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Abstract

Alzheimer’s disease (AD) and related dementias are a major public health challenge and present a therapeutic imperative for
which we need additional insight into molecular pathogenesis. We performed a genome-wide association study and
analysis of known genetic risk loci for AD dementia using neuropathologic data from 4,914 brain autopsies.
Neuropathologic data were used to define clinico-pathologic AD dementia or controls, assess core neuropathologic
features of AD (neuritic plaques, NPs; neurofibrillary tangles, NFTs), and evaluate commonly co-morbid neuropathologic
changes: cerebral amyloid angiopathy (CAA), Lewy body disease (LBD), hippocampal sclerosis of the elderly (HS), and
vascular brain injury (VBI). Genome-wide significance was observed for clinico-pathologic AD dementia, NPs, NFTs, CAA, and
LBD with a number of variants in and around the apolipoprotein E gene (APOE). GalNAc transferase 7 (GALNT7), ATP-Binding
Cassette, Sub-Family G (WHITE), Member 1 (ABCG1), and an intergenic region on chromosome 9 were associated with NP
score; and Potassium Large Conductance Calcium-Activated Channel, Subfamily M, Beta Member 2 (KCNMB2) was strongly
associated with HS. Twelve of the 21 non-APOE genetic risk loci for clinically-defined AD dementia were confirmed in our
clinico-pathologic sample: CR1, BIN1, CLU, MS4A6A, PICALM, ABCA7, CD33, PTK2B, SORL1, MEF2C, ZCWPW1, and CASS4 with 9
of these 12 loci showing larger odds ratio in the clinico-pathologic sample. Correlation of effect sizes for risk of AD dementia
with effect size for NFTs or NPs showed positive correlation, while those for risk of VBI showed a moderate negative
correlation. The other co-morbid neuropathologic features showed only nominal association with the known AD loci. Our
results discovered new genetic associations with specific neuropathologic features and aligned known genetic risk for AD
dementia with specific neuropathologic changes in the largest brain autopsy study of AD and related dementias.
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Introduction

Studies of brain aging with brain autopsy endpoint have

repeatedly demonstrated that dementia in older individuals most

often derives from three common diseases: Alzheimer’s disease

(AD), vascular brain injury (VBI) especially small vessel disease,

and Lewy body (LB) disease (LBD) [1]. Importantly, while each of

these diseases exclusively can cause dementia, they commonly co-

exist in older patients with dementia [2]. These same brain

autopsy studies also commonly observed pathologic changes of

AD, LBD, and/or VBI in older individuals carefully demonstrated

to be cognitively normal proximate to death. Indeed, it was these

observations from cognitively intact ‘‘controls’’ that first led to the

hypothesis of cognitive reserve, the idea of excess functional

capacity that can mask clinical expression of disease. Biomarker

and molecular neuroimaging studies also have observed abnormal

changes in cognitively normal individuals that typically occur in

patients with dementia, and have demonstrated with longitudinal

observation that some of these changes are pathologic [3]. Thus,

dementia in older individuals is a syndrome that derives most

commonly from the idiosyncratic convergence of three chronic

disease processes, AD, VBI, and/or LBD, that each appear to

have prevalent latency prior to clinical expression.

The suffering to patients and loved ones and cost to health care

systems from the global burden of dementia are staggering, and

projected to increase markedly in the coming 20 years [4]. While

interventions exist to mitigate some types of VBI, the major unmet

medical needs are disease-modifying therapies for AD and LBD.

Many efforts are underway to achieve this therapeutic imperative,

although none yet has met with reproducible success in clinical

trials. One response to these setbacks is to revise the approach to

existing therapeutic targets, such as using existing experimental

interventions in earlier stages of disease or in selected subgroups.

Another approach is to increase the repertoire of therapeutic

targets by expanding our knowledge of the molecular drivers of

disease; this rationale animates the several recent genome-wide

association studies (GWAS) for AD [5–11].

Given the pathologic complexity of AD and related dementias,

and the prevalence of latent disease, we hypothesized that direct

analysis of neuropathologic features might align known genetic risk

loci with specific diseases processes as well as identify novel genetic

variants associated with specific neuropathologic features. To test

these hypotheses the Alzheimer’s Disease Genetics Consortium

(ADGC) assembled a set of 4,914 samples with genome-wide

genotyping data and neuropathologic data, and performed

genome-wide association tests of AD and related diseases. We

performed both genome wide association and analyses focused on

known AD dementia genetic risk loci while using three approaches

to the neuropathologic data: a clinico-pathologic definition of AD

dementia or controls, focus on the core neuropathologic features of

AD, i.e., neurofibrillary tangles (NFTs) and neuritic plaques (NPs),

in cases and controls combined, and inclusion of commonly co-

morbid neuropathologic features observed in older individuals

with dementia, i.e., cerebral amyloid angiopathy (CAA), LBD,

hippocampal sclerosis in the elderly (HS), and VBI.

Results

Genome-wide association
First we performed a GWAS of clinico-pathologic AD

dementia, that is, cases with clinical dementia confirmed to have

moderate to high levels of core AD pathologic changes and

controls without dementia and no or low levels of core AD

pathologic changes (Table 1). Results and Quantile-Quantile

plots are detailed in the supporting material (Tables S1, S2;

Figures S1, S2). A number of variants in and around the

apolipoprotein E gene (APOE) achieved genome-wide significance

(rs6857, p-value = 2610262). One additional variant in the PHD

Finger Protein 21B gene (PHF21B) achieved genome-wide

significance (chr22:45354131, p-value = 1.961028). However,

GWAS Meta-analysis of Pathologic Features of AD and Related Dementias
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the variant was only imputed in one dataset (albeit the largest set,

ADC), had a low minor allele frequency (MAF) ( = 0.017), had a

modest imputation info score ( = 0.428), and was not well-

supported by association at other variants in the region (Figure

S3). These are typically the signs of a false positive, but we do note

that a recent meta-analysis of primarily clinic-based samples by the

International Genomics of Alzheimer’s Project (IGAP) [11] found

nominal association at this locus (p-value = 0.00659), with the

same direction of effect as we report. There is however some

sample overlap between this and the Lambert et al study.

We also performed a GWAS of core AD pathologic changes; we

performed two ordinal analyses for NFT and an ‘‘any vs. none’’

NP analysis (presence of NPs as one category and absence of NPs

as another; see Methods). We found variants in the APOE region

to be highly associated with both NPs (p-value,10246 any-none;

p-value,10226 ordinal) and NFTs (p-value,10246 ordinal with

seven categories; p-value,10243 ordinal with four categories)

(Tables S3, S4, S5, S6, Figures S4, S5, S6, S7). Three

additional loci were significantly associated with NPs in the ‘‘any

vs. none’’ analysis: GalNAc transferase 7 (GALNT7; minimum p-

value = 6.061029; Figure 1), ATP-Binding Cassette, Sub-Family

G (WHITE), Member 1 (ABCG1; minimum p-value = 8.061029;

Figure 2), and an intergenic region on chromosome 9 (minimum

p-value = 4.361028; Figure 3). Each of these three loci were

tested in multiple datasets, and there was no evidence of

heterogeneity of effect size (heterogeneity p-value.0.5 for each;

Figures S8, S9, S10). These three additional loci were not

significantly associated in the recent IGAP analysis (p-value.

0.05). There were no additional genome-wide significant loci with

the NP ordinal analysis or the NFT analyses (Tables S3, S4,

S5, S6).

Our last GWAS was of co-morbid neuropathologic features.

APOE showed significant genome wide association for both CAA

(minimum p-value = 2.8610223), and LBD (minimum p-value,

1.1610212) but was not strongly associated with VBI or with HS

(Tables S7, S8, S9, S10, S11, S12, S13; Figures S11, S12,

S13, S14, S15, S16, S17). HS had significant genome-wide

association with an intergenic region on chromosome 18

(minimum p-value = 4.661028; Figure 4) and strong association

at the Potassium Large Conductance Calcium-Activated Channel,

Subfamily M, Beta Member 2 gene (KCNMB2) on chromosome 3

(minimum p-value = 7.161028; Figure 5). The chromosome 18

locus was only tested in one dataset – the largest set, ADC, while

the KCNMB2 locus was tested in multiple datasets and showed no

evidence of heterogeneity of effect size (heterogeneity p-value.0.5;

Figure S18). The chromosome 18 locus did show suggestive

association with AD risk in the IGAP analysis (p-value = 0.0611)

with an effect size in the same direction reported here. No other

significant genome-wide association was discovered for CAA,

LBD, or VBI (Table 2).

Analysis of known AD dementia genetic risk loci
The ADGC, together with international collaborators under the

banner of IGAP (International Genomics of Alzheimer’s Project)

has to-date identified 21 common genetic loci associated with AD

dementia using primarily clinically ascertained datasets

[7,8,10,11], in addition to confirming the APOE locus [12].

One of our goals in the study presented here was to test the

hypothesis that pathologic confirmation of dementia or control

status might reduce phenotypic heterogeneity and thereby

enhance known genetic associations with AD dementia. We used

two sets that met our clinico-pathologic criteria for case or control

(Table 1): the ‘‘primary’’ dataset had 3887 cases and 1027

controls which allowed some incomplete documentation of

pathologic features, and the ‘‘complete’’ dataset which had 3044

case and 658 controls with more stringent documentation

standards. The primary clinico-pathologic analysis confirmed (p-

value,0.05) association with 12 of the 21 previously identified

Table 1. Case-control criteria.

Clinicala Pathologic Phenotype Decision

NIA/Reaganb NP scorec NFT Braak staged

Dementia Group intermediate or high likelihood — — Neuropathologic AD

— moderate or frequent III–VI

Not Demented Group low likelihood — — Neuropathologic Control

— none or sparse 0, I, or II

— none III or IV

Neuropathologically-confirmed AD and control criteria. Abbreviations: NP: neuritic plaque; NFT: neurofibrillary tangles. AD: Alzheimer’s disease.
aDementia Group met DSM-IV criteria or had a clinical dementia rating greater than zero. Not Demented Group did not meet DSM-IV criteria for dementia, had no mild
cognitive impairment and—when available—a clinical dementia rating of zero.
bHyman and Trojanowski, 1997 [23].
cMirra et al., 1993 [21].
dBraak and Braak, 1991 [22].
doi:10.1371/journal.pgen.1004606.t001

Author Summary

Alzheimer’s disease (AD) and related dementias are a
major public health challenge and present a therapeutic
imperative for which we need additional insight into
molecular pathogenesis. We performed a genome-wide
association study (GWAS), as well as an analysis of known
genetic risk loci for AD dementia, using data from 4,914
brain autopsies. Genome-wide significance was observed
for 7 genes and pathologic features of AD and related
diseases. Twelve of the 22 genetic risk loci for clinically-
defined AD dementia were confirmed in our pathologic
sample. Correlation of effect sizes for risk of AD dementia
with effect size for hallmark pathologic features of AD
were strongly positive and linear. Our study discovered
new genetic associations with specific pathologic features
and aligned known genetic risk for AD dementia with
specific pathologic changes in a large brain autopsy study
of AD and related dementias.
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[11] non-APOE loci: CR1, BIN1, CLU, MS4A6A, PICALM,

ABCA7, CD33, PTK2B, SORL1, MEF2C, ZCWPW1, and

CASS4; 9 of these also were confirmed in the ‘‘complete’’ analysis

(Table 3). All loci but one (CELF1) had a consistent direction of

effect with the odds ratio (OR) previously reported (Figure 6).

Nine of the twelve loci confirmed in the clinico-pathologic datasets

had stronger OR with AD dementia than was observed previously.

This is more than would be expected at random (paired t-test p-

value = 0.00029 among confirmed loci; p-value = 0.033 among all

21 non-APOE loci); OR for CLU and PTK2B were essentially

unchanged from the previous report, and the OR for CR1 was

reduced in our study. These results are consistent with less

heterogeneity in our clinico-pathologic sample compared to

studies with purely clinical ascertainment schemes. Rare variation

in the recently discovered TREM2 and PLD3 genes [13,14] was

not imputed on our reference panel and as such was not assessed

in this study. Some nominal association (p-value,0.05) was noted

in these genes (e.g., with PLD3 and the MTS phenotype, marker

19-40373284 had a p-value = 0.006118; with TREM2 and the

four category Braak phenotype, marker rs17328707 had a p-

value = 0.001132, etc). However, given that over 240 markers

were tested in each gene, even these minimum p-values would not

withstand a gene-based multiple testing correction.

Next we tested the hypothesis that the 21 common AD loci are

varyingly associated with the core AD neuropathologic features

among all subjects, combining cases and controls (n = 4,914). The

effect sizes for 12 of the 21 loci (11 of the 12 confirmed loci) were

significantly associated with one or both of the core neuropath-

ologic features of AD with a consistent direction of effect (Table

S14). Though CR1 is associated with clinico-pathologic AD, we

do not confirm the previously reported associations with NPs and

CAA [15]; we do confirm the previous associations with CD2AP
and ABCA7 and NPs [15]. To gain additional insight into the

potential molecular drivers of specific neuropathologic features, we

compared the effect sizes for risk of AD dementia (function) with

the effect sizes for the two core AD neuropathologic features

(structure) across these 21 loci in all subjects. Effect size estimates

for both NFTs and NPs were strongly positively correlated to the

previously reported effect sizes (p-value,1026 for the NFT ordinal

traits; p-value,1026 for the NP ordinal analysis; p-value,1024

for NP ‘‘any vs. none’’ analysis (Figure 7; Figure S19).

The co-incident neuropathologic features showed only nominal

association with the known AD loci (Table S15). LBD (n= 3526)

was nominally associated with MEF2C with effect sizes similar to

both NFTs and NPs. LBD was also nominally associated with

SORL1, with an effect size direction opposite that previously

reported for AD dementia. HS (n= 2866) was nominally

associated with PTK2B; VBI (n = 2940) showed nominal associ-

ation at NME8; CAA (n= 2807) showed no association with any

of the previously reported loci. We next compared the co-morbid

neuropathologic features effect size estimates to the known AD risk

effects (Figure 7). While the core AD feature effect sizes showed

strong, positive correlations with the previously reported effect

sizes, the picture at co-morbid features was more complicated.

Figure 1. Regional association plot for GALNT7 and the neuritic plaque (any vs. none) analysis. The purple dot indicates the most
associated SNP in the region. The x-axis is basepair position, and y-axis is the 2log(p-value), base 10.
doi:10.1371/journal.pgen.1004606.g001

GWAS Meta-analysis of Pathologic Features of AD and Related Dementias
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LBD effect sizes showed weak moderate positive correlations with

the previously reported effect sizes (Figure S20; slope p-

value = 0.035), while VBI showed a moderate negative correlation

with the previously reported AD dementia effect sizes (Figure

S21; slope p-value = 0.0292). To test if these correlations had to do

with the study ascertainment scheme, we repeated the analysis but

using cases only; in the case-only set LBD effect sizes were no

longer correlated with the previously reported effect sizes (p-

value = 0.86), while the correlation of the VBI effect sizes with

those previously reported was stronger (p-value = 4.2261024)

(Figures S20, S21).

Finally, we compared NP effect sizes against the effect sizes for

NFTs and CAA at each of these loci; we observed a strong,

positive, and linear association between effect sizes of NPs and

NFTs, but no correlation between NPs and CAA (Figure 7).

Discussion

Cognitive impairment among older individuals is a complex

convergent trait that often occurs with mixed pathology: AD,

LBD, and VBI, which each have prevalent prodromal and latent

stages in addition to full clinical expression as dementia. Indeed,

approximately 95% of subjects without dementia in this age group

have some pathologic evidence of at least one of these three

diseases. These facts as first discovered in neuropathologic studies

of brain aging and subsequently validated in part by neuroimaging

and biomarker studies present serious challenges to diagnose

accurately and comprehensively the diseases that cause an

individual’s dementia based exclusively on clinical data, and

clearly demonstrate that age-matched control populations are

variably, and potentially extensively, ‘‘contaminated’’ with latent

disease. Virtually all previous GWAS of AD have been based on

cases and controls defined exclusively by clinical criteria. To

address this limitation, we undertook a GWAS of dementia that

focused on neuropathologic data (i) to test the hypothesis that

clinico-pathologic characterization of cases and controls could be

used to strengthen previous genetic associations with AD made by

clinical criteria, (ii) to test the hypothesis that genetic associations

for AD dementia will selectively align with specific neuropatho-

logic features, and (iii) to discover new genetic associations with

neuropathologic features of AD and related dementias.

Although we assembled a large brain autopsy cohort, it is still a

relatively modest number of samples for GWAS compared to the

larger IGAP GWAS where subjects were primarily clinically

diagnosed cases and controls. The reduction in statistical power

due to a smaller sample must be balanced against improved

phenotypic homogeneity. With this balance in mind, our study

confirmed 12 of the 21 previously reported loci as significantly

associated with AD dementia. Our association with clinico-

pathologic AD dementia was strengthened for 9 of these 12 loci

(ABCA7, BIN1, CASS4, CD33, MEF2C, MS4A6A, PICALM,

SORL1, and ZCWPW1), essentially unchanged for CLU and

PYK2B, and diminished for CR1 to unity with increasingly

stringent pathologic criteria. CR1 also is the only locus that we

confirmed as associated with AD dementia that was not

significantly associated with a specific neuropathologic feature.

Figure 2. Regional association plot for ABCG1 and the neuritic plaque (any vs. none) analysis. The purple dot indicates the most
associated SNP in the region. The x-axis is basepair position, and y-axis is the 2log(p-value), base 10.
doi:10.1371/journal.pgen.1004606.g002

GWAS Meta-analysis of Pathologic Features of AD and Related Dementias
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One possible explanation is that previous associations of CR1 with

AD dementia may be related more to clinical expression of disease

rather than to the accumulation of NPs and NFTs; it is of note

though that CR1 has been associated with NPs and CAA

previously [15]. The same may be true for the other 9 loci that

were not confirmed in our clinico-pathologic case-control analysis;

however, lack of confirmation also may be the result of limitations

of smaller sample size outweighing the potential advantages of

reduced phenotypic heterogeneity or perhaps even spurious

associations in previous studies.

Clinical expression of dementia encompasses at least several

processes that include disease mechanisms that produce stress and

injury, response to injury, physiologic compensation, and cognitive

reserve. Our second major goal was to determine the alignment

between AD dementia genetic risk loci and specific neuropatho-

logic features that are core to (NPs and NFTs) or co-morbid with

(LBD, VBI, HS, CAA) AD in an attempt to clarify the relevant

molecular mechanisms that underlie these characteristic lesions

that are related to injury and response to injury. Association tests

for NFTs and NPs were significant for five of the previously

reported loci that were validated in our clinico-pathologic GWAS

(ABCA7, BIN1, CASS4, MEF2C, and PICALM); NFTs were

specifically associated with CLU, SORL1, and ZCWPW1, and
NPs were specifically associated with MS4A6A and CD33. In all

instances the effect sizes for NPs or NFTs were in the same

direction as the previously reported effects for AD dementia.

Effects sizes for LBD were increased with SORL1 and decreased

with MEF2C, and HS was associated with PTK2B; no significant

association was observed between previously reported AD

dementia loci and VBI or CAA. Association of LBD with SORL1
locus is novel and, interestingly, the effect size was in the direction

opposite to its association with NFTs. The SORL1 locus has not

been identified in previous studies of Parkinson’s disease (PD),

another LBD, but these were investigations of PD defined by its

movement disorder rather than LBD in the context of AD

dementia as we have done here; this unexpected association will

require replication and further investigation. We analyzed NPs

and NFTs as binary (any vs. none) and finer graded (ordinal)

phenotypes; stronger associations were observed with binary

analyses perhaps because of variation in assigning histopathologic

stages to these characteristic AD lesions.

We observed a linear correlation between the previously

reported AD dementia effect sizes and the effect sizes for NPs

and NFTs determined in our cohort whether we included all 21

IGAP loci or limited our analysis to the 12 loci confirmed in our

clinico-pathologic investigation. We do not think this is a foregone

conclusion. Indeed, the literature is replete with commentary that

one or both of the core AD lesions are a product of brain aging

rather than AD. Our results strongly support the view that the

molecular drivers underlying the accumulation of NPs and NFTs

in brain are largely shared with the molecular drivers of severely

impaired cognitive function. Interestingly, there was not a

significant correlation with CAA, suggesting that this other form

of amyloidosis has a different genetic risk profile than NP

Figure 3. Regional association plot for the chromosome 9:129,280,000–129,380,000 region and the neuritic plaque (any vs. none)
analysis. The purple dot indicates the most associated SNP in the region. The x-axis is basepair position, and y-axis is the 2log(p-value), base 10.
doi:10.1371/journal.pgen.1004606.g003
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accumulation. Using the same approach, correlation of effect sizes

for IGAP loci with effect sizes for LBD was at best weakly positive,

and for VBI was negative. This last observation was unexpected

and, if validated, might indicate that the genetic risk architecture

for AD and VBI are inversely related, an intriguing possibility that

stimulates speculation over why this may be. It also suggests a

possible approach to genetic stratification of risk for two of the

most common causes of cognitive impairment and dementia in

older individuals.

Our third goal was genome-wide discovery of associations with

the six neuropathologic features to gain additional insights into the

molecular drivers of these characteristic lesions. As expected, there

was a very strong association of the APOE locus with our clinico-

pathologically defined AD dementia. We observed a strong

association between the APOE locus and NFTs, NPs, CAA, and

LBD, but not with HS or VBI. While the association of APOE
with both core features and a secondary neuropathologic feature

of AD is expected from ascertainment bias, the association with

LBD may not be so simple. Indeed, an association between APOE
and Dementia with Lewy bodies (DLB) has been varyingly

supported or refuted in several smaller studies that did not include

pathologic evaluation to exclude contribution from unknown and

likely varying amounts of AD. However, in a recent large study of

DLB and PD dementia that included pathologic evaluation, we

demonstrated that inheritance of APOE e4 allele is a significant

risk factor for DLB even in the absence of AD [16]. In addition,

our GWAS showed a genome-wide significant association between

NPs and ABCG1, a locus previously implicated in AD [17]. The

association of NPs with GALNT7 is novel and potentially

reinforces existing genetic associations with other genes that

encode for members of this family of transferases. Indeed,

alteration in the O-glycosylation pattern of amyloid beta peptides

and NPs has been reported in AD [18–20]. Finally, we made a

novel association of HS with a variant of KCMNB2, which

encodes a subunit of a Ca++-gated K+ channel that is key to

neuronal excitability and is highly expressed by hippocampal

pyramidal neurons in sector CA1. Although this discovery requires

validation, it may have significance beyond AD dementia since HS

also occurs frequently in some forms of fronto-temporal dementia.

While additional replication datasets are ideal for these novel loci,

we do note that the meta-analysis approach here is a type of

replication, and that all of the novel variants with support from

multiple datasets had no signs of heterogeneity of effect size.

In summary, this genetic association study of autopsy brain

enhanced some and diminished other known genetic risk loci for

AD dementia, highlighted a subset of the loci previously associated

with AD dementia as potential molecular drivers of specific

neuropathologic features of AD, and discovered new genetic loci

associated with specific neuropathologic features. These novel

results provide new insights into new candidate therapeutic targets

for AD and related dementias that will require validation and

functional investigation.

Figure 4. Regional association plot for the chromosome 18:6,420,000–6,520,000 region and the hippocampal sclerosis (any vs.
none) analysis. The purple dot indicates the most associated SNP in the region. The x-axis is basepair position and y-axis is the 2log(p-value), base
10.
doi:10.1371/journal.pgen.1004606.g004
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Methods

Sample selection
Samples were contributed by the National Institute on Aging (NIA)

Alzheimer’s Disease Centers (ADCs) and ADGC-collaborating

studies. The ADC dataset includes samples ascertained and evaluated

by the Clinical and Neuropathology Cores of the 29 NIA-funded

ADCs. The National Alzheimer’s Coordinating Center (NACC)

organizes a collection of phenotype data from the ADCs, organizes its

database, coordinates implementation of definitions of AD cases and

controls, and oversees collection and distribution of samples.

The ADGC collaborating studies include the Adult Changes in

Thought study (ACT; Eric B. Larson, PI), the Mayo Clinic

Alzheimer’s Disease Research Center (MAYO; Steven G.

Younkin, PI), the University of Miami Brain Endowment Bank

(MBB; Deborah Mash, PI), the National Institute on Aging Late-

Onset Alzheimer’s Disease Family Study (NIA-LOAD; Richard

Mayeux, PI), the Oregon Health & Science University Alzheimer’s

Disease Center (OHSU; Patricia Kramer, PI), the Religious

Orders Study and Memory and Aging Project (ROSMAP; David

Bennett, PI), the Translational Genomics Research Institute

(TGEN; Eric Reiman, PI), the University of Pittsburgh Alzhei-

mer’s Disease Research Center (UP; Kamboh, PI), the University

of Miami Hussman Institute for Human Genomics (UM; Pericak-

Vance, PI), the Vanderbilt University Center for Human Genetics

Research (VU; Jonathan Haines, PI), and the Mount Sinai School

of Medicine (MSSM; Joseph Buxbaum PI) (see Table S16 for

details; descriptive statistics found in Table S17).

All samples had thorough neuropathologic examination ac-

cording to consensus criteria that existed at the time that our study

was initiated. Prior to analysis, neuropathologic data were

reviewed and harmonized by a single neuropathologist (TJM) to

ensure consistency across assessment sites.

Neuropathology methods and eligibility criteria
Samples were evaluated at each site. Assessment of NPs and

NFTs followed the protocols of CERAD [21], and Braak and

Braak [22], respectively, at all sites. Criteria for assessment of co-

morbid features were reviewed with each site and only those

using comparable methods, i.e., immunohistochemistry for

alpha-synuclein to detect LBs, and similar sampling protocols

were included in our analyses. For inclusion as a case, the subject

must have been diagnosed with dementia (DSM-IV criteria or

clinical dementia rating greater than zero) and the subject’s

autopsy must have either NIA/Reagan classification of interme-

diate or high likelihood of AD [23], or have an NP score of

moderate/frequent and NFT Braak stage of III–VI. For

inclusion as a neuropathologically-confirmed control, each

subject must not have had a clinical diagnosis of dementia or

MCI within two years of death (does not meet DSM-IV criteria

for dementia, no mild cognitive impairment, and—when

available—clinical dementia rating of zero), no diagnosis of

other neurologic disease by clinical or neuropathologic evalua-

tion, and must have had low likelihood of AD by NIA/Reagan

criteria, or none/sparse NPs and NFT Braak stage of 0, I, or II.

If no NPs were identified, then an NFT Braak stage III or IV was

Figure 5. Regional association plot for KCNMB2 and the hippocampal sclerosis (any vs. none) analysis. The purple dot indicates the most
associated SNP in the region. The x-axis is basepair position, and y-axis is the 2log(p-value), base 10.
doi:10.1371/journal.pgen.1004606.g005
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accepted in the control group (Table 2). In total 5,981 samples

were eligible for inclusion in our analyses.

Core AD neuropathologic phenotypes
The core AD neuropathologic phenotypes analyzed were NFTs

and NPs. NFTs were analyzed in two well-established ordinal

rankings (seven Braak stages: none, I, II, III, IV, V, and VI; and

four Braak groups: none, transentorhinal, limbic, isocortical). NPs

were analyzed with one ordinal ranking (four CERAD scores:

none, sparse, moderate, frequent) and a presence vs. absence (any

NPs vs. no NPs) analysis. Sample sizes by cohort are described in

Table S18.

Co-morbid neuropathologic phenotypes
There were four co-morbid neuropathologic phenotypes

analyzed: LBD, VBI, HS, CAA. LBD was analyzed with two

ordinal rankings (five categories: none, brainstem-predominant,

limbic, neocortical, and other regions or not specified; three

categories: none, brainstem-predominant, and all other regions or

not specified) and a presence vs. absence (any LBD vs. no LBD)

analysis. VBI was analyzed in an ordinal ranking (three categories:

none, any microinfarcts, any lacunar or territorial infarcts) and in

a presence vs. absence (any VBI vs. no VBI) analysis. HS and CAA

were both analyzed using presence vs. absence analyses. Sample

sizes by cohort are described in Table S18.

Clinico-pathologic AD dementia phenotypes
Additionally, we performed a case/control analysis of clinico-

pathologic AD dementia. That is, cases had clinical dementia with

core AD neuropathologic changes, and controls were not clinically

demented and had none or minimal AD neuropathologic changes.

Two ‘‘case-control’’ datasets were considered. For the ‘‘primary’’

dataset, all cases and controls were included, regardless of the

documentation from the primary neuropathologist. The secondary

dataset (‘‘complete’’ dataset) required more thorough documenta-

tion of the neuropathologic assessment, including documentation

of the NIA/Reagan assessment or complete documentation of

both the NFT Braak stage and the NP score. Sample sizes by

cohort are described in Table S18.

Genotyping and quality control (QC)
Genotyping for the ADC samples was performed at the

Children’s Hospital of Pennsylvania on the Illumina 660k

beadchip. Genotyping of ADGC collaborating centers was

performed on a variety of genotyping platforms and is described

in Naj et al 2011 [8]. QC and statistical analyses are summarized

in Figure S22. Preliminary QC includes checks for sample

relatedness, sex inconsistency, sample missingness, and principal

components analysis of genotype data to confirm the sample’s

race, and is described by Naj and colleagues [8,24,25]. The top

principal components were further used as covariates in the

association analysis (see below).

Genotype imputation and final QC
To infer genotypes at loci not on the genotyping chips, we used

IMPUTE v2 software [26] in all datasets, using the 1,000

Genomes Project data as a reference [27]. Imputation and

imputation QC were performed independently across the different

datasets, but with all using the December 2010 release of the 1,000

Genomes Data. For inclusion in the statistical analysis, variants

must have high quality imputation (IMPUTE info score greater

than 0.40 and a dosage variance greater than 0.0198 (the

estimated variance of a 1% MAF SNP). We also required an

MAF.1% (estimated based on dosage data) as the study is not

well-powered for low frequency variants.

Statistical analysis
See Supporting Material for an overview of analyses. For binary

traits, logistic regression was used, with principal components 1–3

included as covariates to account for population substructure; the

Figure 6. Barplot of OR for known AD risk loci (all 21 loci). Red indicates the estimated OR previously reported through the IGAP consortium
[11], green indicates the estimated OR from our primary clinico-neuropathologic case-control analysis, and blue indicates the estimated OR from a
more restrictive analysis that required complete documentation of all relevant neuropathologic phenotypes.
doi:10.1371/journal.pgen.1004606.g006
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analysis was performed using PLINK genetic analysis software

[24]. For ordinal traits, we used polytomous logistic regression

with principal components 1–3 included as covariates to account

for population substructure; the analysis was performed with the

polr function (part of the MASS package [28]) in the R statistical

analysis software (http://www.r-project.org/). Polytomous logistic

regression is an extension of logistic regression that allows for

analysis of categorical data. As these data were either binary or

ordinal, we used the proportional odds assumption to obtain a

single effect-size estimate for each SNP for each of the ordinal

traits.

Association analysis was performed within each cohort sepa-

rately, and results were meta-analyzed across cohorts. Because

some datasets had small sample size or had incomplete phenotyp-

ing, we only considered a set for a particular analysis if that set had

at least two categories with at least five individuals in each

category. That is, for binary traits the set had to include both cases

and controls. For categorical traits, the set had to have at least two

categories on which analysis could be performed. The sets

included (and categories used) in the particular analyses are

described in Table S8. After the within dataset association

analysis, we used METAL [29], to meta-analyze result across

Figure 7. Correlations of OR for known AD risk loci and the neuropathology phenotypes. Bottom left indicates the magnitude, direction,
and confidence interval of the correlation. Top right shows plots of the data points against each other. The diagonal box indicates the phenotypes;
off-diagonal boxes indicate the correlations of the OR for the corresponding phenotypes.
doi:10.1371/journal.pgen.1004606.g007
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datasets, weighting each effect size by the inverse of the variance

estimated from the logistic or polytomous logistic regression

analyses, and to calculate heterogeneity statistics for each meta-

analysis. QQ-plots for each trait are included (see supporting

material).

To compare effect sizes at previously identified AD loci, we

performed linear regression and correlation analyses of the

estimated effect sizes (and OR) at the loci. Regression was

performed using the R statistical software with the ‘‘glm’’ function

[30], and the ‘‘corrgrams’’ package [31]. As linear regression in

small datasets can be heavily influenced by outliers, we removed

the outliers (plus or minus 3 standard deviations from the mean)

prior to regression and correlation analyses.

Supporting Information

Figure S1 QQ plot for primary endpoint. QQ Plot for the

primary clinico-neuropathologic case-control analysis. The anal-

ysis was not inflated for false positives (GIF= 0.972).

(TIF)

Figure S2 QQ plot for complete endpoint. QQ plot for the

‘‘complete’’ clinico-neuropathologic case-control analysis. The

analysis was not inflated for false positives (GIF= 0.949).

(TIF)

Figure S3 Regional association plot of the PHF21B locus. The

purple dot indicates the most associated SNP in the region. The x-

axis is basepair position, and y-axis is the 2log(p-value), base 10.

(TIF)

Figure S4 QQ plot for NFT Braak (four category) endpoint.

QQ plot for the NFT Braak (four category ordinal) analysis. The

analysis was not inflated for false positives (GIF= 0.975).

(TIF)

Figure S5 QQ plot for NFT Braak (seven category) endpoint.

QQ plot for the NFT Braak (seven category ordinal) analysis. The

analysis was not inflated for false positives (GIF= 0.987).

(TIF)

Figure S6 QQ plot for Neuritic plaque (any-none) endpoint.

QQ plot for the Neuritic plaque (case-control) analysis. The

analysis was not inflated for false positives (GIF= 0.962).

(TIF)

Figure S7 QQ plot for Neuritic plaque (ordinal) endpoint. QQ

plot for the Neuritic plaque (ordinal) analysis. The analysis was not

inflated for false positives (GIF=0.977).

(TIF)

Figure S8 Forest plot for GALNT7 locus and Neuritic

plaque(rs62341097). Forest plot of the rs62341097 variant, in

terms of the odds ratio.

(TIF)

Figure S9 Forest Plot for ABCG1 locus and Neuritic plaque

(chr21:43,678,066). Forest plot of the associated chr21 locus, in

terms of the odds ratio.

(TIF)

Figure S10 Forest Plot for chr9 locus and Neuritic plaque

(chr9:129,356,304). Forest plot of the associated chr9 locus, in

terms of the odds ratio.

(TIF)

Figure S11 QQ plot for Lewy Body (any-none) endpoint. QQ

plot for the Lewy Body (case-control) analysis. The analysis was

not inflated for false positives (GIF= 0.954).

(TIF)

Figure S12 QQ plot for Lewy Body (three category) endpoint.

QQ plot for the Lewy Body (three category ordinal) analysis. The

analysis was not inflated for false positives (GIF= 0.956).

(TIF)

Figure S13 QQ plot for Lewy Body (five category) endpoint.

QQ plot for the Lewy Body(five category ordinal) analysis. The

analysis was not inflated for false positives (GIF= 0.963).

(TIF)

Figure S14 QQ plot for Amyloid Angiopathy endpoint. QQ

plot for the Amyloid Angiopathy (case-control) analysis. The

analysis was not inflated for false positives (GIF= 0.956).

(TIF)

Figure S15 QQ plot for Hippocampal Sclerosis endpoint. QQ

plot for the Hippocampal Sclerosis (case-control) analysis. The

analysis was not inflated for false positives (GIF= 0.968).

(TIF)

Figure S16 QQ plot for vascular brain injury (any-none)

endpoint. QQ plot for the VBI (case-control) analysis. The

analysis was not inflated for false positives (GIF= 0.967).

(TIF)

Figure S17 QQ plot for vascular brain injury (ordinal) endpoint.

QQ plot for the VBI (ordinal) analysis. The analysis was not

inflated for false positives (GIF= 0.967).

(TIF)

Figure S18 Forest plot of the KCNMB2 locus and hippocampal

sclerosis (rs9637454). Forest plot of the associated rs9637454 locus,

in terms of the odds ratio.

(TIF)

Figure S19 Correlation of IGAP reported effect sizes and core

AD neuropathology effect sizes. Regression of effect size estimates

(betas) against those previously reported for the core neuropathol-

ogy features.

(TIF)

Figure S20 Correlation of IGAP reported effect sizes and Lewy

Body neuropathology effect sizes. Regression of effect size

estimates (betas) against those previously reported for Lewy Body

features.

(TIF)

Figure S21 Correlation of IGAP reported effect sizes and

vascular brain injury effect sizes. Regression of effect size estimates

(betas) against those previously reported for VBI features.

(TIF)

Figure S22 Analysis workflow. Overview of the analysis process.

This approach was taken for each phenotype independently of the

other phenotypes.

(TIF)

Table S1 Top association signals from the primary case-control

phenotype. Chr: chromosome number; EA: effect allele; RA:

reference allele; Freq: frequency of effect allele; min/maxFreq: the

minimum and maximum within cohort allele frequency; Effect:

allele effect, in terms of the beta coefficient.

(PDF)

Table S2 Top association signals from the complete case-control

phenotype. Chr: chromosome number; EA: effect allele; RA:

reference allele; Freq: frequency of effect allele; min/maxFreq: the

minimum and maximum within cohort allele frequency; Effect:

allele effect, in terms of the beta coefficient.

(PDF)
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Table S3 Top association signals from the neurofibrillary tangle

(NFT) Braak ordinal I phenotype. Chr: chromosome number; EA:

effect allele; RA: reference allele; Freq: frequency of effect allele;

min/maxFreq: the minimum and maximum within cohort allele

frequency; Effect: allele effect, in terms of the beta coefficient.

(PDF)

Table S4 Top association signals from the neurofibrillary tangle

(NFT) Braak ordinal II phenotype. Chr: chromosome number;

EA: effect allele; RA: reference allele; Freq: frequency of effect

allele; min/maxFreq: the minimum and maximum within cohort

allele frequency; Effect: allele effect, in terms of the beta

coefficient.

(PDF)

Table S5 Top association signals from the neuritic plaque

ordinal phenotype. Chr: chromosome number; EA: effect allele;

RA: reference allele; Freq: frequency of effect allele; min/

maxFreq: the minimum and maximum within cohort allele

frequency; Effect: allele effect, in terms of the beta coefficient.

(PDF)

Table S6 Top association signals from the neuritic plaque case-

control phenotype. Chr: chromosome number; EA: effect allele;

RA: reference allele; Freq: frequency of effect allele; min/

maxFreq: the minimum and maximum within cohort allele

frequency; Effect: allele effect, in terms of the beta coefficient.

(PDF)

Table S7 Top association signals from the Lewy body disease

(LBD) ordinal I phenotype. Chr: chromosome number; EA: effect

allele; RA: reference allele; Freq: frequency of effect allele; min/

maxFreq: the minimum and maximum within cohort allele

frequency; Effect: allele effect, in terms of the beta coefficient.

(PDF)

Table S8 Top association signals from the Lewy body disease

(LBD) case-control phenotype. Chr: chromosome number; EA:

effect allele; RA: reference allele; Freq: frequency of effect allele;

min/maxFreq: the minimum and maximum within cohort allele

frequency; Effect: allele effect, in terms of the beta coefficient.

(PDF)

Table S9 Top association signals from the Lewy body disease

(LBD) ordinal II phenotype. Chr: chromosome number; EA: effect

allele; RA: reference allele; Freq: frequency of effect allele; min/

maxFreq: the minimum and maximum within cohort allele

frequency; Effect: allele effect, in terms of the beta coefficient.

(PDF)

Table S10 Top association signals from the vascular brain injury

(VBI) case-control phenotype. Chr: chromosome number; EA:

effect allele; RA: reference allele; Freq: frequency of effect allele;

min/maxFreq: the minimum and maximum within cohort allele

frequency; Effect: allele effect, in terms of the beta coefficient.

(PDF)

Table S11 Top association signals from the vascular brain injury

(VBI) ordinal phenotype. Chr: chromosome number; EA: effect

allele; RA: reference allele; Freq: frequency of effect allele; min/

maxFreq: the minimum and maximum within cohort allele

frequency; Effect: allele effect, in terms of the beta coefficient.

(PDF)

Table S12 Top association signals from the hippocampal

sclerosis (HS) case-control phenotype. Chr: chromosome number;

EA: effect allele; RA: reference allele; Freq: frequency of effect

allele; min/maxFreq: the minimum and maximum within cohort

allele frequency; Effect: allele effect, in terms of the beta

coefficient.

(PDF)

Table S13 Top association signals from the cerebral amyloid

angiopathy (CAA) case-control phenotype. Chr: chromosome

number; EA: effect allele; RA: reference allele; Freq: frequency of

effect allele; min/maxFreq: the minimum and maximum within

cohort allele frequency; Effect: allele effect, in terms of the beta

coefficient.

(PDF)

Table S14 Association of common AD risk variants with core

AD neuropathologic features. Bold text indicates p-values meeting

an alpha= 0.05 threshold, uncorrected for multiple testing.

(PDF)

Table S15 Association of common AD risk variants with

coincident neuropathologic features. Bold text indicates p-values

meeting an alpha= 0.05 threshold; uncorrected for multiple

testing.

(PDF)

Table S16 Cohort contact information. ACT: Adult Changes in

Thought Study; ADC: Alzheimer’s Disease Center; MAYO:

Mayo Clinic Alzheimer’s Disease Research Center; MBB:

University of Miami Brain Endowment Bank; NIA-LOAD:

National Institute on Aging Late–Onset Alzheimer’s Disease

Family Study; OHSU: Oregon Health & Science University

Alzheimer’s Disease Center; ROSMAP: Religious Orders Study

and Memory and Aging Project; TGEN: Translational Genomics

Research Institute; UM/VU/MSSM: University of Miami Huss-

man Institute for Human Genomics/Vanderbilt University Center

for Human Genetics Research/Mount Sinai School of Medicine;

UP: University of Pittsburgh Alzheimer’s Disease Research

Center; ADGC: Alzheimer’s Disease Genetics Consortium;

dbGAP: database of genotypes and phenotypes; eMERGE:

electronic medical records and genomics; NACC: National

Alzheimer’s Coordinating Center; NCRAD: National Cell

Repository for Alzheimer’s Disease.

(PDF)

Table S17 Descriptive statistics of cohorts. AAO: age at onset;

AAD: age at death; AAE: age at exam; SD: standard deviation.

APOE: relative frequency of APOE genotypes where * represents

E2 or E3. Cohorts: ACT: Adult Changes in Thought Study; ADC:

Alzheimer’s Disease Center; TGEN: Translational Genomics

Research Institute; LOAD: National Institute on Aging Late-

Onset Alzheimer’s Disease Family Study; MAYO: Mayo Clinic

Alzheimer’s Disease Research Center; ROSMAP: Religious

Orders Study and Memory and Aging Project; UPITT: University

of Pittsburgh Alzheimer’s Disease Research Center; UM/MASH:

University of Miami Brain Endowment Bank; OHSU: Oregon

Health & Science University Alzheimer’s Disease Center; UM/

VU/MSSM: University of Miami Hussman Institute for Human

Genomics/Vanderbilt University Center for Human Genetics

Research/Mount Sinai School of Medicine.

(PDF)

Table S18 Sample size and cohort inclusion by phenotype. A

missing point (‘‘.’’) indicates the category had fewer than 5

observations and was not included in the analysis. A cohort must

have 5 observations in two or more categories to be included in a

particular analysis. Ordinal traits were coded in the order listed

here. ACT: Adult Changes in Thought Study; ADC: Alzheimer’s

Disease Center; OHSU: Oregon Health & Science University

Alzheimer’s Disease Center; MAYO: Mayo Clinic Alzheimer’s
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Disease Research Center; MBB: University of Miami Brain

Endowment Bank; NIA-LOAD: National Institute on Aging Late-

Onset Alzheimer’s Disease Family Study; ROSMAP: Religious

Orders Study and Memory and Aging Project; TGEN: Transla-

tional Genomics Research Institute; UM/VU/MSSM: University

of Miami Hussman Institute for Human Genomics/Vanderbilt

University Center for Human Genetics Research/Mount Sinai

School of Medicine; UP: University of Pittsburgh Alzheimer’s

Disease Research Center.

(PDF)

Text S1 Additional Alzheimer’s Disease Genetics Consortium

(ADGC) members and affiliations.

(DOCX)
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