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Abstract

Background: Barley (Hordeum vulgare L.) is the fourth most important cereal crop worldwide. Barley production is

compromised by many abiotic stresses including drought. Wild barley is a valuable source of alleles that can

improve adaptation of cultivated barley to drought stress.

Results: In the present study, a nested association mapping population named HEB-25, consisting of 1420 BC1S3
lines that were developed by crossing 25 different wild barley accessions to the elite barley cultivar ‘Barke’, was

evaluated under both control and drought-stressed conditions in the Australian Plant Phenomics Facility, University

of Adelaide. Overall, 14 traits reflecting the performance of individual plants in each treatment were calculated from

non-destructive imaging over time and destructive end-of-experiment measurements. For each trait, best linear

unbiased estimators (BLUEs) were calculated and used for genome-wide association study (GWAS) analysis. Among

the quantitative trait loci (QTL) identified for the 14 traits, many co-localise with known inflorescence and

developmental genes. We identified a QTL on chromosome 4H where, under drought and control conditions, wild

barley alleles increased biomass by 10 and 17% respectively compared to the Barke allele.

Conclusions: Across all traits, QTL which increased phenotypic values were identified, providing a wider range of

genetic diversity for the improvement of drought tolerance in barley.
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Background
Barley (Hordeum vulgare L.) is the fourth most import-

ant cereal crop worldwide in terms of production and

the second most important cereal crop in Australia [1].

It is used for multi-purposes such as food for animals

and human, and further processed as malt for the food

and beverage industry [2]. With the world population es-

timated to reach 9.1 billion in 2050, global cereal pro-

duction will need to increase 35% from the current level

of 2.1 billion tonnes per annum [3]. One limitation in

achieving this production target is abiotic stress, particu-

larly drought, which can result in large yield losses glo-

bally. Major drought events are forecasted to intensify

due to global warming and uncertainties in rainfall pat-

terns [4]. In Australia in 2002/03 and 2006/07 growing

seasons, barley production was decreased by 55 and

56%, respectively due to severe drought [5, 6]. Due to

the magnitude of the problem, the improvement of crop

performance under drought conditions has become a

global issue [7].

Understanding the genetic basis of drought tolerance

in crop plants is useful for developing superior geno-

types through conventional breeding. In the past, most

studies have concentrated on water deficit during the

late stages of barley development, in which post-harvest

parameters were measured (i.e. yield and kernel weight)

[8–11]. However, there have been accumulated reports

in various cereal crops, including barley, that early

growth stage parameters (e.g. tiller number, biomass for-

mation, etc.) are highly correlated with yield potential
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and grain quality at harvest under both normal and drought

conditions in the field [12–15]. In rice, broader leaves and

rapid canopy growth were found to enhance the perform-

ance of plants exposed to drought stress [16, 17].

The advancement in digital imaging technology has

enabled the performance of plants to be measured with

higher precision [18, 19]. High throughput phenotyping

technology was used by Honsdorf et al. [18] to study

drought tolerance in wild barley introgression lines at

the vegetative stage and identified a number of beneficial

QTL, one of which improved biomass in the water def-

icit treatment by up to 35%. The high correspondence of

the QTL found from this study with QTL previously

identified in field trials for the same set of traits indi-

cated that phenotyping juvenile plants using digital tech-

nology may assist in predicting adult plant performance.

It is common for genetic studies on drought tolerance

in plants to find multiple QTL with small effects associ-

ated with the measured phenotypes, reconsolidating the

previously known nature of drought as a multigenic trait

with low-heritability and large genotype by environment

(GxE) interactions [18, 20–22]. To improve the power of

detecting QTL associated with complex traits exhibiting

small-effect QTL, a novel mapping strategy was intro-

duced entitled nested association mapping (NAM).

NAM has the advantage of combining the high detection

power of the linkage mapping method with the high

resolution and greater allelic diversity of the association

mapping strategy [23, 24]. NAM was first applied in

maize and sorghum and was shown to have high power

to detect QTL with small additive effects in a

genome-wide approach for key traits such as flowering

time, kernel composition, or disease resistance [25–28].

The domestication process has caused a genetic bottle-

neck in the elite germplasm of many crops including

barley, which will limit future genetic gains in crop

productivity, particularly in regard to newly emerging bi-

otic or abiotic stresses [29–31]. Wild barley germplasm

from the Fertile Crescent region has been identified as a

source of germplasm with improved drought tolerance

[32]. Drought tolerant barley varieties were developed

using a wild barley line from Palestine, which produced

15% more grain yield than the control lines under

dry-land growing conditions [33, 34].

The first barley NAM population, entitled HEB-25

[35], was created from crossing 25 genetically diverse

wild barley accessions originating from the Fertile Cres-

cent region to the malting cultivar ‘Barke’. This popula-

tion consisted of 1420 individual BC1S3 lines and was

genotyped with the barley Infinium iSelect 9 k chip con-

sisting of 7864 single nucleotide polymorphisms (SNPs).

GWAS using the HEB-25 NAM population has recently

been demonstrated as an effective tool for gene identifi-

cation in barley for traits such as flowering, salinity

tolerance and plant development [35–39]. The HEB-25

population presents a reservoir of genetic diversity that

can be exploited for variety development.

The aims of the present study were to i) evaluate the

growth response of the HEB-25 population grown under

drought stressed conditions during early developmental

ii) identify QTL from wild barley that can improve plant

growth under drought stressed conditions and identify

candidate genes underlying those QTL.

Results

The dynamics of shoot area, absolute and relative growth

rate during the course of the experiment

Across three consective years, the HEB-25 population

was evaluated under water-limited and control condi-

tions that were applied at 32 days after planting (DAP)

until the completion of the experiment at 59 DAP

(Fig. 1a). Plots for Shoot area smoothened (SAsm), Ab-

solute growth rate (AGR), and Relative growth rate

(RGR) across the 3 years are shown in Additional file 1:

Figure S1 and for 2014 in the North East (NE) Smart-

house, as an example, is shown in Fig. 1b. Three inter-

vals with distinct kinetics were observed for AGR and

RGR including 32–40 DAP, 42–50 DAP, and 52–59

DAP. The AGR and RGR were calculated for three inter-

vals that captured these three phases.

The RGR plot for 2014 was different from those of

2015 and 2016. In 2014, RGR interval from 42 to 50

DAP showed an increasing trend, while it was decreasing

for 2015 and 2016. To investigate this, climatic data

within each Smarthouse was examined and compared

across the 3 years. No association with either min, max

temperature or growing degree days was observed with

the difference in RGR (Additional file 2: Figure S2). The

macro climatic conditions in the two Smarthouses thus

appeared to be comparable across the years. Therefore

the difference observed in RGR in the interval from 42

to 50 DAP in 2014 could not be explained.

Effect of treatment, genotype and experiment setting on

phenotypic variation

Treatment was found to be significant in all 3 years and

for all traits, but the genotype effect was trait-dependant

(Additional file 3: Table S3). In 2014, seven traits showed

no significant genotype effect, including SAsm, AGR32,

RGR42, RGR52, DW, FW, and TN. In 2015, all traits

had a significant genotype effect. In 2016, RGR32 and

WUE had no significant genotype effect.

Genotype x treatment interaction was found to be sig-

nificant for 3, 11 and 6 traits in 2014, 2015, and 2016,

respectively. Two traits, which did not have a significant

genotype x treatment effect in any of the years, were

WUE and tiller number.

Pham et al. BMC Plant Biology          (2019) 19:134 Page 2 of 16



There was a significant effect of the Smarthouse as well

as the interaction between Smarthouse x position for all

14 traits investigated across 3 years. Trait value means of

plants grown in the north-east Smarthouse were generally

higher compared to those in the north-west Smarthouse

(data not shown). One possible explanation was that the

north-east Smarthouse receives more light, especially in

the morning, which resulted in increased plant growth.

Plant growth stage was used as a covariate in modelling.

Most of the lines were at growth Zadoks stage 33, with a

few lines reaching Zadoks stage 49 and above. In general

growth stage was not significant and dropped out of the

model for most of the traits (Additional file 3: Table S3).

Trait performance

Means of the traits SAsm, dry weight (DW), and fresh

weight (FW) in the control treatment were 2–2.5 times

higher than means of these traits in the drought treat-

ment across the 3 years (Additional file 4: Table S4). The

only exception was WUE where the mean values under

control treatment were 55–67% of the means of the

drought treatment.

Heritability of each trait was generally higher for con-

trol treatment compared to the drought treatment ran-

ging from 0.27 to 0.85 in control treatment and 0.34 to

0.80 in the drought treatment across the 3 years. HEI

had the highest heritability in both treatments in all 3

B

A

Fig. 1 Monitoring the dynamics of plant growth throughout the experiment. a Plants were non-destructively imaged from 32 to 59 days after

planting under drought and non-stressed treatments. b Plots for shoot area smoothened (SAsm), absolute growth rate (AGR) and relative growth

rate (RGR) under control (cyan) and drought (red) treatment in the north east Smarthouse at the Plant Accelerator, University of Adelaide in the

year 2014 are shown as an example. The bold line represents the average of each treatment
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years. RGR42, WUE, and RGR32 had the lowest herit-

ability for the year 2014, 2015, and 2016, respectively.

To compare the growth response under drought

treatment of genotypes with such large variation in

plant size and growth, we calculated the ratio of the

phenotypic values between SAsm, DW, HEI, TN in

drought stress versus the control treatment. Ratios

represent the drought response independent of plant

size/growth parameters in control conditions. Ratios

that are close to 1 indicate a high capacity to main-

tain the four parameters, whereas ratios that are

smaller than 1 indicate a larger reduction. For all of

four selected traits there was no significant correl-

ation between the ratio of SAsm, DW, HEI and TN

in drought stress versus control and the correspond-

ing phenotypic values in control treatment (r < 0.2 for

DW and SAsm, and r < 0.08 in all years for both TN

and HEI) (Additional file 5: Figure S6A, B, C and D).

GWAS results

Dry weight (DW)

There were 26 QTL detected in the control treat-

ment that explained 44% of the total phenotypic

variance (Vp). In the drought treatment, 24 QTL

were identified and accounted for 37% of Vp. Out of

the 39 QTL for DW, 11 were detected in both treat-

ments and 17 were treatment-specific (Fig. 2 and

Additional file 6: Table S6). The QTL that explained

the most phenotypic variance for DW in control and

drought treatment was QDw.HEB25-7H.2 at 70.4 cM

(6%) and QDw.HEB25-3H.4 at 108 cM (5%), respect-

ively. At the common QTL QDw.HEB25-4H.4 (97.2 cM),

wild alleles had a mixed effect (both increasing and de-

creasing) in both treatments, with the allele from family

F01 increasing DW the most by up to 1.32 g (equivalent

to 17% increase) in the control treatment. In the drought

treatment, wild alleles from 20 out of 25 families at this

QTL increased dry weight compared to the Barke allele,

with those from family F01 and F07 increased DW up to

0.3 g (approximately 10% increase).

Fresh weight (FW)

Twenty-nine QTL were detected in the control treat-

ment, which explained a total of 42% Vp and 25 QTL

were detected in the drought treatment, which ex-

plained 39% of Vp (Additional file 6: Table S6). The

QTL that explained the most Vp for drought stress

and control treatment were QFw.HEB25-2H.4 at 64.4

cM (4.5%) and QFw.HEB25-7H.2 at 67.8 cM (5%), re-

spectively. Due to the high correlation between DW

and FW (Additional file 7: Figure S5), 20 out of 24

QTL detected for DW in drought treatment were also

detected for FW in drought treatment, and 19 out of

26 QTL detected for DW in control treatment were

also detected for FW in control treatment. In the

drought treatment, wild alleles at QFw.HEB25-3H.5

(107.05 cM) wild alleles increased FW the most (up

to 9.8 g, equivalent to 37% increase in FW). In con-

trol treatment, at the QTL QFw.HEB25-3H.6 (117

cM), wild alleles increased FW the most (up to 12.0 g

in family F08 or 10.5% increase in FW compared to

the Barke alleles).

Tiller number (TN)

There were 18 loci detected for tiller number in the con-

trol treatment which explained 41% of Vp (Fig. 2 and

Additional file 6: Table S6). In the drought treatment, 21

loci were detected and explained 46% of Vp. Among the

total 39 QTL detected for TN, 7 were common between

two treatments. The QTL QTn.HEB25-5H.5 which

co-localized with the vernalisation gene VRN-H1 ex-

plained the highest phenotypic variation (up to 10% in

the control and 14% in drought treatment). At the

VRN-H1 locus, wild alleles from all families increased

tiller number up to 6.0 in the control treatment and up

to 3.3 in the drought treatment. Among the 13 drought

treatment specific QTL, wild alleles at two QTL that

co-localized with HvELF3 and Ppd-H1 decreased tiller

number in all families except for family F23.

Plant height (HEI)

There were 23 and 31 SNPs detected for HEI in the

drought and control treatment, respectively, of which

16 were common across treatments (Additional file

6: Table S6). Among 38 loci were identified for HEI,

23 locating near known genes controlling flowering

and plant architecture in barley. The Vp explained

by all QTL for plant height in both control and

drought treatment was 60%. The most significant as-

sociation for plant height was observed at the QTL

QHei.HEB25-3H.5 (108 cM) explaining 22 and 11%

of the variance in the control and drought treat-

ment, respectively. This locus co-localized with the

semi-dwarfing sdw1/denso gene in barley. Other

major QTL that explained from 5 to 10% of pheno-

typic variation include QHei.HEB25-3H.6 (122 cM),

QPh.HEB25-5H.3 (107.5 cM), and QHei.HEB25-5H.4

(122.6–125 cM). The effect of the wild alleles at the

sdw1/denso locus in each family within the drought

treatment is in general half of that in the control treat-

ment. Wild alleles from 25 HEB families at sdw1/denso

locus increased plant height up to 8.9 cm in control and

5.9 cm in drought treatment. In contrast to sdw1/denso, at

five other common QTL including QHei.HEB25-3H.4

(113.4 cM), QHei.HEB25-5H.1 (41.6–45.2 cM), QHei.-

HEB25-5H.3 (107 cM), QHei.HEB25-5H.4 (125 cM), and

QHei.HEB25-6H.2 (52.1–55 cM), the wild alleles from

most families reduced plant height.
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Shoot area smoothed (SAsm)

There were 27 and 34 QTL detected under the drought

stress and control treatment, respectively (Fig. 3

and Additional file 6: Table S6). Sixteen QTL were found

to be common between the two treatments. Six out of 15

common QTL for SAsm were also detected as the com-

mon QTL for dry weight. The effect of the wild alleles at

common QTL between SAsm and DW were also very

similar. The QTL that explained the most phenotypic vari-

ance for SAsm in both the control and drought treatment

Fig. 2 Comparison of GWAS results across five of the post-harvest destructively measured traits. The data in this Circos plot results from 100 cross-

validated (20 times 5-fold) GWAS runs performed within each treatment for the five studied traits including dry weight (DW), fresh weight (DW), plant

height (HEI), tiller number (TN), and water use efficiency (WUE). Barley chromosomes are shown on the inner circle with different colors and

centromeres are indicated with transparent boxes. For each trait, the first (inner) track represents the frequency of QTL detection in a 5-cM window

while the outer track represents the effect of this QTL. The maximum height of the effect bars for each trait are 1.3 g for DW, 9 cm for HEI, 1.82 for TN,

0.1 g/g water for WUE. Window positions (in cM, following Maurer et al. 2015) are ordered clockwise per chromosome. In the inner track, QTL

appearing under control and drought stress treatment are represented with black and gray bars, respectively. The effect of the QTL conferred by the

wild allele relative to Barke is represented on the outer track, where blue and red bars indicate decreasing and increasing wild barley QTL effects,

respectively for each treatment. Candidate genes, potentially explaining the observed QTL effects, are indicated inside the inner circle
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Fig. 3 Comparison of GWAS results of dry weight relative to four non-destructive imaging determined traits. The data in this Circos plot results

from 100 cross-validated (20 times 5-fold) GWAS runs performed within each treatment for the five studied traits including dry weight (DW),

shoot area smoothed (SAsm), absolute growth rate 42–50 dap (AGR42), relative growth rate 42–50 dap (RGR42), and convex hull area (CHA).

Barley chromosomes are shown on the inner circle with different colors and centromeres are indicated with transparent boxes. For each trait, the

first (inner) track represents the frequency of QTL detection in a 5-cM window while the outer track represents the effect of this QTL. The

maximum height of the effect bars for each trait are 1.3 g for DW, 98.6 kpixels for SA, 4.44 kpixels/day for AGR42, 0.0039 kpixels/day/kpixels for

RGR42, 654 kpixels for CHA. Window positions (in cM, following Maurer et al.2015) are ordered clockwise per chromosome. In the inner track, QTL

appearing under control and drought stress conditions are represented with black and gray bars, respectively. The effect of the QTL conferred by

the wild allele relative to Barke is represented on the outer track, where blue and red bars indicate decreasing and increasing wild barley QTL

effects, respectively for each treatment. Candidate genes, potentially explaining the observed QTL effects, are indicated inside the inner circle
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was QSasm.HEB25-3H.7 (6%). At the QTL QSasm.-

HEB25-3H.7 locating near HvCMF1 gene, wild alleles in-

creased SAsm in most of the families across both

treatments. At all other QTL, the effect of wild alleles for

SAsm was mixed across QTL and families.

Absolute growth rate (AGR)

There were five common genomic regions detected in

the drought treatment across all three AGR intervals, in-

cluding 1H (48.5–48.9 cM), 1H (128.3–130.35 cM), 2H

(106.8–109.3 cM), 3H (100.4–104.8 cM), 7H (99.8–102.2

cM) and 55 interval-specific QTL. Among the common

QTL, the wild alleles at 3H (100.4–104.8 cM) increased

AGR in most families. Within the control treatment,

there were 11 QTL common across all three AGR inter-

vals and 52 interval-specific QTL. Among the 11 com-

mon QTL, six located near known genes including

Ppd-H1, BFL/HvAPO2, VRN-H2, HvCO15, HvCCA1/

HvLHY, HvCMF1, and HvCO6. The genomic regions on

chromosome 2H from 106.8 to 109.6 cM and 3H from

100.4 to 106.1 cM were detected across all three AGR

intervals in both treatments. In control treatment, the

QTL where the wild alleles showed the largest positive

effect was on chromosome 6H at 5.6 cM for all three in-

tervals. In drought stress, QTL with the largest effect for

AGR32, AGR42 and AGR52 were QAgr32.HEB25-3H.4

at 100.4 cM, QAgr42.HEB25-3H.6 at 103.8 cM, and

QAgr52.HEB25-3H.5 at 104.8 cM, respectively. As

AGR42 was highly correlated with the other two inter-

vals (Additional file 7: Figure S5), details for QTL de-

tected for this interval are summarised below.

For AGR42, there were 26 and 29 QTL detected for

drought stress and control treatment, respectively (Add-

itional file 6: Table S6). There were 15 common QTL be-

tween two treatments, ten of which reside near known

flowering genes. The QTL that explained the highest Vp

(up to 6%) in the drought stress and control treatment was

QAgr42.HEB25-3H.6. In the drought treatment, the wild

alleles at QTL QAgr42.HEB25-3H.3 (55.5 cM), QAgr42.-

HEB25-3H.6 (103.8 cM), and QAgr42.HEB25-4H.4 (103.9

cM) showed the highest trait-increasing effects. In the con-

trol treatment, several QTL with beneficial wild alleles that

increased AGR42 were detected such as QAgr42.-

HEB25-2H.6 (146.4 cM), QAgr42.HEB25-3H.5 (89.1 cM),

QAgr42.HEB25-3H.6 (106.1 cM), QAgr42.HEB25-6H.1

(5.6 cM), and QAgr42.HEB25-7H.6 (120 cM).

Relative growth rate (RGR)

There were 22, 25 and 23 QTL detected for RGR32,

RGR42, and RGR52 in the drought treatment, respect-

ively. There were six genomic regions detected across all

three intervals including 1H (126–128 cM), 2H (18.9–23

cM), 2H (55.6–62 cM), 3H (131–135.5 cM), 4H (99.6–

101.4 cM), and 7H (23–29.6 cM). Four out of these QTL

located near known developmental genes including

HvELF3, Ppd-H1, HvCEN, and HvCMF4. Similarly, there

were 19, 24, and 21 QTL detected for RGR32, RGR42,

and RGR52 in the control treatment, with three com-

mon QTL found across all intervals including 2H (18–

26 cM), 4H (111.3 cM), and 5H (14.5 cM). Across both

treatments there were 7, 10 and 6 common QTL for

RGR32, RGR42, and RGR52, respectively. At one of

these common genomic regions, 2H (18.9–23 cM),

which is in close proximity to Ppd-H1, the wild barley

alleles from all families reduced RGR in the drought

treatment for all three intervals, while the effect was

mixed depending on families and RGR interval in the

control treatment. As RGR42 was highly correlated with

the other two intervals, details for QTL detected for this

interval are summarised below.

For RGR42, there were 25 and 24 QTL detected under

drought stress and control treatment, respectively, with

ten QTL shared between the two treatments (Additional

file 6: Table S6). Among the treatment-common QTL

for RGR42, four were also detected for DW including

QRgr42.HEB25-2H.2, QRgr42.HEB25-2H.6 (141–149

cM), QRgr42.HEB25-7H.1 (0.2–2.5 cM) and

QRgr42.HEB25-7H.4 (97.2–100.25 cM). Other common

QTL for RGR42 were residing near known flowering

genes including Ppd-H1, Ppd-H2, HvCMF1. At all com-

mon QTL, the wild alleles had a mixed effect across the

families.

Convex hull area (CHA)

There were 27 and 28 QTL detected in the drought

stress and control treatment, respectively (Fig.3 and

Additional file 6: Table S6). There were 14 common

QTL between the two treatments, and four of these were

also detected for DW (the trait that CHA most corre-

lated with). The QTL QCha.HEB25-3H.7, which located

near the gene sdw1/denso, explained the highest Vp

(10%) in both treatments. Similar to the effect of sdw1/

denso on plant height, the wild alleles from all families

at this locus increased CHA in both treatments. There

were two additional QTL where the wild alleles from

most of the 25 families increased CHA in both treat-

ments including QCha.HEB25-5H.6 (152 cM), and

QCha.HEB25-7H.3 (51 cM). The alleles from family F14

increased CHA the most at all of these three QTL.

Caliper length (CL)

Due to the high correlation between CHA and CL, the

GWAS results for CHA and CL were similar. In the

control treatment, 23 QTL were detected for CL and 19

of them were also found for CHA. In the drought treat-

ment, 22 QTL were identified and 15 of them were

shared between CL and CHA (Additional file 6: Table S6).
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Water use efficiency (WUE)

There were 33 and 22 QTL detected in the drought

stress and control treatment, respectively, including 10

common QTL detected across both treatments (Add-

itional file 6: Table S6). The QTL that explained the

most phenotypic variance was QWue.HEB25-2H.6 at

139.9 cM (3.5%) in the control treatment and QWue.-

HEB25-3H.10 at 154.8 cM (7%) in the drought stress

treatment. In the drought stress treatment, wild alleles

at QTL QWue.HEB25-3H.6 (87.4 cM) increased WUE in

all families and wild alleles at QTL QWue.HEB25-6H.2

(37 cM) reduced WUE in all families, all other QTL

showed a mixed effect for the wild alleles. At QTL

QWue.HEB25-7H.6 (116.1 cM), the wild alleles from

family F02 increased WUE the most compared to the

Barke allele (10.8% increase).

QTL associated with multiple traits

When all significant QTL identified for the traits DW,

HEI, TN, SAsm, CHA, WUE, AGR42 and RGR42 were

compiled, QTL associated with multiple traits were

identified. When QTL within a 4 cM window were

grouped into a single QTL, which is similar to the cri-

teria set by Maurer et al. [36], 21 genomic regions were

found to be associated with at least 4 traits or more. The

genomic region on chromosome 2H co-localizing with

the gene HvCEN was found to associate with all of the

traits, six of which were detected in both treatments in-

cluding DW, TN, HEI, AGR42, RGR42, and WUE. The

second most common genomic regions (associated with

seven traits, excluding TN) were on chromosome 2H at

109 cM and on chromosome 4H at 113 cM and these

two co-localized with BFL (BARLEY FLORICAULA/

LEAFY)/HvAPO2 and VRN-H2 genes, respectively. Re-

gions that were associated with six different traits were

3H (105–108 cM), 4H (97–104 cM), 5H (0–3.8 cM), 5H

(144.2–149.8 cM), 5H (165.8–169.4 cM), 7H (0.2–2.5

cM), and 7H (70.2–72.5 cM).

Discussion
The effect of the drought treatment on the HEB-25

population

This study aimed to evaluate the response of the HEB-25

population when grown under control and drought treat-

ments. Plant growth in both treatments was measured in

a non-destructive manner using a high-throughput im-

aging system.

The reduction in SAsm due to drought stress was ob-

served 5–8 days after the drought treatment was com-

menced (depending on the genotype). By 59 DAP the

drought treatment reduced SAsm by approximately 50%

compared to the control. This is in accordance with pre-

vious observations that it takes 6–7 days until differences

in growth between control and drought stressed plants

are observable [40, 41]. In contrast, the difference in

AGR and RGR between the two treatments was evident

at the onset of the drought stress, suggesting an immedi-

ate effect. This is expected as it has been well demon-

strated that leaf growth, determined by cell division and

expansion, is highly sensitive to water stress and can be

reduced by 50% within 24 h after the stress is induced

[42–45].

It has been reported that small plants or plants with

smaller leaves tend to have better drought tolerance be-

cause they transpire less water [46, 47]. In contrast, in

our study, growth reduction under drought was inde-

pendent of the plant size under normal conditions.

There was a small or no correlation between the ratio of

shoot area, dry weight, tiller number, and plant height in

drought stress versus control and the corresponding

phenotypic values in control treatment. This lack of cor-

relation between plant size and drought tolerance was

also observed in Arabidopsis [48], which showed that

larger plants in normal conditions were able to maintain

both stress tolerance and improved growth when experi-

encing drought.

Time-dependent QTL detected for barley plant growth

The GWAS analysis revealed that there are few common

QTL detected across the three intervals measured for

the growth rate-related traits. For AGR, there were only

two QTL shared among three intervals in both treat-

ments. For RGR, only one common QTL, co-localizing

with Ppd-H1, was found for three intervals in both treat-

ments. There were more common QTL found between

two intervals (i.e. seven QTL were common for AGR42

and AGR52), which reflected the high correlation be-

tween these two. Beside the common QTL,

interval-specific QTL were found for three intervals in-

dicating different gene action and interactions occurred

within each interval. For example, for RGR in the con-

trol treatment, besides the three QTL common across

all intervals, loci co-segregating with known genes such

as HvELF3, and Vrn-H2 were among those identified for

the first interval, Ppd-H2, HvCEN, Zeo, HvPRR95 were

found for the second, and Vrn-H1 and HvCMF1 were

detected for the third interval. Time-dependent QTL

mapping for plant growth was also reported in Arabi-

dopsis [49, 50], in rice [51], in Setaria [52], and maize

[53]. To our knowledge, this is the first study in barley

that has mapped time dependent QTL for the absolute

and relative growth rate of barley seedlings. The large

distinction of the QTL detected for each interval sug-

gests that measuring growth for the different intervals is

to be favoured over single interval measurements.

As mentioned above, most of the QTL detected for

AGR and RGR co-localized with developmental genes

such as HvCO1/2/3/6, HvCMF1/4/7, Ppd-H1/2,
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VRN-H1/2, HvCEN, and HvELF3. Elberse et al. [54] de-

tected a QTL on chromosome 6H (11 cM) for both rela-

tive growth rate and seed mass, which was also detected

in our study for RGR42. Yin et al. [55] reported a weak

association of sdw1/denso with relative growth rate. In

our study, the genomic region on chromosome 3H from

100 to 104 cM was detected for AGR and RGR in all of

three intervals, but this could be either sdw1/denso or

HvCMF1. Poorter et al. [56] and Van Rijn et al. [57] re-

ported three major QTL for RGR on 1H, 2H, 5H and

one minor QTL in 6H. Honsdorf et al. [18] detected

three QTL for AGR on 3H, 4H and 6H and no QTL for

RGR. The QTL QAgr42.HEB25-3H.7 (143.5 cM) and

QAgr52.HEB25-3H.6 (139 cM) detected in our study

seem to be similar to the QTL on chromosome 3H re-

ported by Honsdorf et al. [18].

QTL detected for traits measured at harvest

QTL located on all seven chromosomes were detected

for DW, FW, TN, and HEI measured in this study, con-

firming the quantitative nature of these traits.

For plant dry biomass, our study identified 11 com-

mon and 28 treatment-specific QTL. Six of the 15 QTL

identified in our study for drought stress on 2H, 3H, 4H,

5H and 7H were within 5 cM of those reported by Weh-

ner et al. [21]. Honsdorf et al. [18] described four QTL

for DW on 3H, 4H and 6H, with the 4H QTL likely to

be coincidental with the QTL QDw.HEB25-4H.4 found

in this study. Von Korff et al. [58] reported six QTL on

chromosome 2H-5H and 7H for dry biomass in a wild

barley advanced backcross population of which three

QTL on 2H, 3H and 4H coincided with QTL detected in

this study. The QTL on chromosome 4H-97.2 cM was

reported across at least four different mapping studies,

indicating its important role in biomass production in

barley.

For plant height, although 70% of QTL identified for

drought stress were also detected in control treatment,

there were still distinctive QTL revealing different gene

interaction for different environmental conditions. For

example, QTL co-localizing with Vrs1, Vrn-H3, and

DWAFT 2 were identified in drought treatment while

those locating near HvCMF7, HvCO6, DWAFT5/14 were

found in control treatment. Minor effect QTL have been

reported throughout the literature for plant height by

many groups [18, 58–62]. Despite the difference in

minor genes, key genes controlling plant height includ-

ing sdw1/denso and sdw3 have been detected across all

of these studies mentioned above. The GA-20 oxidase

gene was suggested to be a candidate for the sdw1/denso

locus [63]. The effect of wild alleles at these two QTL

on reducing plant height was also reported by Honsdorf

et al. [18] and von Korff et al. [58]. There are at least

three novel loci detected for plant height in this study

that have not been reported before. These three QTL

were detected at high confidence level (greater than 90

out of 100 cross validations) and were located in close

proximity to known genes including QPh.HEB25-5H.3

(near Vrs2), QPh.HEB25-5H.4 (near VRN-1) and

QPh.HEB25-7H.5 (near HvCMF7).

Tiller number is an important yield-determining trait

[64]. For tiller number, there were 18 QTL detected in

the control treatment, 15 are in close proximity with

QTL for tiller number reported by Alqudah et al. [59].

However, although Ppd-H1 and Vrs1 were identified as

key genes regulating tiller number in spring cultivated

and landrace barley by Alqudah et al. [59], only Vrs1

was detected in both treatments whereas Ppd-H1 was

only detected under the drought treatment in our study.

Using an AB-NAM population created by crossing 25

wild barleys selected from the wild barley diversity col-

lection with cultivar Rasmusson, Nice et al. [65] identi-

fied Ppd-H1 and a second QTL at 4H-91.29 cM

(anticipated to be the SUCROSE TRANSPORTER

1-HvSUT1) associated with controlling productive tiller

number in field conditions. In our study, four out of

eight flowering genes including HvCEN, sdw1/denso,

VRN-H1, Ppd-H1 reported by Maurer et al. [35] were

found to be associated with tiller number, together with

other flowering genes such as HvCO5/6/8/16. QTL res-

iding near HEXOKINASE 2 and 3 genes and HvSUT1

were also identified in our study in the control treat-

ment. Recently, several studies highlighted the import-

ance of sugars as a key component of plant branching

[66, 67]. The finding from our study supports the view

that flowering and sugar-related genes have a role in bar-

ley tillering. Novel QTL detected in this study for tiller

number include QTn.HEB25-2H.4 (146 cM),

QTn.HEB25-5H.1 (23.2 cM) and QTn.HEB25-5H.3 (77

cM).

Candidate genes for common QTL detected for 14 traits

Many of the common QTL detected for 14 traits across

both treatments co-localized with known developmental

flowering regulator genes, such as Ppd-H1, HvCEN,

VRN-H1, VRN-H2, and sdw1/denso, demonstrating the

importance of these genes in barley development.

Among these genes, the QTL residing in the close prox-

imity with HvCEN was associated with all of the traits

investigated in this study. HvCEN is a modifier of sea-

sonal flowering response, with a missense mutation in

the HvCEN protein (Ala135 to Pro) differentiating

spring from winter barley cultivars [68]. In this study,

the wild alleles at the HvCEN locus from 25 families

generally reduced the phenotypic values for all of the

traits, except for CHA, WUE, and TN. When the

HEB-25 population was evaluated with salt stress in field

conditions, wild alleles at the HvCEN locus also reduced
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plant height and dry mass per m2 but increased yield

under stress and control treatments [37]. The authors

indicated that the yield improvement effect of the wild

HvCEN alleles is derived from an increased number of

ears and from larger grains. HvCEN showed a same fash-

ion of effect to the traits in this experiment compared to

the salt tolerance study, indicating that this QTL poten-

tially may have the capacity to enhance yield in both

control and drought-stressed condition. However, we

cannot completely rule out the possibility that the ob-

served effect has been derived from another unknown

gene, which is in linkage disequilibrium with HvCEN.

Another chromosome region at 1H-48 cM was associ-

ated with four traits (DW, HEI, AGR42, RGR42) in both

treatments and is in close distance to HvCMF10,

HvHXK1, and Hva1. Among the three candidate genes at

1H-48 cM, the barley Hva1 gene is the best studied gene.

It encodes a late embryogenesis abundant (LEA) protein

and is well-known to enhance tolerance to drought in bar-

ley. Transformations of the barley gene into wheat, oat,

rye, and mulberry all resulted in an enhanced tolerance to

drought and salinity stress [69–72]. Little is known about

the HvHXK1 function in barley apart from its high tran-

script levels at night and its role in sugar signalling and

targeting of carbon into downstream metabolic pathways

[73, 74]. Similarly, the specific role of HvCMF10 is unclear

except its involvement in the control of flowering time

[75]. As these three candidate genes are closely linked, we

are currently unable to specify, which of those is the

causative gene. Further fine mapping studies may reveal

the importance of these genes for plant development and

drought stress tolerance in barley.

Conclusions
The ultimate goal of this study was to identify beneficial

alleles from wild barley that can be used for improving

drought tolerance in barley. However, it was demon-

strated that any trait selected for drought tolerance has

benefits as well as risks. Considering stress severity and

the phase when drought stress typically occurs during

plant development in a target environment are, thus,

critical to breed for improved drought tolerance [76]. In

this study, loci where alleles from wild barley that both

increase and decrease phenotypic values under drought

stress and control treatment were detected, providing a

pool of usable alleles for breeding.

Materials and methods

Plant materials

The HEB-25 NAM population consists of 1420 BC1S3
lines derived from backcrossing 25 diverse wild barley

lines (Hordeum vulgare ssp. spontaneum and agriocri-

thon) to the cultivar Barke. The resulting population

comprises 25 sub-families each consisting of between 23

to 61 individual. The population construction was previ-

ously reported by Maurer et al. [35]. The University of

Adelaide obtained this population from the Martin Lu-

ther University of Halle-Wittenburg (MLU) under a Ma-

terial Transfer Agreement (MTA) no. A135366. The

whole population subsequently underwent quarantine

inspection following the regulations applied to imported

plant research materials set by the Department of Agri-

culture and Water Resources of Australia.

Experimental design

A total of 1343 HEB-25 lines were tested in drought

stress experiment over 3 years, with 447 lines screened

in 2014 and 448 lines each in 2015 and 2016. The first

set contain lines from 9 families (HEB-03, 04, 09, 12, 13,

18, 20, 21, and 22), the second contain lines from 8 fam-

ilies (HEB-02, 05, 07, 11, 15, 16, 19, and 23) and the

third set have lines from 8 remaining families (HEB-01,

06, 08, 10, 14, 17, 24, 25). The reason of using only a

third of the NAM population was because there was a

limitation in space in the Plant Accelerator so only one

third of the NAM population could be screened for

drought stress at a time. The families selected for each

year were chosen so that the number of lines screened

each year was approximately equal. The three experi-

ments were executed at the same time each year, from

16th June (potting) to 16th August (last day of imaging).

The experiment was accommodated in two automated

greenhouses, so-called Smarthouses (North West (NW)

and North East (NE)), at the Plant Accelerator green-

house facilities in Adelaide, Australia (34°58′16.18″S;

138°38′23.88″E). Each Smarthouse was divided into six

zones each comprising a grid of four lanes by 22 posi-

tions, as sets of four lanes were found to be homoge-

neous in terms of plant growth variability [77].

The design employed for each Smarthouse experiment

was a split-plot design in which two consecutive carts

form the main plot. The main-plot design was an unre-

plicated design with replicated check and recipient lines,

which were Navigator and Barke, respectively. In order

to deal with the anticipated spatial variation, lines were

allocated to main plots using a blocked,

row-and-column design, the blocks being the zones. A

feature of the main-plot design was that, for the check

lines, (i) there were 6 main plots in each zone, and (ii)

there were 3 or 4 main plots in each column; the Barke

main plots were similarly distributed across zones and

columns. The subplot design merely randomized treat-

ments (control, drought stress) to the two carts in each

main plot.

At each position, there was a cart containing a pot

with a single plant. Lines were allocated to the 24 × 11 =

264 pairs per Smarthouse. Of the 264 pairs available in a

Smarthouse, 36 had Navigator, a control line, allocated
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to them, 224 (or 223 in the NW Smarthouse) had 224

(or 223) lines allocated to them and the remainders (4

or 5) had the recipient line, Barke, assigned to them. In

general, Navigator was replicated 72 times and Barke 8–

10 times per treatment while HEB lines were unrepli-

cated. The main plot design was generated using the

software DiGGer [78] and the subplot randomization

was done using the R package dae [79]. More detailed

information and the graphical layout of the experiment

was listed in the Additional file 8.

Plant growth conditions

The drought stress experiment was similar to that re-

ported by Honsdorf et al. [18]. Plants were pre-grown

on static benches within the Smarthouse and watering

was performed manually to allow optimal germination

and seedling establishment. Soil mix used for the experi-

ment was 50% cocopeat mixed with 50% clay loam. At

31 days after planting (DAP), the pots were transferred

to the automated section of the Smarthouse where each

pot was placed onto a cart on a conveyor belt. On the

first day of automated phenotyping, all pots were

watered to a gravimetric water content of 25%, which is

equivelent to 508 g of water per 2030 g of dry soil used

for potting. Control pots kept this water content

whereas water-limited pots were allowed to dry down to

15% (g/g) water content. The two treatments were main-

tained until 59 DAP by watering every day.

Phenotyping

During the period from 32 to 59 DAP when the stress

treatment was applied, plant images were captured daily

using a LemnaTec 3D Scanalyzer (LemnaTec, GmbH,

Wuerselen, Germany). Every day, three RGB pictures

were taken of each barley plant, one top view image and

two side view images with a 90° horizontal rotation.

After separating the plant tissue area from the back-

ground, pixel numbers per plant were counted and the

pixel sum of the three pictures per plant was used as the

total projected shoot area per plant per day (designated

as PSA). In 2014, images were taken with 5 megapixel

cameras whereas in 2015 and 2016, 8 megapixel cameras

were used. 2014 results were scaled accordingly to ac-

count for the difference in camera resolution and optics

used.

The PSA data for each individual plant was smoothed

by fitting a natural cubic spline using the smooth.spline

function in R to obtain the shoot area smoothed (SAsm).

The SAsm of the last day of imaging (DAP = 59) was

used for calculation of best linear unbiased estimates

(BLUEs), which was subsequently used for GWAS.

Absolute growth rate (AGR) and relative growth rate

(RGR) for each plant were calculated as described in

Table 1. Three intervals were identified based on the

kinetics of AGRs and RGRs from 32 to 59 DAP where

plants were in a particular growth phase, (i.e. constant

growth rate, accelerating or decelerating growth). These

three intervals were defined as 32–40, 42–50, and 52–59

DAP and the AGRs and RGRs for the three intervals

were calculated. As a result, for each trait, a single value

for each cart was obtained. AGRs for the whole period

of imaging are essentially the same as the end-of im-

aging value for the trait and so it was redundant to in-

clude them. Moreover, two other traits were extracted

from the images including caliper length integral (CL)

and convex hull area integral (CHA). At the end of the

experiment, barley plants were harvested and above

ground biomass, tiller number (TN), and plant height

(HEI) were determined. Plant growth stage was recorded

at the completion of the 2015 and 2016 experiments

using the Zadok scale [80]. This is the time when de-

structive measurements were conducted, approximately

2 months after planting. Fresh biomass (FW) was

weighed and, subsequently, oven dried to constant

weight to determine dry biomass (DW). Water use effi-

ciency (WUE) was calculated by dividing dry biomass at

the end of the experiment by the total amount of water

added during the 4 weeks in the Smarthouse [mg/g

water]. A summary of trait definitions is given in Table

1.

Statistical analysis of phenotypic data

A two-step analysis was performed in analysing the

phenotypic data: (i) a mixed model analysis was per-

formed on the data for each year to produce spatially ad-

justed BLUEs for each combination of the genotypes and

treatments; (ii) a mixed model analysis of the BLUEs

from (i) were combined over the 3 years and a mixed

model analysis performed to produce BLUEs adjusted

for differences between the years.In addition, a genetic

analysis was carried out on the data for each year using

a mixed model in which the genotypic effects are as-

sumed random for each treatment and heritability coeffi-

cients are computed from the analysis using the method

described by Cullis et al. [81].

The mixed model used for the first step was similar to

that used in [51] and was as follows:

y¼XβþZuþe;

where y is the response vector of values for the trait

being analysed; β is the vector of fixed effects; u is the

vector of random effects; and e is the vector of residual

effects. X and Z are the design matrices corresponding

to β and u respectively.

The fixed-effect vector β partitioned as ½μ β⊤S β
⊤

S:cL

β⊤S:cM β⊤C β
⊤

G β⊤T β
⊤

C:T β
⊤

G:Tβ
⊤

S:cZ� , where (i) μ is the overall

mean (ii) β⊤S are the Smarthouse effects, (iii) β⊤S:cL and
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β⊤S:cM are the linear trend coeficients for the centred, nu-

merical variables cMainPosn (east-west) and cLanes

(north-south) in each Smarthouse,(iv) β⊤C , β
⊤

G , β
⊤

T , β
⊤

C:T

and β⊤G:T are the subvectors for the effects of the Checks

(C), the Genotypes (G), the Treatments (T), the

Check-by-Treatment interactions (C:T), and the

Genotype-by-Treatment interactions (G:T), and (v) β⊤S:cZ

are the linear regression effects in each Smarthouse for

the relationship with the numeric Zadok’s growth stage

scores at the end of imaging, which is centred at growth

stage 33 (not included for Year 1).

The random effects vector u is partitioned as ½u⊤

splðS:cLÞ

u⊤

splðS:cMÞ u
⊤

S:Z:M� where the us are the subvectors of the

coefficients of the spline basis functions for fitting

curved trends within each Smarthouse over Lanes

(spl(S:cL)), the coefficients of the spline basis functions

for fitting curved trends within each Smarthouse over

the east-west positions of the main plots (spl(S:cM)) and

the random main-plot effects within each Zone in each

Smarthouse (S:Z:M). The design matrices X and Z are

partitioned to conform to the partitioning of β and u, re-

spectively. It is assumed that each subvector of random

effects, ui, is distributed N(0m, σiIm), where 0m is the

m-vector of zeroes, σi is the variance of the ith set of

random effects, Im is the identity matrix of order m, and

m is the order of ui. Further, with the distribution of the

residual effects e are assumed to be:

N 01056;

σ
2
1w 0 0 0

0 σ
2
1ℓ 0 0

0 0 σ
2
2w 0

0 0 0 σ
2
2ℓ

2

6

6

4

3

7

7

5

⨂I264

0

B

B

@

1

C

C

A

where σ
2
1w , σ

2
2ℓ , σ

2
1w and σ

2
2ℓ are, respectively, the vari-

ances of the residuals for the pots in control conditions

in the two Smarthouses and the pots in the control con-

ditions in the two Smarthouses; it is assumed that the data

in y are ordered to conform with the order as the vari-

ances. This model allows for the residuals for the two

Table 1 List of measured traits

Trait Abbreviation Unit Method of measurement

Imaging parameters

1 Shoot area smoothed SAsm kPixa Smoothing spline fit to total projected shoot area data for each plant

2 Absolute growth rate
smoothed 32–40

AGR32 kPix/
db

Difference in smoothed Shoot Area between days 32th and 40th after planting, divided by
the length of the period

3 Absolute growth rate
smoothed 42–50

AGR42 kPix/
d

Difference in smoothed Shoot Area between days 42th and 50th after planting, divided by
the length of the period

4 Absolute growth rate
smoothed 52–59

AGR52 kPix/
d

Difference in smoothed Shoot Area between days 52th and 59th after planting divided by
the length of the period

5 Relative growth rate
smoothed 32–40

RGR32 d−1 Difference in the logarithm of the smoothed Shoot Area at days 32th and 40th after
planting, divided by the length of the period

6 Relative growth rate
smoothed 42–50

RGR42 d−1 Difference in the logarithm of the smoothed Shoot Area at days 42th and 50th after
planting, divided by the length of the period

7 Relative growth rate
smoothed 52–59

RGR52 d−1 Difference in the logarithm of the smoothed Shoot Area at days 52th and 59th after
planting, divided by the length of the period

8 Convex hull area integralc CHA kPix Smallest geometrical object without concave parts that covers whole plant, top view image

9 Caliper length integral CL kPix Max. distance between two points on the object boundary, top view image

Harvest parameters

10
Fresh weight FW g Weight of fresh biomass per pot

11
Dry weight DW g Weight of oven dried biomass per pot

12
Plant height HEI cm Plant height measured from bottom to leaf tip

13
Tiller number TN Number of tillers per pot

Indices

14
Water use efficiency WUE g/g

water
Harvested dry biomass per plant/total amount of irrigation water

akPix Kilo pixel
bkPix/d Kilo pixel/day
cintegral: calculated for the length of entire experiment
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treatments to have different residual variances in the two

Smarthouses. Residual-versus-fitted-values and normal

probability plots were obtained and inspected for all traits

in all years and none revealed any deficiencies in the

models used. Except for σ2S:Z:M , each of the variance com-

ponents and the need for unequal residual variances was

tested via REML ratio tests with α = 0.05. If the curved

trends were not significant then Wald F tests, employing

degrees of freedom calculated using the Kenward-Rogers

method, were used to determine if there was any trend at

all. These mixed model analyses were carried out using

the packages asreml [82], with REML used as the method

of estimation, and asremlPlus [83] in the R statistical com-

puting environment (R Core Team, 2016). The BLUEs

were obtained using the resulting model.

For the second step in the analysis, the 3 years of

genotype BLUEs for a treatment were combined and

subject to a mixed model analysis using PROC MIXED

in SAS, with genotype treated as a fixed effect and year

as a random effect. The BLUEs from this analysis were

obtained using the LSMEANS statement in PROC

MIXED, with variance components estimated using

type3; the BLUEs for the HEB lines formed the data for

the GWAS analysis..

Genome wide association study (GWAS)

A set of 5709 barley Illumina 9 K iSelect SNPs previously

mapped in the HEB-25 population [35] was available for

GWAS. Of these, a set of 5333 SNPs with a minor allele

frequency greater than 1% was utilized for GWAS in this

study. The differentiation of the SNP genotypes was based

on an identity-by-state (IBS) approach described by Maurer

et al. [35].

GWAS was performed using a multiple linear regres-

sion model referred to as model-A by Liu et al. [84],

where: y ¼ μþ XSNPIBSβSNPIBS
þ e . This multiple regres-

sion model takes into account a quantitative SNP effect

in addition to quantitative cofactors that control both

population structure and genetic background [85]. Co-

factor selection was carried out on this model and in-

cluded all SNPs simultaneously by applying PROC

GLMSELECT in SAS. SNPs were allowed to enter or

leave the model based on a SNP’s p-value < 0.001 for the

marginal F-test. To reduce false positives and increase

the robustness of the GWAS results, a five-fold

cross-validation was run 20 times and parent-specific

marker effects were estimated. The procedure of cross

validation and estimation of parent-specific QTL effect

was described in detail by Maurer et al. [36]. Markers

that were detected 20 times out of 100 cross-validation

runs were accepted as putative QTL. Candidate genes

for QTL detected by GWAS were identified using the

BARLEYMAP pipeline [86]. In addition we compared

the genomic position of QTL with the position of known

flowering/developmental and plant architecture genes in

barley summarized by Alqudah et al. [87] and Alqudah

et al. [59] as these two papers used the same genetic

map and markers as in this study. Genes were suggested

as candidates if they were within 4 cM of a QTL.

Additional files

Additional file 1: Figure S1. Relative growth rate (RGR), absolute growth

rate (AGR), and shoot area smoothed (SAsm) of all plants grown within the

drought stress experiments across 3 years (2014–2016) at the Plant

Accelerator, University of Adelaide. The solid line represents the average of

control conditions (cyan) and drought conditions (red). (PDF 696 kb)

Additional file 2: Figure S2. Comparison of temperature recorded

inside the north-east (NE) and north-west (NW) Smarthouses during the

experimental period in the 3 years from 2014 to 2016 at the Plant Accel-

erator. A and B. Lineplots showing highest and lowest temperature re-

corded by sensors for north-east and north-west Smarthouses. C. Lineplot

of growing degree days during the course of the experiment for two

Smarthouses. (PDF 101 kb)

Additional file 3: Table S3. P values of all terms in the models for 14

traits across 3 years. (XLSX 15 kb)

Additional file 4: Table S4. Summary of simple statistics for the

drought stress experiment from 2014 to 2016. (XLSX 21 kb)

Additional file 5: Figure S6. Scatter plots for shoot area smoothed

(SAsm), dry weight (DW), tiller number (TN), and plant height (HEI) in 3 years

from 2014 to 2016. A. Scatter plots and correlation coefficients between the

ratio of the phenotypic values in drought stress treatment versus the

control control treatment (RatioD2W) and the corresponding phenotypic

values in control treatment for shoot area smoothened in 3 years 2014–

2016, respectively. B. Scatter plots and correlation coefficients between ratio

of the phenotypic values in drought stress treatment versus the control

control treatment (RatioD2W) and the corresponding phenotypic values in

control treatment for plant height in 3 years 2014–2016, respectively. C.

Scatter plots and correlation coefficients between ratio of the phenotypic

values in drought stress treatment versus the control control treatment

(RatioD2W) and the corresponding phenotypic values in control treatment

for dry weight in 3 years 2014–2016, respectively. D. Scatter plots and

correlation coefficients between ratio of the phenotypic values in drought

stress treatment versus the control control treatment (RatioD2W) and the

corresponding phenotypic values in control treatment for tiller number in 3

years 2014–2016, respectively. (PDF 265 kb)

Additional file 6: Table S6. Overview of all QTL and their significant effects

on 14 traits studied in 25 families of the HEB-25 population. (XLSX 280 kb)

Additional file 7: Figure S5. Correlation matrices for 14 traits in each

treatment from 2014 to 2016. In the following plots, the distribution of

each variable is shown on the diagonal. The bivariate scatter plots with a

fitted line are displayed on the bottom of the diagonal. The value of the

correlation plus the significance level as stars are displayed on the top of

the diagonal. Each significance level is associated to a symbol: p-values

(0, 0.001, 0.05, 0.01) < => symbols (“***”, “**”, “*”). (PDF 516 kb)

Additional file 8: Design for the drought stress experiment on the

NAM Barley lines. (PDF 630 kb)
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