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Abstract

Systemic lupus erythematosus (SLE; OMIM 1 152700) is a genetically complex autoimmune 

disease. Genome-wide association studies (GWASs) have identified more than 50 loci as robustly 

associated with the disease in single ancestries, but genome-wide transancestral studies have not 

been conducted. We combined three GWAS data sets from Chinese (1,659 cases and 3,398 

controls) and European (4,036 cases and 6,959 controls) populations. A meta-analysis of these 

studies showed that over half of the published SLE genetic associations are present in both 

populations. A replication study in Chinese (3,043 cases and 5,074 controls) and European (2,643 

cases and 9,032 controls) subjects found ten previously unreported SLE loci. Our study provides 

further evidence that the majority of genetic risk polymorphisms for SLE are contained within the 

same regions across both populations. Furthermore, a comparison of risk allele frequencies and 

genetic risk scores suggested that the increased prevalence of SLE in non-Europeans (including 

Asians) has a genetic basis.

SLE is a highly complex disease, with occurrence heavily influenced by genetics 

(heritability of 66% (ref. 1)). SLE incidence varies markedly across populations, with 

Europeans showing three- to fourfold lower prevalence compared with individuals of 

African or Asian ancestry2. In recent years, understanding of SLE’s genetic etiology has 

been transformed by GWASs, with the largest study in Europeans3 (4,036 cases and 6,959 

controls) finding evidence of association at 41 autosomal loci. Meanwhile, two published 
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GWASs4,5 in Chinese populations and follow-up studies in Asians6–10 found association at 

31 loci, 11 of which are not published for Europeans. Thus 52 SLE disease-susceptibility 

autosomal loci have been mapped by GWASs in these two populations.

Although fine-mapping of a selected number of known SLE-associated loci11–13 has been 

successfully undertaken through the combination of genetic results obtained from 

association mapping in different populations, to date transancestral approaches have not 

been used at the genome-wide level for SLE. Studies of other diseases14 have also shown 

the benefit of comparing data from differing ancestries to exploit differences in linkage 

disequilibrium (LD).

Our initial objective was to compare observed genetic association signals across the genome 

in Chinese and European subjects. To provide additional power to identify potentially novel 

SLE-associated loci, we imputed each GWAS (a European study comprising 4,036 cases and 

6,959 controls3 (λGC = 1.16 with λ1,000 = 1.02, where λ is a measure of association and 

“GC” stands for “genomic control”), a study from Anhui Province in mainland China 

including 1,047 cases and 1,205 controls4 (λGC = 1.05), and a study from Hong Kong 

including 612 cases and 2,193 controls5,7 (λGC = 1.04)) to the density of the 1000 

Genomes Project (1KG) data (Online Methods). Analyses of association results in each 

population suggested that SLE susceptibility loci were shared extensively. We found that the 

association signals were mostly mirrored between populations (Fig. 1). Details of the 

association data for individual SNPs are presented in Supplementary Table 1. When we 

compared the published genome-wide significant allelic associations for SLE, we saw that 

many of the alleles previously thought to be associated with SLE in only one population had 

evidence for association in both European and Chinese SLE cases. By ranking genomic 

regions on the basis of the strength of association, we also found a significant correlation (P 

= 2.7 × 10−9, Kendall’s τ = 0.08; Online Methods) between the two populations’ GWASs. 

These observations suggested that combining GWAS data in a meta-analysis could yield 

novel association signals. The GWAS meta-analysis results included three associations in 

novel loci (rs17603856 (6p23), rs1887428 (9p24) and rs669763 (16q13)) with genome-wide 

levels of significance (P < 5 × 10−8; Fig. 1b). In addition, the major histocompatibility 

complex (MHC) and, to a lesser extent, the IRF5 locus on chromosome 7 showed significant 

transancestral heterogeneity (Fig. 1b).

We then carried out a two-stage replication study incorporating rs17603856, rs1887428 and 

rs669763. We scanned the 1KG imputed data for association at loci independent of those 

previously published and excluding the MHC. We successfully genotyped a total of 66 SNPs 

at 56 loci (SNP selection is described in the Online Methods) in an additional 3,043 cases 

and 5,074 controls of Chinese ancestry recruited from Anhui Province. Eighteen of these 

SNPs (at 17 independent loci) showed association in this replication study, passing a false 

discovery rate (FDR) of 0.01. These included rs17603856 and rs1887428 but not rs669763, 

which failed quality control. We then genotyped these 18 SNPs in a European replication 

cohort comprising 1,478 cases and 6,925 controls3. Data from an additional European-

American GWAS (1,165 independent cases and 2,107 controls) were also included in this 

final analysis15 (Supplementary Table 2a). Of the 18 candidate SNPs, 11 showed a standard 

genome-wide level of significance (P < 5 × 10−8) in the combined meta-analysis (11,381 
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cases and 24,463 controls) of all three main GWASs and the three replication studies (Table 

1, Supplementary Fig. 1). The strongest association signal after this meta-analysis was that 

for rs1887428 (9p24; P = 2.19 × 10−17). Other statistically significant associations were 

found at rs34889541 (1q31.3; P = 2.44 × 10−12), rs2297550 (1q32.1; P = 1.31 × 10−11), 

rs6762714 (3q28; P = 4.00 × 10−15), rs17603856 (6p23; P = 3.27 × 10−12), rs597325 (6q15; 

P = 4.03 × 10−12), rs73135369 (7q11.23; P = 8.77 × 10−14), rs494003 (11q13.1; P = 5.81 × 

10−9) and rs1170426 (16q22.1; P = 2.24 × 10−8), and two SNPs at 2p23.1 (rs1732199; P = 

2.22 × 10−16 and rs7579944; P = 1.41 × 10−9) were replicated as being independently 

associated (Online Methods and Table 1). The full set of results for the 18 candidate markers 

can be found in Supplementary Table 2.

To highlight potential causal genes at the ten newly described susceptibility loci, we tested 

the associated SNPs at each locus for correlation with cis-acting gene expression in ex vivo 

naive CD4+ T cells and CD14+ monocytes in both Asian and European population data16, 

and in B cells, T cells and monocytes (stimulated and naive) in Europeans only17. We 

calculated regulatory trait concordance (RTC) scores18 (Online Methods) to test the 

relationship between expression quantitative trait loci (eQTLs) driven by disease-associated 

alleles and other, potentially stronger eQTLs, which we identified at each locus. 

Supplementary Table 3 and Supplementary Figure 2 present results for this analysis in all 

cell types in circumstances where eQTLs were found in at least one cell type or population. 

The eQTLs were consistent across cell type and population for LBH (rs19991732), CTSW 

(rs494003), RNASEH2C (rs494003) and ZFP90 (rs1170426), with carriage of the SLE risk 

allele correlating with reduced expression (except in lipopolysaccharide-stimulated 

monocytes for RNASEH2C, for which the eQTL results were not significant and the RTC 

scores were very low). The SNP rs2297550 was found to be a putative eQTL for IKBKE. 

The SLE risk allele for this SNP correlated with reduced expression in T cells, interferon-

stimulated monocytes, B cells and NK cells, but increased expression in monocytes.

We integrated the results of the eQTL analyses with an in silico survey of murine phenotype 

data resulting from gene knockouts within the associated SLE loci19–28 (Table 2). These 

lines of evidence pointed to a single likely causal gene at some loci—IKBKE and JAK2, for 

example. In other instances, we found evidence supporting the role of multiple genes as 

candidates at a given locus—for example, CTSW/RNASEH2C and CDH1/ZFP90. Locus 

Zoom29 plots, created using the European and meta-analyzed Chinese data, for all ten loci 

can be seen in Supplementary Figure 3. These plots facilitate a comparison of the alignment 

of the association signals in the two populations. Potential roles of the putative causal genes 

at the loci mapped in this study are described in Supplementary Table 4.

We further exploited the level of shared association we noted in our initial combination of 

the GWASs for the two populations studied using fine-mapping analyses of all published 

associated loci (Supplementary Table 1) and the new loci reported here. We derived 

Bayesian credibility sets in each population for the most likely causal variants using a 

previously published approach30–32; here we report the intersection of these sets (Online 

Methods). Supplementary Figure 4 shows the observed cumulative distribution for the 

number of SNPs in the intersection over a range of levels. When we used the least stringent 

criterion (75% credibility set), 80% of the mapped loci had sets identifying ten or fewer 
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likely causal SNPs. When we used a very rigorous criterion (99% credibility set), seven of 

the loci comprised fewer than ten SNPs (Supplementary Table 5). STAT4 is an example of 

the colocalization of signals from each ancestry; in contrast, in two examples the association 

arose in one population only: IRF7 (European) and ELF1 (Chinese) (Fig. 2). In each case it 

is evident that the likely explanation for the discrepant association signal is population-

specific differences in allele frequency within the credible SNP set. Supplementary Figure 5 

shows fine-mapping data for the novel loci.

We downloaded epigenetic data covering each of the ten newly associated loci identified by 

our meta-analysis (Table 1) from the RoadMap Consortium for all blood cell types33. This 

was done for all SNPs within the credibility set at each locus. Figure 3 shows the results for 

SNPs at three loci, including the level of RNA expression (RNA-seq), accessibility to 

DNase, histone modification by acetylation (H3K27ac, H3K9ac) and histone modification 

by methylation (H3K27me3, H3K9me3). Supplementary Figure 6 shows results for the 

other seven SNPs (identities of all SNPs are presented in Supplementary Table 6). The 

histone marks were selected to indicate the activation status of promoter and enhancer 

regions and regions of repression. This epigenetic annotation provides an interesting point of 

comparison with the eQTL results. Two intense histone acetylation peaks were observed 

around the associated SNPs rs2297550 (IKBKE) and rs1887428 (JAK2), yet only the variant 

in IKBKE showed a significant eQTL in the cells examined (for example, P = 1.5 × 10−8 in 

naive monocytes in Europeans). Although we did find a significant eQTL for rs1887428 

with JAK2 in monocytes, the RTC scores were low (<0.4). At SNPs rs34889541 (CD45) and 

rs597325 (BACH2), there was local evidence of histone acetylation in lymphocytes, but the 

two SNPs were not significant eQTLs. In contrast, rs1170426 (ZFP90) was a very 

significant eQTL (for example, in Europeans, P = 7.2 × 10−22 in CD4+ T cells and P = 4.6 × 

10−55 in B cells), but the region around the associated SNP showed little evidence of 

regulatory function. However, there was strong evidence of epigenetic effects at other SNPs 

contained in the ZFP90 credibility set. Some of the discrepancies between eQTL and 

epigenetic annotation probably represent the limited set of activation states (and perhaps 

samples sizes) of primary immune cells that have been subject to eQTL investigation.

We investigated the amount of shared risk effects between the Chinese and European 

populations further with a coheritability analysis using LD score regression34 (Online 

Methods), which showed a significant (P = 4.0 × 10−3, rg = 0.51) correlation between the 

two populations. This correlation was stronger (P = 4.88 × 10−5, rg = 0.62) after removal of 

the MHC, which emphasizes its heterogeneity (Fig. 1b). We observed that on average the 

risk allele frequencies in Chinese control subjects were significantly higher than those in 

European controls in the respective GWASs (paired t-test, P = 0.02, Supplementary Fig. 7a), 

whereas the effect sizes (odds ratios) were not statistically different (P = 0.47, 

Supplementary Fig. 7b), suggesting that the higher prevalence of SLE in Asians (as 

compared with Europeans) may have a genetic basis. We also compared the genetic risk 

scores (GRSs)—the joint effect of odds ratios and risk allele frequencies—between the two 

populations in data from 1KG (phase 3) (Fig. 4) and between the Chinese and European 

GWAS controls (Supplementary Fig. 8). The GRS for SLE in East Asians (EAS) was 

significantly higher than that in Europeans (EUR) in the 1KG data (fold (EAS/EUR) = 1.27, 

P = 4.99 × 10−179; EUR = 7.38, 95% CI 7.31–7.45; EAS = 9.35, 95% CI 9.27–9.43). There 
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was a similar difference in score between the GWAS controls (fold (Chinese/EUR) = 1.28, P 

= 1.00 × 10−797; EUR = 7.42, 95% CI 7.40–7.44; Chinese = 9.51, 95% CI 9.46–9.55). If 

more associations are identified in future studies, especially with increased power in non-

European populations, including East Asians, the difference in genetic predisposition 

between populations identified by GWASs might increase further. We note that an analysis 

of chip heritability (using all genotyped SNPs to calculate heritability explained; Online 

Methods) in both the Chinese and the European data resulted in 28% (s.e. = 2.6%) explained 

in Chinese subjects and 27% (s.e. = 1.0%) explained in Europeans.

Furthermore, we noted correlation among the GRSs across all five major 1KG super-

populations and rank of the prevalence2 (Online Methods) of SLE (Fig. 4). A t-test on mean 

GRS between each pair of population data showed high significance (P < 10−16) for all pairs 

except Amerindian versus South Asian (P = 0.67), and a linear model with rank of 

prevalence predicting the GRS was significant (P < 10−16, r2 = 0.39). We excluded the MHC 

from this analysis because of the difficulty of defining the best model of association in this 

region, owing to the extensive LD and limited genotyping of SNPs and classical HLA in 

both populations.

The increased genetic risk load in Chinese individuals would help explain the continued 

increased prevalence of SLE in Asians after their migration to Western locations2. We 

acknowledge that the trends we have observed are a snapshot, as all available genotyped 

SNPs explained <30% of disease heritability, and the comparison of GRSs might not be a 

full reflection of genetic risk among these populations. A more detailed study of the 

increased prevalence of SLE in Asians, and in Africans, will require extensive comparisons 

of genetic and environmental data, including generation of DNA sequence data to exclude 

European bias in genotyping arrays.

URLs. Department of Twin Research, King’s College London, Twins–UK samples, http://

www.twinsuk.ac.uk; Ingenuity Pathway Analysis, http://www.ingenuity.com/; Immunobase, 

http://www.immunobase.org; Systems Biology and Complex Disease Genetics, http://

insidegen.com; RoadMap data, http://egg2.wustl.edu/roadmap/data/byFileType/signal/

consolidatedImputed/; 1KG imputed summary statistics, http://insidegen.com/insidegen-

LUPUS-data.html.

Online Methods

Study design in brief

We combined summary genome-wide association data from two Chinese GWASs4,5 (Anhui 

Province, mainland China, 1,047 cases (63 males) and 1,205 controls (673 males), λGC = 

1.05; Hong Kong, 612 cases (50 males) and 2,193 controls (919 males), λGC = 1.04) and a 

European GWAS (4,036 cases (365 males) and 6,959 controls (2,785 males), λGC = 1.16 

with λ1,000 = 1.02), after imputing all three studies to the 1KG data density, and conducted a 

meta-analysis. As the European data comprised 70% of both total cases and total controls, 

and were therefore the driving force in this meta-analysis, we selected SNPs for replication 

in an additional set of Chinese samples first. We identified a subset of SNPs in the Chinese 

replication that passed an FDR of 1% to take forward for replication in European samples. 
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We then carried out replication using a second European GWAS15 independent of our main 

European GWAS and de novo genotyping in a new data cohort of European ancestry.

Imputation

We pre-phased each of the three studies separately using SHAPEIT35. We then separately 

imputed the studies (using IMPUTE36) with 1KG reference data (phase 1 integrated set, 

March 2012, build 37). The three data sets were aligned and meta-analyzed using R37 by the 

King’s College London group and independently by the groups at Anhui and Hong Kong 

using METAL38. SNPs with imputation INFO scores of <0.7 in any of the three studies 

were removed from further analysis. The numbers of SNPs available before and after quality 

control (QC), per chromosome and per associated locus, are shown in Supplementary Table 

7a,f. A summary of INFO scores and imputation cross-validation are presented in 

Supplementary Table 7b-e for each chromosome and Supplementary Table 7g-j for each 

associated locus. Supplementary Note 3 presents a discussion of the limitations of using 

imputed data.

Statistical analysis

Association testing—After imputation, we analyzed each GWAS data set for association 

(SNPTEST36), fitting an additive model. We used the inverse variance method for meta-

analysis, combining data from the three studies for SNPs with an imputation INFO score of 

>0.7 in all three studies.

Testing for heterogeneity. We tested for heterogeneity between the association signals in the 

Chinese and European data using Cochran’s Q statistic (1 degree of freedom in this case). 

The P values on the −log10 scale are plotted in Figure 1b. Q-Q plots (one per chromosome) 

for the heterogeneity P values can be seen in Supplementary Figure 9a, and Bland–Altman 

plots for differences in genetic effect (log odds ratio) estimates are in Supplementary Figure 

9b.

Assessment of shared association between ancestries—To assess the extent to 

which genetic association with SLE was shared between the Chinese and European 

populations, we compared association results in the European GWAS3 with a meta-analysis 

of both Chinese GWASs, for SNPs published as associated in European3 and/or Chinese 

studies4,6–9. Association signals were declared as ‘shared’ between the Chinese and 

European populations if the SNP met any one of the following four criteria:

1. The locus had a published association in both Chinese and European 

studies at a genome-wide level of significance (P < 5 × 10−8).

2. The SNP was published only for Europeans but the association P value in 

the Chinese meta-analysis was significant (FDR < 0.01 across all SNPs in 

this group) and the direction of effect in all three GWASs was the same.

3. The SNP was published only in a Chinese study but the association P 

value in the European GWAS was significant (FDR < 0.01) and the 

direction of effect in all three GWASs was the same.
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4. If the SNP failed to meet the requirements for either (2) or (3), we 

performed a gene-based test (applying the software KGG39–41) on genes 

within ±1 Mb of the published SNP. The locus was deemed shared if the 

gene-based P value was significant at the 0.01 FDR level after adjustment 

for multiple testing across all genes tested.

We also performed a meta-analysis (European GWAS + both Chinese GWASs) of all loci 

published in either Chinese or European studies (each published SNP ± 1 Mb) and recorded 

the most associated SNP. For loci published in Europeans, we declared the loci shared if the 

P value (adjusted for multiple testing over all SNPs tested within the 2-Mb region) in the 

Chinese data passed an FDR of 0.01 across all the loci published only in Europeans. We 

performed the reverse test for all loci published only in Chinese. Although this did not 

identify any additional shared loci (Supplementary Table 1b), there was suggestive evidence 

for two loci (P < 0.05 after multiple testing adjustment within loci but not after adjusting 

across loci).

Consistency of association between ancestries—We tested the hypothesis that the 

genome-wide association signals were consistent between the two populations. Post-1KG 

imputed association data were used for SNPs with INFO > 0.7. These genome-wide 

association signals were separated into 1-Mb regions (moving 1-Mb windows across the 

genome, 2,698 in total). We removed the extended MHC with a conservative buffer zone 

(chr. 6, from 20 Mb to 40 Mb), leaving 2,678 regions. We also removed regions that had an 

excessively (more than 2 s.d. from the average) low (N < 1,000) or high (N > 3,000) density 

of SNPs. This removed only 10% of the regions, leaving 2,338 regions. The lowest P value 

within each window was taken as the strength of association for that particular window. 

Each P value within each region was adjusted for multiple testing using a Bonferroni 

adjustment, to avoid bias in ranking agreement owing to the lowest P value being correlated 

with the number of statistical tests. The 1-Mb regions within each population’s data were 

then ranked according to the P value (lowest P value having rank 1). We tested agreement in 

ranking using Kendall’s τ statistic. Supplementary Figure 7c shows heat maps of the ranks 

for all 2,338 regions, the top 250 regions and the top 50 regions. The order in the heat maps 

was determined by the sum of the ranks. For comparison, we also included a simulated 

ranked data set; we permuted the numbers 1–2,338 in two separate data sets and produced a 

heat map ordered by the sum of the ranks.

Testing for independent effects within loci—We tested for independent effects of the 

two SNPs (rs17321999 and rs7579944) within the 2p23.1 locus by fitting a multiple 

regression model with both SNPs as explanatory variables (results for each SNP in this 

analysis are conditional on the other SNP as a covariate). We checked LD between the two 

SNPs in all data sets. We combined the conditional results in meta-analysis in the same way 

as in the single-marker analysis.

Selection of SNPs for replication study—We used a number of criteria to select SNPs 

for replication in the Chinese samples. We chose only SNPs that were not within a 1-Mb 

window of loci that had previously been published as associated with SLE. We selected 

SNPs that had P value significance levels at meta-analysis of <10−4. Three SNPs in loci not 
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previously reported as associated with SLE had a genome-wide level of significance (P < 5 × 

10−8) after meta-analysis. SNPs spanning a 1-Mb window were considered as one region, 

and we selected only independent SNPs within this region, using LD as a measure of 

independence. We carried out a gene-based test on the meta-analyzed data, using only SNPs 

with INFO scores > 0.9, with the software KGG39–41. One SNP from each of the loci that 

passed a gene-based test at the level of P < 10−5 was chosen; some of these had already been 

selected as having P < 10−4 in the meta-analysis as single markers. In total, 105 SNPs were 

selected for replication in the Chinese replication cohort. Of these, 66 passed QC, and 18 

SNPs with FDR < 1% were taken forward to the European replication.

Genotyping of replication data

Genotyping of 130 SNPs was carried out for the 3,614 cases and 5,924 controls forming the 

Chinese replication set, using the Sequenom platform. This set of 130 SNPs included 105 

SNPs in loci not previously reported as associated with SLE and 25 SNPs in loci that had 

previously been published as associated with SLE. The 105 potential new SLE SNPs 

included, in some cases, multiple SNPs in the same loci where we had some evidence of 

independence. We carried out several QC steps: we removed SNPs with >10% missing data 

(25 SNPs), and then subjects with >5% missing data. Two SNPs were monomorphic. Of the 

remaining 103 SNPs, 77 were in regions of the genome with potential new SLE associations. 

We removed 13 SNPs after we checked the genotyping allele intensity plots closely for 

clustering quality and tested for Hardy–Weinberg equilibrium (HWE). SNPs were removed 

if HWE P < 1.00 × 10−4. After QC, the Chinese replication consisted of 3,043 cases and 

5,074 controls with genotyping on 64 SNPs. The European replication data comprised 1,478 

cases and 6,925 controls genotyped for 18 SNPs with an FDR of 1% in the Chinese 

replication study. The cases were of European ancestry and were a subset of those used in 

the replication study in the European GWAS3; in the current study we carried out new 

genotyping on these 18 SNPs, and the controls were the same as used in that study (these 

samples were checked for European ancestry using a principal component analysis spiked 

with HapMap samples; see the original paper3). One of the 18 SNPs typed in the European 

replication cohort for this study (rs2297550) failed genotyping, and the remaining 17 SNPs 

passed QC (<3% missing data, HWE P > 1.00 × 10−4). An additional European GWAS was 

also used for replication, comprising 1,165 cases and 2,107 controls15.

Gene expression data

Gene expression data came from two sources. We obtained data from Fairfax et al.17 and 

unpublished data from B. Fairfax and J. Knight for NK cells, naive monocytes, monocytes 

stimulated by lipopolysaccharide (harvested after 2 h and 24 h), monocytes stimulated by 

interferon, and B cells. We obtained CD4 (CD4+ T cells) and CD14 (CD14/16+ monocytes) 

data from a previous study of gene expression in immune-related cells16. We made an 

adjustment for multiple testing using FDR = 0.01. To test whether observed associations 

between SNPs and expression levels of cis-acting genes were due to chance, we calculated 

the RTC score18.
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Fine-mapping Bayesian credibility sets

For each of the associated loci in Supplementary Table 1 and Table 1, we calculated a Bayes 

factor for each SNP within the 2-Mb window. We used the approximate Bayes factor of 

Wakefield32. We then calculated the posterior probability that each SNP was driving the 

association, using the Bayes factors, and created credibility sets as recently described32. We 

created credibility sets using the European data and the Chinese data separately and overlaid 

the sets (Supplementary Fig. 5). We focused on the intersection of these two sets and 

determined the SNPs with highest posterior probability within this intersection, along with 

allele frequencies. We focused on the intersection of the two populations’ sets, as credibility 

sets calculated from the overall meta-analysis were driven by the European data. This would 

also be true if we were to use Bayesian updating (where the posterior probabilities from one 

population are used as priors in the other population). The intersection of the sets gave a 

subset of each population’s credibility set that was more likely to contain the true casual 

SNP.

RoadMap data

We downloaded the epigenetic data for SNPs within the credibility intervals (as defined in 

Supplementary Fig. 5) around each meta-analysis SNP (Table 1) from the RoadMap 

Consortium for all blood cell types. We chose DNase, RNA-seq, H3K27ac (distinguishing 

active enhancers/promoters), H3K27me3 (repressive domains), H3K9ac (promoters) and 

H3K9me3 (constitutive heterochromatin). The files downloaded contained the consolidated 

imputed epigenetic data based on the P value signals from each of the individual epigenetic 

marks in each of the cell types within whole blood. We used the UCSC genome browser 

(hg19) to subset each epigenetic track for regions containing each credibility SNP and then 

exported the signal data via Galaxy42. In selecting chromatin enrichments at each mark for 

each SNP within the credibility set, we ensured that no SNP was less than 10 bp away from 

the edge of the 25-bp epigenetic interval containing it. For SNPs closer to the edge of the 

chromatin interval, we averaged the enrichment from two adjacent intervals. We plotted 3D 

enrichment diagrams for each chromatin mark in each cell type for each SNP within the 

credibility set (Fig. 3 and Supplementary Fig. 6). Figure 3 and Supplementary Figure 6 

highlight SNPs contained within peaks of enrichment (log10 P < 1 × 10−4) with tick marks; 

these SNPs are listed in Supplementary Table 6.

Genetic structure of SLE in European and Asian populations

We calculated the genetic risk score according to the method described by Hughes et al.43, 

taking the number of risk alleles (i.e., 0, 1 or 2) for a given SNP and multiplying it by the 

natural log of its odds ratio (OR). We calculated the cumulative risk score in each subject by 

summing the risk scores from the loci in Supplementary Table 1, excluding the MHC, plus 

the 11 SNPs newly reported in this paper, which robustly associated with SLE and passed 

QC in each population:

Morris et al. Page 10

Nat Genet. Author manuscript; available in PMC 2016 August 01.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



where m represents the number of SLE risk loci, Oi indicates the OR of risk SNPi, and G is 

the number of risk alleles at a given SNP. Cumulative risk scores were calculated for 498 

founders in Europeans (EUR), 503 in East Asians (EAS), 487 in South Asians (SAS), 347 in 

the Amerindian group (AMR) and 657 in Africans (AFR) from 1KG phase 3. We tested for 

differences in GRS using a t-test. A Q-Q plot for each data set satisfied assumptions of 

normality, and given the large sample sizes, the central limit theorem would satisfy 

normality for the distribution of sample means. As there was evidence of differences in 

variances of the GRSs between some pairs of populations (EUR versus AMR, P = 9.97 × 

10−5; AMR versus SAS, P = 5.37 × 10−5; SAS versus EAS, P = 4.50 × 10−3), we used a 

Welch two-sample t-test that does not assume equal variances. The variances in each group 

were as follows: Chinese controls, 0.75; European controls, 0.69; 1KG EAS, 0.86; 1KG 

EUR, 0.67; 1KG SAS, 0.66; 1KG AMR, 0.99; 1KG AFR, 0.77. We used the SNPs in 

Supplementary Table 1a to calculate the GRS for each population. We used the estimated 

OR from the EUR GWAS for the calculation of the GRS in Europeans (EUR and GWAS 

controls) and the OR from the Chinese GWAS for the calculation of the GRS in the EAS and 

Chinese GWAS controls. The OR from the EUR–Chinese meta-analysis was used in 

calculating the GRS in the AMR, SAS and AFR populations. Supplementary Note 1 

presents an assessment of the robustness of our approach. Supplementary Note 2 provides 

details on SLE prevalence.

Heritability explained

We calculated the heritability explained by all genotyped SNPs in the Chinese and European 

populations using GCTA44. We assumed that the Chinese have an approximately threefold 

increase in prevalence compared with the Europeans, so we set the prevalence at 0.0003 in 

Europeans and 0.001 in Chinese. We used a cutoff for relatedness at 0.05, and we used sex 

as a covariate. The results were h2 = 28.4% (s.e. = 2.6%) in Chinese and h2 = 27.0% (s.e. = 

1.0%) in Europeans for autosomal SNPs. We found that the results were robust to choice of 

relatedness for the autosomal SNPs (a cutoff of 0.125 resulted in h2 = 28.4% (s.e. = 2.6%) in 

Chinese and h2 = 27% (s.e. = 1.0%) in Europeans), whereas this was not so for the X 

chromosome (a cutoff of 0.125 resulted in h2 = 1.2% (s.e. = 0.5%) in Chinese and h2 = 1.1% 

(s.e. = 0.2%) in Europeans); a cutoff for relatedness at 0.05 resulted in h < 0.015 in both 

populations.

To compare both populations using the same SNP density, we re-ran the analysis on the 

overlap of genotyped SNPs (267,005 SNPs with minor allele frequency > 1% in Chinese and 

264,833 with minor allele frequency > 1% in Europeans) and found that the heritability 

explained was higher in the data for the Chinese population: h2 = 30.2% (s.e. = 2.6%) in 

Chinese versus h2 = 22.7% (s.e. = 0.9%) in Europeans.

Genetic correlation between European and Chinese SLE GWASs

To estimate genetic correlation (rg), we applied LD score regression34 to the summary 

association data in the European GWAS and the meta-analysis of the Chinese data (the input 

data were all GWAS summary statistics, not just the SLE risk loci discussed in this paper). 

Although this methodology is designed to compare the similarity of genetic risk across 

diseases in the same population, here it served only to illustrate similarity across populations 
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for one disease and to highlight the heterogeneity at the MHC. We used both Asian (rg = 

0.49, P = 3.00 × 10−3) and European (rg = 0.51, P = 4.00 × 10−3) reference LD information. 

This analysis was carried out using summary data on all the SLE risk loci presented in this 

paper, and a further analysis was conducted after removal of the MHC (Asian (rg = 0.63, P = 

6.92 × 10−7) and European (rg = 0.62, P = 4.88 × 10−5)). The increase in rg after removal of 

the MHC illustrates the major heterogeneity at this locus.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Comparison of Manhattan plots for the European and Chinese SLE GWASs. (a) Manhattan 

plot of results from the European (4,036 cases and 6,959 controls) and Chinese (meta-

analysis of two Chinese GWASs comprising 1,659 cases and 3,398 controls) association 

studies. −log10 P values for European subjects are shown in blue, and log10 P values for 

Chinese subjects are shown in red. The ten novel loci identified as SLE associated by this 

study are shown in black. (b) −log10 P values for a meta-analysis (using inverse-variance 

weighting) of European and Chinese GWASs (gray) compared with log10 P values for a test 

of heterogeneity (using Cochran’s Q statistic) between the European and Chinese GWASs 

(brown). The 52 loci with published evidence of SLE association are highlighted in dark 

gray (meta-analysis P values) and dark brown (heterogeneity test); the 10 novel loci 

identified as SLE associated by this study (after replication) are highlighted in black. The 

orange dashed lines in both panels indicate the accepted threshold for genome-wide 

statistical significance, P = 5 × 10−8.
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Figure 2. 

Fine-mapping examples for STAT4, IRF7 and ELF1. The upper plots are LocusZoom plots 

showing association significance (−log10(P value)) and local LD (r2; color-coded). Circular 

points represent SNPs contained within the credibility sets, and square points represent 

SNPs not contained in the sets. The lower plots display the minor allele frequencies for all 

the SNPs in the intersection of the European (EUR) and Chinese (CHN) credibility sets. The 

minor allele frequency is plotted in red. The SNPs with the highest posterior probability 

within the intersection of the confidence intervals are highlighted by blue (highest posterior 

probability in the EUR data), red (highest posterior probability in the CHN data) and black 

(highest posterior probability in the CHN–EUR meta-data) asterisks. The credibility set 

coverage (99% for STAT4, 90% for IRF7 and ELF1) was chosen as the maximum coverage 

that included a maximum of 30 SNPs.
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Figure 3. 

3D enrichment plots depicting epigenetic modifications of ±50 bp overlapping all SNPs in 

the credibility sets for the 11 newly identified associated SNPs. The SNPs are shown as 

individual tracks on the x-axis with the SNP used in the replication study (*) and the SNP 

that showed the best evidence for colocalization with the most prominent epigenetic mark 

(#). Other SNP identities are listed in supplementary Table 6. The z-axis represents the log10 

P value against the null hypothesis that peak intensity arises from the control distribution. 

The z-axis is truncated at a lower level (P < 10−4). For each novel associated locus, results 

are shown for RNA expression (RNA-seq), accessibility to DNase, histone modification by 

acetylation (H3K27ac, H3K9ac) and histone modification by methylation (H3K27me3, 

H3K9me3) over 27 immune cells. The data from the blood cell types are consistently 

ordered on the y-axis according to the annotation in the lower right of the figure: categories 

1–9, innate-response immune cells; categories 10–24, adaptive-response immune cells 

(categories 10 and 11, B cells; categories 12–24, T cells); categories 25–27, cell lines.
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Figure 4. 

Box plots of GRS across the five major population groups. These are standard box plots 

showing medians, interquartile ranges and whiskers indicating 1.5 times the interquartile 

range (Tukey box plots). EUR, European, N = 498; AMR, Amerindian, N = 347; SAS, 

South Asian, N = 487; EAS, East Asian, N = 503; AFR, African, N = 657; from the 1KG 

phase 3 release. The dashed line represents the increase in prevalence with the rank order 

(R1 represents the lowest prevalence, and R4 the highest).
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Table 2

Candidate genes at SLE-associated loci in meta-analysis

Associated SNP Chr
Genes within ±200 

kb of SNP

Genes within the same LD 

block as SNPa
Immune 

phenotype in 

murine modelb

Cis-eQTLs with SNP Likely causal gene 
at locus

rs34889541 1 ATP6V1G3, PTPRC 
(CD45), 

MIR181A1HG

PTPRC PTPRC PTPRC (ref. 19)

rs2297550 1 SRGAP2, 
SRGAP2D, IKBKE, 

RASSF5, EIF2D, 
DYRK3

IKBKE IKBKE, RASSF5 IKBKE IKBKE 20

rs17321999 2 YPEL5, LBH, 
LOC285043, 

LCLAT1

LBH LBH LBH 21

rs6762714 3 LPP, TPRG1-AS1 LPP

rs17603856 6 ATXN1 ATXN1

rs597325 6 BACH2 BACH2 BACH2 BACH2 (refs. 22,23)

rs73135369 7 CLIP2, GTF2IRD1, 
GTF2I, 

LOC101926943

GTF2IRD1 GTF2IRD1/GTF2I 24

rs1887428 9 RCL1, JAK2, INSL6 JAK2 JAK2 JAK2 (ref. 25)

rs494003 11 EHBP1L1, KCNK7, 
MAP3K11, PCNX3, 

SIPA1, RELA, 
KAT5, RNASEH2C, 

AP5B1, OVOL1, 
OVOL1-AS1, 

SNX32, CFL1, 
MUS81, EFEMP2, 

CTSW, FIBP, 
CCDC85B, FOSL1, 
C11orf68, DRAP1, 
TSGA10IP, SART1

AP5B1, OVOL1, OVOL1-AS1 CTSW, MUS81, 
RELA, SIPA1

CTSW, FIBP, 
MUS81, RNASEH2C

RNASEH2C26,27

rs1170426 16 SMPD3, ZFP90, 
CDH3, CDH1

ZFP90, CDH3 CDH1 ZFP90 ZFP90 (FIK)28

a
The LD block is defined as SNPs showing a correlation (r2) of 0.75 with the associated SNP.

b
The immune phenotype designation is taken from http://www.informatics.jax.org/phenotypes.shtml of genes within ±200 kb of the associated 

SNP.
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