study, the level of
genetic structure of the panel was assessed by the PCA, NJ tree,
and STRUCTURE analyses. Results from the three clustering
methods showed that this panel is structured into four major
groups. Our results agree with previous GWAS done using
winter wheat lines selected from the same hard red winter wheat
association mapping panel (Ayana, 2017). In their study, they
used 294 lines of the association mapping panel to molecular
characterize spot blotch and bacterial leaf streak resistance in
bread wheat, and the STRUCTURE analysis revealed four major
groups existing in this panel, although admixtures were also
observed. In the present study, the stratification was mainly
based on geographical regions and pedigree relation. Genetic
structuring of winter wheat lines along geographic regions has
also been previously reported (Li et al., 2016; Liu et al., 2017).

In this study, we observed that some lines with common
parents in their pedigrees tended to cluster in the same subgroup
within the main group. For instance, some lines with “Jagger”
wheat line as one of the parents in their pedigrees formed one
subgroup. This result corroborates the GWAS of powderymildew
disease using a different set of winter wheat lines, in which
the authors found that the lines were structured along pedigree
information (Liu et al., 2017). Specifically, they found that 13
accessions with the common parent, “Jagger” in their pedigrees
clustered in one group. However, in general, we observed that
the level of genetic stratification was low, as revealed by the
modest contribution of the three PCs (19.4%) to the total genetic
variance. This reduced and loose population stratification is
because of historical admixture resulting from sharing genetic
materials among different wheat breeding programs in the hard
red winter wheat region of the United States.

Linkage disequilibrium is one of the most important factors
in association mapping studies because it determines the power
of association between QTLs and phenotype. In this study, we
estimated the LD decay distances of the three wheat genomes

including A, B, and D genomes. Our results suggest that D
genome had the highest LD decay distance (10.9 cM) compared
to A (9.7 cM) and B (9.8 cM) genomes. As only 200 representative
lines were selected from the original panel in the current study,
the LD distances are changed compared to a previous study
involving the same panel (Ayana, 2017). In general, our results
corroborate previous studies done in wheat (Zhang et al., 2010;
Hao et al., 2011; Ayana, 2017). However, other studies have
reportedmuch higher LD than estimated in our study when using
different ecotype wheat lines. For example, LD decay distance
of 23 cM in European hexaploid wheat lines has been reported
(Nielsen et al., 2014).

In this study, three statistical models were compared to assess
their ability to map QTLs and identify SNPs associated with
seedling heat tolerance. We decided to do this because previous
studies have shown that the best model can vary depending on the
trait (Gurung et al., 2014). Finally, we selected the MLM, which
accounts for both population structure (PCs) and K matrix,
because of its statistical power to control false positives. To
the best of our knowledge, rare QTL studies have been done
for heat tolerance during the seedling stage of wheat. However,
there have been a lot of QTLs studies in heat tolerance during
the flowering stage or grain filling stage of wheat. For example,
QTLs for heat tolerance during the grain filling stage of wheat
have been reported (Vijayalakshmi et al., 2010; Talukder et al.,
2014). Similarly, in other cereal crops such as sorghum (Chen
et al., 2017; Chopra et al., 2017) and rice (Lafarge et al., 2017),
QTL studies for heat tolerance have been conducted. The focus
of previous studies was either on the vegetative stage or the
flowering stage because heat stress during the flowering stage has
been one of the most important limiting factors contributing to
yield losses in many crop species. However, heat stress during the
seedling stage of winter wheat has been a common issue in the
southern Great Plains of the United States due to early planting,
particularly in a dual-purpose management system, in which case
the crop is planted very early in the fall. Therefore, this study
was primarily conducted to unravel QTLs or genes associated
with seedling heat tolerance in winter wheat purposely grown for
forage as well as grain production.

Using the MLM, we identified multiple significant QTLs
for wheat seedling traits at optimum and heat-stressed growth
conditions. QTLs associated with seedling heat stress or heat
response were found by comparing the QTLs detected under
heat-stressed vs. the optimum condition, or mapping heat
response QTLs using the relative phenotypic trait difference
between the two growth conditions. QTLs associated with leaf
chlorophyll content at heat-stressed growth condition but not
at optimum temperature were found on chromosomes 2B,
2D, 4A, and 4B, while QTLs for heat stress response of the
trait were detected on chromosomes 2B, 2D, 4A, 4B, and 5B
(Table 2). We believe that these are the true chromosomes that
harbor leaf chlorophyll content QTLs responding to heat stress
since they were only detected under heat stressed temperature
and/or mapped using heat response of the trait. Previous
studies also identified QTLs for heat stress tolerance traits,
specifically at grain filling stage of wheat on chromosomes 2B,
2D, and 4A (Paliwal et al., 2012; Acuña-Galindo et al., 2015;
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Bhusal et al., 2017). However, previous QTL studies conducted
in wheat also identified QTLs for leaf chlorophyll content under
heat stress on other chromosomes including 1B, 1D, 6A, and
7A (Talukder et al., 2014), which were not detected at the
seedling stage in the current study. Moreover, in another QTL
study, leaf chlorophyll content QTLs under heat stress mapped
on chromosomes 1A and 6B were reported (Tahmasebi et al.,
2016). Again, these QTLs were not detected in the present
study. However, the QTL for heat-stress response of the leaf
chlorophyll content detected on 5B was not reported in other
studies mentioned above. Although QTLs detected at optimal
temperature are not related to heat stress, interestingly in this
study one SNP marker (IWB14950) on 1B, which associated with
leaf chlorophyll content at optimal growth condition, has high
sequence similarity with kDa class VI heat shock protein, known
to be involved in heat stress tolerance. However, this SNP marker
was not detected at heat-stressed growth condition as well as heat
stress response.

We also conducted BLAST search on NCBI to unravel
candidate genes using sequences of the SNPs detected in the
present study (Supplementary Table S2). The results showed
that some of the significant SNP markers have high sequence
similarities with candidate genes, known to be involved in plant
stress responses in different crops including wheat. For example,
on chromosome 2D, the significant SNP IWB28728 for leaf
chlorophyll content responding to heat stress has 89% sequence
similarity with putative plastid-lipid-associated protein 13. The
putative plastid lipid-associated protein 13 has been reported to
play an important role in improving plant performance under
stress conditions. In addition, it actively participates in thylakoid
function from biogenesis to senescence, suggesting that it is a
precursor of the chloroplast thylakoid membranes (Rottet et al.,
2015). Similarly, on chromosome 4B, significant SNP IWB42264
for leaf chlorophyll content at heat-stressed growth condition and
heat response of the trait, has 94% sequence similarity with K
(+) efflux antiporter 5 isoform X1, which contains potassium
(K+), a major osmoticum of plant cells. The accumulation of
potassium (K+) in the plant vacuole is important for plants
under high-salt stressed conditions (Assaha et al., 2017). In
addition, the significant SNP IWB18745 for heat stress response
of leaf chlorophyll content on chromosome 2D has 97% sequence
similarity with IAA-amino acid hydrolase ILR1-like, which is
able to hydrolyze certain amino acid conjugates of the plant
growth regulator indole-3-acetic acid (IAA) (LeClere et al.,
2002). Moreover, on chromosome 2D, the heat responding SNP
IWB4541 has a DNA sequence with 100% similarity to that of
the heat shock N-terminal domain-containing protein found in
maize, which is essentially involved in plant responses to various
environmental stress including heat.

For shoot length, the same significant QTLs were detected
at both optimal and heat-stressed growth conditions. Generally,
QTLs associated with a trait under optimal conditions usually
controls the trait under stressed-conditions (Mathews et al., 2008;
Mwadzingeni et al., 2017). In the present study, this scenario
was observed for shoot length QTLs on chromosomes 4B and
7B indicating that the detected QTLs were associated with
shoot length itself as a plant architecture trait, and not related

with heat stress tolerance per se. These results suggest that the
effects of these QTLs are not influenced by temperature changes.
Therefore, such kind of QTLs may be useful in marker-assisted
breeding (MAB) of crops with broad environmental adaptation.
On the other hand, shoot length QTLs were detected for heat
response on 3B and 7D, which were also reported previously
to harbor QTLs for heat tolerance traits at vegetative and grain
filling stages of wheat (Vijayalakshmi et al., 2010; Paliwal et al.,
2012).

Although some of the markers associated with shoot
length were significant at both growth conditions, BLAST
search revealed that some of the identified SNPs have high
sequence similarities with candidate genes known for plant
stress response. For example, the DNA sequence of SNP
IWB35611 on chromosome 4B has high sequence similarity with
serine/threonine protein kinase STE 20-like, which has been
reported to play an important role in salt tolerance in plants
(Liang et al., 2011). Another SNP IWB12856 on chromosome
4B has high sequence similarity with inositol-tetrakisphosphate
1-kinase 3, transcript variant X1, which has been reported
to confer plant stress tolerance (Yang et al., 2008). The two
SNP markers on 4B were located 2.45 cM apart from each
other. In addition, the SNP marker IWB1428 on 3B, which was
found to be significantly associated with heat stress response
of shoot length, showed 83% sequence similarity with G-type
lectin S-receptor-like serine/threonine protein kinase. Research
done in the past showed that the G-type lectin S-receptor-like
serine/threonine protein kinase acts as a positive regulator of
plant tolerance to salt stress (Deng et al., 2009; Sun et al., 2013).

Similarly, for the number of leaves per seedling and seedling
recovery, some of the QTLs detected in this study were located
in the same chromosomes that were reported in other heat
stress studies at various adult plant stages (Mason et al., 2010;
Vijayalakshmi et al., 2010; Paliwal et al., 2012; Talukder et al.,
2014; Acuña-Galindo et al., 2015). However, BLAST search
against sequences of SNPs associated with the number of leaves
per seedling and seedling recovery did not reveal any candidate
genes that are known responding to abiotic stress.

In summary, some QTLs for seedling heat tolerance-related
traits identified in this study were found on the same
chromosomes previously reported to harbor QTLs for heat
tolerance, although the growth stages reported in the previous
studies are different from the growth stage investigated in the
present study. Our results suggest that some of heat tolerance
QTLs detected during the seedling and the flowering stages of
wheat may be co-localized. In addition, other QTLs identified in
the seedling stage in the present study have not been reported
in those studies conducted at the flowering time or grain filling
stages. Moreover, BLAST search using DNA sequences of some
of the significant loci found in this study revealed candidate genes
known to be involved in plant stress responses in wheat and other
crop species. To the best of our knowledge, this is the first GWAS
to map QTLs and identify SNP markers significantly associated
with seedling heat tolerance-related traits targeting early planting
of dual-purpose winter wheat. Significant SNPmarkers identified
in this study will be used for MAS of seedling heat tolerance to
facilitate selection of the trait during wheat breeding.
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FIGURE S1 | Structure analysis of the 200 winter wheat lines from the association

mapping panel. (A) Neighbor-joining (NJ) tree; (B) population structure.

FIGURE S2 | Scatter plots showing the linkage disequilibrium (LD) decay curves

of the three subgenomes estimated in the association mapping panel. The LD

estimates (r2) for pairs of SNP markers were plotted against the genetic distance

in cM.

FIGURE S3 | The quantile-quantile (Q-Q) plots of the mixed liner model applied to

the investigated traits. (A–C) Leaf chlorophyll content at optimum temperature,

heat-stressed growth condition, and heat response of the trait; (D–F) shoot length

(cm) at optimum temperature, heat-stressed growth condition, and heat response

of the trait; (G-I) Number of leaves at optimum temperature, heat-stressed growth

condition, and heat response of the trait; (J) Seedling recovery after removal of the

heat stress.

TABLE S1 | Linkage disequilibrium analysis of 200 lines in the hard red winter

association mapping panel.

TABLE S2 | The QTL and the significant SNP markers associated with seedling

traits of wheat at optimal and heat-stressed growth conditions.
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