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Abstract

Central obesity, measured by waist circumference (WC) or waist-hip ratio (WHR), is a marker of body fat distribution.
Although obesity disproportionately affects minority populations, few studies have conducted genome-wide association
study (GWAS) of fat distribution among those of predominantly African ancestry (AA). We performed GWAS of WC and WHR,
adjusted and unadjusted for BMI, in up to 33,591 and 27,350 AA individuals, respectively. We identified loci associated with
fat distribution in AA individuals using meta-analyses of GWA results for WC and WHR (stage 1). Overall, 25 SNPs with single
genomic control (GC)-corrected p-values,5.061026 were followed-up (stage 2) in AA with WC and with WHR. Additionally,
we interrogated genomic regions of previously identified European ancestry (EA) WHR loci among AA. In joint analysis of
association results including both Stage 1 and 2 cohorts, 2 SNPs demonstrated association, rs2075064 at LHX2,
p= 2.2461028 for WC-adjusted-for-BMI, and rs6931262 at RREB1, p= 2.4861028 for WHR-adjusted-for-BMI. However, neither
signal was genome-wide significant after double GC-correction (LHX2: p = 6.561028; RREB1: p = 5.761028). Six of fourteen
previously reported loci for waist in EA populations were significant (p,0.05 divided by the number of independent SNPs
within the region) in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). Further, we observed
associations with metabolic traits: rs13389219 at GRB14 associated with HDL-cholesterol, triglycerides, and fasting insulin,
and rs13060013 at ADAMTS9 with HDL-cholesterol and fasting insulin. Finally, we observed nominal evidence for sexual
dimorphism, with stronger results in AA women at the GRB14 locus (p for interaction = 0.02). In conclusion, we identified
two suggestive loci associated with fat distribution in AA populations in addition to confirming 6 loci previously identified in
populations of EA. These findings reinforce the concept that there are fat distribution loci that are independent of
generalized adiposity.
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Introduction

Obesity is an important public health problem, reaching

epidemic proportions. The prevalence varies by ethnicity, with

nearly one-third of European ancestry (EA) and almost one-half of

African ancestry (AA) Americans considered obese [1]. Recent

studies have suggested that body fat distribution, above and beyond

generalized adiposity, is an important metric of metabolic health, as

different fat compartments are associated with differential metabolic

risk [2]. Specifically, a tendency to deposit fat centrally is associated

with diabetes, hypertension, and heart disease [3–6], even after

accounting for generalized adiposity [7,8].

Waist circumference (WC) and waist to hip ratio (WHR) are

established measures of body fat distribution [9] that differ by

ethnicity [10,11] and demonstrate a genetic component. Twin studies

documented heritability of levels for WC and WHR in EA and AA

individuals, ranging from 31%–76% [12–15] even after accounting

for BMI [14–16]. A recent meta-analysis of WHR in EA individuals

identified 14 loci for body fat distribution [17]. In addition, recent

studies among EAs for percent body fat, fatty liver, visceral fat, and

pericardial fat reported unique loci for fat distribution and ectopic fat

depots above and beyond those associated with generalized adiposity

[18–21]. Similar studies are not available in AA populations. Thus,

the purpose of the present analysis was to perform a collaborative

large-scale meta-analysis of waist-based traits in AA individuals.

Results

We analyzed genetic loci for waist circumference (WC) and waist

hip ratio (WHR) in up to 23,564 AA participants in the discovery set

(Stage 1) and 10,027 AA participants in the replication set (Stage 2).

Table 1 presents overall study sample characteristics and Supple-

mentary Table S1 presents stratified sample characteristics by

gender. Detailed descriptions of each cohort are shown in

GWAS of Body Fat Distribution in African Ancestry
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Supplementary Table S2 and the Supplementary Materials

Text S1. In our GWAS analysis, we applied single genomic control

(GC) correction to avoid the overly conservative double GC

correction [22,23] but we also provide double GC-corrected p-values

for the joint meta-analysis of stage 1 and stage 2 samples (Table 2).

Stage1Genome-WideAssociationAnalyses forWCandWHR
We conducted genome-wide association analyses for 3.2 million

variants, including genotyped and imputed variants, among AA

individuals for WC, WC adjusted for BMI (WC-BMI), WHR and

WHR adjusted for BMI (WHR-BMI) within each cohort, overall

and by sex, and meta-analyzed the results. The Quantile-Quantile

and Manhattan plots for all analyses are displayed in Supple-

mentary Figure S1. With concern of overly conservative double

GC-correction, we applied single GC-correction p values to select

variants for follow-up. Three loci had p,561028 under single GC-

correction; rs2570467 at PCSK1 with WC, rs1345301 at IL1RL2

with WC, and rs17213965 at MYH11 with WHR-BMI, all in men

(n= 5967, 5973, 4398, respectively). Across all traits analyzed, an

additional 22 independent SNPs had a single GC-corrected

p,5.061026 (Table 2). Heterogeneity tests were examined across

all cohorts and none of these 25 SNPs were significant (all p-

values.0.05/25) in heterogeneity testing after adjusting for multiple

testing, indicating that we did not observe statistically different

allelic effects for these 25 SNPs across the participating studies.

Stage 2 Analyses and Joint Meta-Analysis of Stage 1 and
Stage 2
We carried forward all 25 SNPs with single GC-corrected

p,561026 from stage 1 and tested their association in Stage 2

with the traits of interest either in the gender-specific or gender-

combined data depending on the findings in Stage 1, in up to

10,027 AA individuals with WC and 7,606 AA individuals with

WHR. Significance was defined as the joint meta-analysis of stage

1 and stage 2 p-value,561028. Results for these SNPs from

discovery, validation and joint analyses are shown in Table 2, and

the imputation quality for these SNPs is provided in Supple-

mentary Table S3. Three SNPs with p,561028 in the men

only analysis of Stage 1 failed to replicate (p.561028, n,6,000 in

stage 1 and n,3,250 in stage 2) but two of the 25 SNPs carried

forward from Stage 1 reached genome-wide significance under

single genomic control (GC) in the joint meta-analysis of Stage 1

and Stage 2 data: rs2075064 (LHX2, p = 2.2461028) in association

with WC-BMI, and rs6931262 (RREB1, p = 2.4861028) in

association with WHR-BMI. We note, however, that double

GC-corrected p values for these two variants have slightly

attenuated p-values: rs2075064 (LHX2, p = 6.561028) and

rs6931262 (RREB1, p = 5.761028), which were no longer

genome-wide significant. The regional association plots for these

two loci are presented in Figure 1. The lead SNP rs6931262 at

RREB1 is 474 kb away from rs1294421 at LY86, previously

identified in the Genetic Investigation of ANthropomorphic Traits

(GIANT) consortium [17] of EA studies in association with WHR-

BMI (r2=0.007, D9=0.093 among YRI Hapmap participants).

Further Characterization of LHX2 and RREB1 Loci
Given the tendency of waist-associated SNPs to exhibit sex-

specific effects in samples of EA [17], we first tested the two AA

waist loci for evidence of sexual dimorphism (Supplementary

Table S4). There was no appreciable difference between the beta

coefficients for the lead SNPs at LHX2 or RREB1 in women

compared to men in the joint analysis of Stage 1 and Stage 2

samples (psex difference .0.46), suggesting little to no sexual

dimorphism with respect to these 2 loci.

Next, we tested whether the loci identified in the samples of

African ancestry also demonstrate nominal associations in samples

of European ancestry. We interrogated the evidence for associa-

tion, both directional consistency and statistical significance, of

these two SNPs in the GIANT consortium meta-analysis of WHR-

BMI (n = 77,167 EA participants, http://www.broadinstitute.org/

collaboration/giant/index.php/GIANT_consortium) [17]. Nei-

ther rs2075064 at LHX2 (p = 0.78) nor rs6931262 at RREB1

(p = 0.13) was statistically significant. The direction of effect for the

risk allele was consistent for RREB1 between EA and AA samples,

while it was direction-inconsistent for LHX2. However, because

linkage disequilibrium patterns with causal SNPs can differ, or

allelic heterogeneity can exist across ethnicities, we tested for SNP

associations within the 250 kb flanking genomic regions centered

at our two top signals to examine whether SNPs in these genomic

regions might be associated with WHR-BMI in EA samples. For

the LHX2 region, the SNP with the lowest p-value was rs10986172

(MAF=0.06, p = 2.661022,,30 kb from rs2075064; Figure 2a),

which did not reach the Bonferroni-corrected p-value threshold of

6.0261024 (0.05/83 independent tests). For the RREB1 region,

the SNP with the lowest p-value in the European Ancestry data

was rs9392863 (MAF=0.26, p = 1.3061024, ,20 kb from

rs6931262, LD with rs6931262: r2=0.005 and D9=1.00 in

HapMap CEU; Figure 2b) which met the Bonferroni-corrected

threshold of 6.1061024 (0.05/82) in EA samples. Note that the

association for rs9392863 was not significant (p-value = 0.57, LD

with rs6931262: r2=0.001 and D9=1.00 in HapMap YRI) in our

AA samples.

Waist circumference may be greater in tall adults. To

distinguish the evidence of association with WC-BMI from height,

we also tested whether rs2075064 at LHX2 might also be

associated with height in the GIANT GWAS of Height (http://

www.broadinstitute.org/collaboration/giant/index.php/GIANT_

consortium) [23]. No evidence of association was noted (p-value of

0.95).

Local Ancestry Analysis
Recently admixed individuals, such as samples of African

ancestry, may have inherited ancestry from more than one

ancestral population. However, local ancestry may be confounded

with the association signal and lead to spurious association in

association analysis. So to further characterize the differences by

ancestral groups of our two novel loci (LHX2 and RREB1), we

Author Summary

Central obesity is a marker of body fat distribution and is
known to have a genetic underpinning. Few studies have
reported genome-wide association study (GWAS) results
among individuals of predominantly African ancestry (AA).
We performed a collaborative meta-analysis in order to
identify genetic loci associated with body fat distribution
in AA individuals using waist circumference (WC) and waist
to hip ratio (WHR) as measures of fat distribution, with and
without adjustment for body mass index (BMI). We
uncovered 2 genetic loci potentially associated with fat
distribution: LHX2 in association with WC-adjusted-for-BMI
and at RREB1 for WHR-adjusted-for-BMI. Six of fourteen
previously reported loci for waist in EA populations were
significant in AA studied here (TBX15-WARS2, GRB14,
ADAMTS9, LY86, RSPO3, ITPR2-SSPN). These findings rein-
force the concept that there are loci for body fat
distribution that are independent of generalized adiposity.
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performed a sensitivity analysis by additionally adjusting for local

ancestry to account for the effect on our trait of interest due to the

local ancestry at the tested variant using 5 Stage 1 African ancestry

studies. Local ancestry adjustment resulted in similar effect

estimates (Supplementary Table S5), suggesting it is unlikely

to account for our reported signals.

Interrogation of Known European WHR Loci in African
Ancestry Participants
Given the association of the RREB1 locus with WHR-BMI in

both AA and EA participants, we next examined fourteen

previously published loci in association with WHR-BMI in EA

participants [17] in our AA sample (Table 3). Twelve (except

rs6861681 and rs1055144) of the fourteen SNPs had the same

effect direction with respect to the beta coefficient (binomial

distribution p-value = 0.0065), and five demonstrated nominal

significance (p,0.05) in our AA Stage 1 sample (p-value range

1.661022 to 8.561025). We also conduct two-sample t-test to

compare the beta coefficients between EA samples and AA

samples. None of these fourteen SNPs displayed significant

heterogeneity between the two races. We next interrogated the

flanking 250 kb genomic regions centered at each of the 14 SNPs

in our AA dataset. Of the 14 SNPs, 9 SNPs met the locus-specific

Bonferroni corrected threshold in the Stage 1 sample and were

carried forward for Stage 2 validation. In the combined Stage 1

and 2 sample, of these 9 SNPs, 6 remained significant with p-

values less than the locus-specific Bonferroni-corrected threshold

(0.05 divided by the number of independent SNPs within the

Table 1. Study sample characteristics.

Study

Sample

Size WC/

Hip

European

Ancestry % Women % Age (years) WC (cm) Hip (cm) WHR BMI

n/n median, Q1/Q3 % (n) mean (SD) mean (SD) mean (SD) mean (SD) mean (SD)

Stage 1 Cohorts

WHI-SHARe 8138/8128 NA 100 (8155) 61.6 (7.0) 91.5 (13.4) 111.2 (12.7) 0.82 (0.07) 31.0 (6.4)

HANDLS 961/961 0.16,0.11/0.22 55.4 (532) 48.5 (9.0) 98.5 (17.5) 107.5 (16.4) 0.91 (0.07) 29.9 (8.0)

MESA/SHARe (Family) 946/946 0.22, 0.12/0.30 60 (573) 58.2 (8.7) 100.6 (16.2) 110.1 (13.2) 0.91 (0.08) 30.7 (6.4)

Health ABC 1137/0 0.22, 0.12/0.33 57.2 (650) 73.4 (2.9) 100.3 (13.8) NA NA 28.6 (5.4)

GENOA 996/996 0.14, 0.09/0.21 70.4(701) 56.4 (11.2) 102.7 (17.1) 113.3 (15.0) 0.91 (0.08) 31.1 (6.8)

GeneSTAR 1081/552 0.13, 0.09/0.19 61.7 (667) 42.8 (10.4) 98.7 (17.0) 111.5 (14.6) 0.88 (0.08) 31.1 (7.3)

Family Heart Study 624/624 0.13, 0.09/0.19 65.7 (410) 53.3 (10.8) 104.1 (16.8) 114.1 (15.7) 0.92 (0.07) 32.7 (7.4)

HyperGEN 1179/1168 0.15, 0.11/0.20 66 (778) 45.1 (13.0) 102.9 (18.5) 114.4 (16.1) 0.89 (0.08) 32.4 (7.9)

HUFS 924/924 0.20, 0.14/0.27 57.9 (535) 45.5 (12.1) 95.0 (16.7) 110.2 (16.1) 0.86 (0.08) 30.2 (8.2)

CARe Studies*

ARIC 2778/2778 0.15, 0.11/0.22 63.2 (1755) 53.3 (5.8) 99.2 (15.0) 107.8 (11.9) 0.92 (0.08) 30.0 (6.0)

CARDIA 819/818 0.17, 0.12/0.23 60.9 (499) 25.4 (3.2) 79.1 (12.3) 102.1 (12.2) 0.77 (0.07) 25.7 (5.8)

CFS 468/468 0.18, 0.13/0.25 59.4 (278) 44.6 (15.2) 102.3 (20.2) 115.9 (18.3) 0.88 (0.09) 34.2 (9.5)

JHS 2132/0 0.16, 0.12/0.21 60.7 (1295) 50.0 (12.1) 101.2 (17.0) NA NA 32.3 (7.8)

MESA 1381/1381 0.19, 0.12/0.30 54.5 (753) 61.6 (9.9) 101.2 (14.5) 109.8 (11.8) 0.92 (0.08) 30.2 (5.7)

Stage 2 Cohorts

CHS 819/820 0.24, 0.16/0.36 63 (517) 72.9 (5.7) 98.8 (14.4) 104.6 (12.0) 0.94 (0.07) 28.5 (5.5)

BWHS 1499/1499 0.18, 0.11/0.25 100 (1499) 46.9 (10.1) 82.5 (13.0) 105.4 (12.9) 0.78 (0.09) 28.0 (5.7)

REGARDS_Diabetes_CASES 1136/0 0.13, 0.07/0.21 64(730) 63.4(8.7) 104.1(14.5) NA NA 30.2(7.0)

REGARDS_CONTROLS 1244/0 0.14, 0.08/0.22 64(796) 63.1(8.5) 104.2(14.3) NA NA 30.1(7.2)

SUGAR_Diabetes_CASES 865/855 0.05, 0.02/0.09 78(759) 54.1(14) 99.7 (16.7) 108.4(12.5) 0.92(0.08) 34.1(7.9)

SUGAR_CONTROLS 182/181 0.05, 0.02/0.11 72(144) 54.2(14.1) 99.5 (16.8) 114.3(12.6) 0.87(0.09) 34(7.6)

MEC Breast Cancer Cases 259/258 NA 100 (259) 71.6(8.6) 96.0(14.3) 109.1(14.0) 0.88(0.10) 28.6(5.8)

MEC Breast Cancer Controls 528/527 NA 100 (528) 70.9(8.4) 95.4(14.8) 110.2(14.3) 0.87(0.09) 28.7(6.0)

CBCS Breast Cancer Cases 626/626 NA 100 (626) 51.3(11.9) 96.6(14.2) 113.3(13.8) 0.85(0.08) 31.9(7.2)

CBCS Breast Cancer Controls 579/579 NA 100 (579) 51.8(11.4) 95.5(15.1) 114.3(13.9) 0.84(0.08) 32.3(7.5)

WCHS Breast Cancer Cases 256/259 NA 100 (259) 49.8(9.7) 101.1(16.7) 114.0(13.9) 0.88(0.08) 31.9(7.1)

WCHS Breast Cancer Controls 237/237 NA 100 (237) 49.8(9.4) 98.7(15.6) 113.0(13.7) 0.87(0.07) 31.3(7.0)

MEC Prostate Cancer Cases 542/528 NA 0 (0) 73.8(7.0) 99.5(12.4) 105.5(10.9) 0.94(0.09) 27.1(4.0)

MEC Prostate Cancer Controls 877/856 NA 0 (0) 69.6(8.5) 99.4(12.7) 105.8(12.0) 0.94(0.11) 27.3(3.8)

MDA Prostate Cancer Cases 153/153 NA 0 (0) 59.2(7.8) 100.5(13.0) 107.9(11.3) 0.93(0.06) 27.1(5.1)

MDA Prostate Cancer Controls 228/228 NA 0 (0) 59.6(8.7) 99.7(12.2) 106.9(11.2) 0.93(0.06) 29.1(5.0)

doi:10.1371/journal.pgen.1003681.t001
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Figure 1. Regional association plots based on single GC-corrected p-value for LHX2 and RREB1, Stage 1 only. MAF=minor allele
frequency. The p-values for the index SNP rs2075064 in LHX2 loci are 5.5E-8, 0.03, and 2.2E-8 for Stage 1, Stage 2 and joint analysis. The p-values for
the index SNP rs6931262 at RREB1 loci are 5.3E-8, 0.02 and 2.5E-8 for Stage 1, Stage 2 and joint analysis. The double GC-corrected p-value for the joint
analysis are 6.5E-8, 5.7E-8 and 1.8E-6 for rs2075064, rs6931262 and rs1294410, respectively.
doi:10.1371/journal.pgen.1003681.g001
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flanking region of each index SNP; TBX15-WARS2, GRB14,

ADAMTS9, LY86, RSPO3, ITPR2-SSPN, Table 4). Figure 3

presents the regional association plots of these six loci. Except for

the ITPR2-SSPN region, the five best AA SNPs were in linkage

disequilibrium, r2.0.3 (LD in HapMap II CEU), with the original

index SNPs previously reported in EA participants.

Because of the close physical proximity of rs6931262 at RREB1

and rs1294410 at LY86 (r2 0.01, D9 0.35 in YRI, 474 kb apart), we

performed a conditional analysis in the largest contributing study,

the Women’s Health Initiative. When the SNPs were tested

individually, the beta coefficient for rs6931262 was 20.054

(p = 0.0039), and for rs1294410 was 0.048 (p = 0.0145). In the

conditional analysis, the betas and p-values were not numerically

different (beta 20.052 for rs6931262 and 0.046 for rs1294410; p-

values 0.0056 and 0.0145, respectively).

Given the prior evidence for sexual dimorphism at many of

these known loci [17], we tested for evidence of sex differences at

the 6 replicating AA SNPs in the joint Stage 1 and Stage 2 samples

(Supplementary Table S4). We observed little evidence for

sexual dimorphism, with the exception of GRB14, which

demonstrated a stronger effect size in women as compared to

men (p-value = 0.02 for the comparison of the beta coefficients).

Cross-Trait Associations
Given the evidence for association between waist-based traits

and other cardiometabolic risk factors in EA individuals [17], we

next examined whether there was similar enrichment in AA

individuals (Table 5). rs13389219 at GRB14 was associated with

HDL-cholesterol (p = 0.014) [24], triglycerides (p = 0.014) [24],

and fasting insulin (p = 0.008) [25], while rs13060013 in

ADAMTS9 was associated with HDL-cholesterol (p = 0.0009)

[24] and fasting insulin (p = 0.002) [25]. There were nominal

associations with related anthropometric traits for rs1936806 at

RSPO3 in association with BMI [26] (p = 0.003), rs2075064 at

LHX2 in association with BMI [26] (p = 0.002), and height

(p = 0.02, Christopher Haiman, personal communication).

Discussion

We identified 2 loci at LHX2 and RREB1 with p,5.061028

under single GC-correction for waist-based traits in African

ancestry individuals, which were not genome-wide significant

(p = 6.561028 and p=5.761028) with double-GC correction.

Population sub-structure may cause spurious associations in

genome-wide association studies and GC factors calculated from

Figure 2. Regional association plots for LHX2 and RREB1 in GIANT consortium with participants of European ancestry. The blue arrow
points to the index SNPs identified from the samples of African ancestry and red arrow points to the best SNPs in GIANT consortium samples of
European ancestry.
doi:10.1371/journal.pgen.1003681.g002

Table 3. Examination of index SNPs within known loci in EA in AA for trait WHR ratio adjusted for BMI.

Index SNP Results

index SNP information EA Sample AA samples

SNP chr bp (b36) Genes All1 EAF2 beta SE P-val N beta SE EAF2 P4
Het

SNPs associated with waist-related trait at significant level3

rs984222 1 119305366 TBX15-WARS2 g/c 0.37 0.04 0.005 3.3E-03 19078 0.03 0.011 0.45 0.66

rs10195252 2 165221337 GRB14 t/c 0.60 0.03 0.005 8.5E-05 19654 0.05 0.012 0.28 0.78

rs6795735 3 64680405 ADAMTS9 c/t 0.41 0.03 0.005 1.6E-02 19630 0.03 0.014 0.19 0.85

rs1294421 6 6688148 LY86 g/t 0.39 0.03 0.005 6.0E-04 19625 0.04 0.012 0.74 0.46

rs9491696 6 127494332 RSPO3 g/c 0.52 0.04 0.005 6.7E-04 19642 0.04 0.011 0.39 0.70

rs718314 12 26344550 ITPR2-SSPN g/a 0.74 0.03 0.005 6.4E-01 19637 0.01 0.014 0.19 0.85

Further SNPs evaluated in follow up but not achieving significance in combined analysis3

rs4846567 1 217817340 LYPLAL1 g/t 0.28 0.04 0.005 1.4E-01 19671 0.03 0.019 0.92 0.36

rs6784615 3 52481466 NISCH-STAB1 t/c 0.94 0.05 0.010 8.8E-01 14326 0.01 0.040 0.98 0.33

rs6905288 6 43866851 VEGFA a/g 0.56 0.03 0.005 1.0E-01 19609 0.02 0.010 0.50 0.62

SNP evaluated but not achieving significance in discovery analysis3

rs1011731 1 170613171 DNM3-PIGC g/a 0.57 0.03 0.005 1.4E-01 19480 0.02 0.014 0.82 0.41

rs6861681 5 173295064 CPEB4 a/g 0.34 0.03 0.005 4.3E-01 3074 20.04 0.053 0.07 0.94

rs1055144 7 25837634 NFE2L3 t/c 0.21 0.03 0.006 5.4E-01 19606 20.01 0.022 0.06 0.95

rs1443512 12 52628951 HOXC13 a/c 0.24 0.03 0.005 5.5E-02 19644 0.02 0.011 0.57 0.57

rs4823006 22 27781671 ZNRF3-KREMEN1 a/g 0.57 0.03 0.005 8.5E-02 19444 0.02 0.011 0.69 0.49

The index SNPs is from Heid et al, Nature Genetics 2010 [17].
1effect allele/other allele.
2effect allele frequency.
3Significance classification refers to the interrogation results of best SNP in Table 4.
4p-value of heterogeneity test of beta between EA and AA samples.
doi:10.1371/journal.pgen.1003681.t003

GWAS of Body Fat Distribution in African Ancestry

PLOS Genetics | www.plosgenetics.org 9 August 2013 | Volume 9 | Issue 8 | e1003681



variants across the genome are conventionally used to scale the test

statistic [27]. However, this method was originally proposed under

the hypothesis that only a small number of causal variants underlie

complex traits. Recent studies have shown that as the number of

causal variants increases, more SNPs (in LD with causal variants)

will depart from the null distribution even in the absence of

population sub-structure [22,23]. Furthermore, the GC factor is a

function of sample size under a constant phenotypic heritability.

Therefore, double GC-correction in a large meta-analysis is

likely overly conservative. Thus, we report both single and double

GC-corrected values. rs6931262 at RREB1 is in a region

previously identified by the GIANT consortium in European

ancestry individuals, although in low linkage disequilibrium with

the variant identified in the present study. Interrogation of 14

regions previously identified by the GIANT consortium identified

6 additional SNPs associated with waist traits in AA participants.

Two of these loci at GRB14 and ADAMTS9 were also associated

with metabolic traits in AA. Finally, we observed nominal

evidence for sexual dimorphism.

These findings support prior GWAS findings that there are

genetic loci for body fat distribution which are distinct from loci

associated with generalized adiposity. The GIANT consortium

identified 14 loci in association with WHR adjusted for BMI, and

the majority was not associated with BMI [17]. Similarly, a SNP at

IRS1 was identified in association with body percent fat that was

not associated with generalized adiposity [18]. More recent

GWAS of ectopic fat depots have also identified unique loci in

association with fatty liver [19], visceral abdominal fat [20], and

pericardial fat [21]. The results from the present analysis extend

these observations to AA populations, a group at increased risk for

obesity and its complications.

Our findings add to the growing appreciation that SNPs

correlated with body fat distribution are also associated with

metabolic traits [28]. This finding contrasts with genetic loci for

BMI, which generally have not been shown to be associated with

metabolic traits [29]. In contrast to prior work [17,18,20], we

observed little evidence for sexual dimorphism in the present

analysis, with the exception of GRB14. Whereas the GIANT

consortium observed stronger effect sizes in women than men

among the majority of the 14 WHR SNPs they identified, we

observed more modest gender differences and in some instances,

the effect size was actually stronger in men as compared to women

(ITPR2-SSPN and LHX2). This raises several hypotheses that

warrant some speculation as to why we did not observe similar

sexual dimorphism in AA sample as observed in our prior work in

EA samples. First, biologically, associations linking the SNPs and

gene regions to body fat distribution traits may be different

between women and men of AA as compared to EA. Second, in

terms of methodology, the traits themselves may be measuring

different phenotypic elements of body fat distribution or muscle

Table 4. Interrogation of best SNPs with the smallest p-value within known EA loci in AA for trait WHR ratio adjusted for BMI.

Best SNP results in AA sample

Stage 1 Stage 2 Combined

Genes Best_SNP All1 EAF2 P-val beta SE N3 P4
YRI5 r2

(D9) CEU5 r2 (D9)beta SE P-val6 beta SE P-val P2GC
7

SNPs associated with waist-related trait at significant level

TBX15-WARS2 rs10923714 a/g 0.29 1.8E-04 0.04 0.01 34 1.5E-03 0.49 (1.00) 0.48 (1.00) 0.03 0.02 6.4E-02 0.04 0.01 6.8E-05 1.1E-04

GRB14 rs13389219 t/c 0.71 4.7E-05 20.05 0.01 42 1.2E-03 1.00 (1.00) 0.93 (1.00) 20.02 0.02 2.0E-01 20.04 0.01 9.5E-05 1.4E-04

ADAMTS9 rs13060013 a/c 0.22 3.9E-05 0.05 0.01 95 5.3E-04 0.01 (0.45) 0.33 (1.00) 0.02 0.02 1.2E-01 0.04 0.01 3.8E-05 5.9E-05

LY86 rs1294410 t/c 0.23 6.3E-07 20.06 0.01 130 3.8E-04 0.39 (0.68) 0.83 (0.96) 20.02 0.02 1.1E-01 20.05 0.01 1.0E-06 1.8E-06

RSPO3 rs1936806 t/c 0.29 1.1E-04 0.04 0.01 24 2.1E-03 0.52 (1.00) 0.88 (1.00) 0.00 0.02 4.4E-01 0.03 0.01 8.1E-04 1.1E-03

ITPR2-SSPN rs11048510 c/g 0.23 5.8E-04 0.04 0.01 88 5.7E-04 0.00 (0.25) 0.03 (0.19) 0.04 0.02 1.3E-02 0.04 0.01 4.1E-05 6.0E-05

Further SNPs evaluated in follow up but not achieving significance in combined analysis

LYPLAL1 rs2791547 a/t 0.67 2.0E-03 20.03 0.01 51 9.8E-04 0.00 (0.09) 0.62 (0.95) 20.01 0.02 3.7E-01 20.03 0.01 4.9E-03 6.0E-03

NISCH-STAB1 rs4687612 a/g 0.95 5.3E-03 20.07 0.02 17 2.9E-03 N/A 0.01 (1.00) 20.03 0.04 2.5E-01 20.06 0.02 6.0E-03 7.4E-03

VEGFA rs1761769 t/g 0.30 3.1E-04 20.05 0.01 74 6.8E-04 0.12 (0.70) 0.00 (0.06) 0.01 0.02 2.6E-01 20.03 0.01 5.1E-03 6.3E-03

SNP evaluated but not achieving significance in discovery analysis

DNM3-PIGC rs4916264 t/c 0.66 4.4E-03 20.04 0.02 47 1.1E-03 0.06 (1.00) 0.63 (1.00)

CPEB4 rs2659191 a/g 0.88 1.2E-02 0.04 0.02 92 5.4E-04 N/A 0.16 (1.00)

NFE2L3 rs4719818 t/g 0.21 2.1E-03 20.04 0.01 56 8.9E-04 0.04 (0.42) 0.07 (0.50)

HOXC13 rs7970400 t/c 0.65 4.6E-03 0.03 0.01 62 8.1E-04 0.02 (0.28) 0.02 (0.17)

ZNRF3-KREMEN1 rs16987063 c/g 0.88 1.6E-02 0.06 0.02 47 1.1E-03 0.01 (0.17) N/A

The index SNPs are from Heid et al, Nature Genetics 2010 [17]. Note that Tables 3 and 4 show different information for the same loci (Table 3 for index SNP and
Table 4 for best SNPs with the smallest p-value).
1effect allele/other allele.
2effect allele frequency.
3number of independent (typed) SNPs interrogated in AA sample.
4Bonferroni p-value threshold (0.05/N3).
5HapMAP LD information.
6one-side test p-value.
7P2GC: double GC-corrected p-value.
doi:10.1371/journal.pgen.1003681.t004
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mass in women as compared to men. Abdominal adipose

composition may vary more in EA than AA as EA have greater

visceral adipose tissue than AA of similar gender. Finally,

statistically, for some loci (RSPO3 and ADAMTS9), we cannot rule

out the presence of modest gender differences given the relatively

small sample sizes as compared with other analyses. This is further

reinforced by our power analysis to detect sex-specific associations.

We conducted this power analysis for a common variant

(specifically, MAF of 0.25 here) with an effect size difference of

0.054, which is derived from the largest effect difference indicated

in Table 2 of Heid et al [17]. Using these assumptions, we have

only 6.7% power to detect the variant (MAF of 0.25) with a sample

size of 23564 in our discovery stage and 10.9% power with

combined sample size 33738 from stage 1 and stage 2. This

suggests that we have limited power to detect sexual dimorphism if

it indeed exists.

It is notable that our top SNP at RREB1 is within 1 Mb of

LY86 (lymphocyte antigen 86), one of the 14 novel loci identified

by the GIANT genome-wide association meta-analysis of WHR

[17]. Given the low pairwise linkage disequilibrium and lack of

Figure 3. Regional association plots for all confirmed loci from the GIANT locus interrogation. Each figure is centered by the index SNP
(big red) with rs-number and p-value information (stage 1 only); another big rectangle is the best SNP in African Americans, with information
including MAF=minor allele frequency; linkage disequilibrium information in HapMap YRI and CEU; PD, PF, and PJ are the single GC-corrected p-value
obtained from discovery cohorts only, follow-up cohorts and joint discovery and follow-up data, respectively. Double GC-corrected p-value can be
found in Table 4.
doi:10.1371/journal.pgen.1003681.g003
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change in the association of the beta coefficient upon conditional

analysis in this region, it is likely that there are two independent

genetic effects in this chromosomal region. It is also possible that

these two SNPs may be partially tagging an untyped variant that

explains the underlying association [30–32]. Therefore, fine

mapping or deep sequencing of this region is needed and may

prove relevant to both AA and EA. Our findings also

demonstrate the similarity in the genetic architecture of waist

related traits in EA and AA, as 12 of the 14 previously identified

WHR loci demonstrated direction-consistent effect estimates in

AA as compared to EA participants. For five of these signals

(TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3), upon

interrogation of the 250 kb flanking region of the index signal,

we identified a better proxy (r2.0.3 in CEU dataset) SNP of the

presumably underlying biologically important alleles at these loci.

Indeed, these findings may help improve localization of the true

association signal.

rs2075064 is in linkage disequilbrium with variants in the LHX2

and DENND1A genes. LHX2 is a member of the LHX protein

family, the largest group of LIM-domain proteins. LHX proteins

are primarily transcriptional regulators, with a known role in

tissue-specific gene expression. They take part in the determina-

tion of cell lineage and identity in a wide range of tissues, including

the adipocyte differentiation of human adipose-derived stem cells

[33]. Variants in DENND1A gene have been associated with

polycystic ovarian syndrome in both European ancestry [34] and

Chinese women [35]. Taken together, these findings highlight how

future studies can further our understanding of how genes in this

region may contribute to body fat distribution and related obesity

phenotypes.

There are several genes in the region of rs6931262. RREB1

(Ras-responsive element binding protein 1) participates in Ras

signaling and cancer progression in bladder cancer [36] prostate

cancer [37], and melanoma [38]. RREB1 is not known to play a

role in adipose tissue, and SNPs in this gene have previously been

associated with serum urate levels [39]. SSR1, CAGE1, and RIOK1

are also located in this genomic region, although SNPs mapping to

these genes do not appear to be in linkage disequilibrium with the

SNP cluster of interest.

There are several potential implications of this work. First,

these analyses highlight how novel loci for body fat distribu-

tion, above and beyond generalized adiposity, can be

elucidated by performing GWAS in diverse ethnic populations.

Second, we demonstrate some important similarities in the

associations among AA as compared to EA individuals with

regards to the loci uncovered as well as pleiotropy with other

cardio-metabolic phenotypes. Finally, while many of the beta

coefficients were similar in women as compared to men, we

did uncover modest evidence for sexual dimorphism in the

present AA sample.

A major strength of this study is the large sample size of AA

participants, representing the largest study to date for waist-

based phenotypes in AA. This study has similar limitations to

other GWAS performed in AA populations. While the overall

sample size was large, the discovery sample was still consider-

ably smaller than those for GWAS meta-analysis conducted in

samples of primarily EA populations. In the present analysis, to

have 80% power to detect an association that explains 0.1% of

the trait variance at a MAF of 0.25 would require 39581

participants. With our largest WC sample size (n = 23564) in

discovery stage, we have only 28% power to detect common

variant explaining 0.1% of the variance of WC. In addition,

GWAS panels such as the Affymetrix 6.0 chip were largely

designed based on EA populations and have more limited SNP
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coverage for AA samples. For example, one analysis of 76

genes reported that only approximately 45–55% of SNPs were

tagged (r2.0.8) on the Affymetrix 6.0 panel in YRI samples

[40]. Kang and colleagues [41] demonstrated that both local

and global ancestry estimates similarly attenuated spurious

results due to population stratification in their study of AA

ancestry individuals. As with all studies in admixed populations,

while association analyses were adjusted for global population

structure using principal components, there may be residual

population substructure leading to false positive results. Given

the minimal attenuation that we observed with local ancestry

adjustment, our key findings are unlikely to be spurious. We

performed 12 analyses, raising the possibility of false positive

findings using standard significance thresholds. PCSK1 is a bona

fide locus for obesity [42], yet this SNP failed to replicate in

our findings. While we can not rule out power as the reason for

the lack of replication, this signal may also have represented a

false positive finding in our dataset. Heterogeneity between

study samples may limit power, but this is an issue in GWAS

and not unique to the present investigation. After double GC

correction, our findings did not reach genome-wide significance.

However, double GC correction may be overly conservative

[22,23]. Finally, a general limitation in GWAS is that coverage

of rare (MAF,1%) and low frequency (1%,MAF,5%)

variants is poor, and thus associations with rarer variants are

likely missed.

GWAS of body fat distribution traits in a large AA sample

has revealed two loci likely associated with fat distribution, as

well as nominal evidence for association at 6 loci previously

identified among EA individuals. These findings highlight

similarities and differences in the genetic architecture of body

fat distribution in AA and EA individuals, and reinforce the

concept that there are loci for fat distribution above and beyond

generalized adiposity.

Materials & Methods

Phenotype Definition
We analyzed waist-based traits including waist circumference

(WC) and waist-hip ratio (WHR), a measure of body fat

distribution [43]. Details regarding trait acquisition within each

cohort can be found in the Text S1. Individuals less than 20 years

of age were excluded from all analyses. Within each cohort, we

created two sets of residuals for WC and WHR, one adjusted for

age, age2, study site (if applicable) and another additionally

adjusted for BMI. Analyses were conducted separately for men

and women. The raw residuals were then transformed through an

inverse normal function for each subgroup and these transformed

residuals were used as our phenotypes in the association analyses.

The cohorts with related individuals additionally performed sex-

combined analysis. We analyzed four phenotypes: waist circum-

ference (WC), waist circumference adjusted for BMI (WC-BMI),

waist hip ratio (WHR) and waist hip ratio adjusted for BMI

(WHR-BMI).

Samples
We conducted analysis of WC and WHR in up to 33738 and

27489 AA individuals, respectively. Specifically, the analysis

included for WC up to 23,564 individuals and WHR up to

19,744 individuals in stage 1 while 10,174 AA individuals with

WC and 7,745 AA individuals with WHR in stage 2. Stage 1

cohorts were part of the CARe consortium and other cohorts

that were identified with GWAS data at the time the study

started. Stage 2 cohorts with in silico GWAS data were identified

later. Some participating studies, including CFS, Family Heart

Study, GENOA, HUFS, HyperGEN, GeneSTAR, JHS, MESA-

family and SIGNET (REGARDS, SUGAR), are family studies.

The CARe consortium (ARIC, CARDIA, CFS, JHS, MESA)

consists of several population-based studies that included African

ancestry individuals. The WHI study was a clinical trial.

HANDLS is a community-based study. Family Heart Study is

a multicenter family-based study. GeneSTAR is a prospective

study of vascular diseases. GENOA and HYPERGEN are

cohorts of sibships enriched for hypertension. Health ABC is a

random sample of Medicare beneficiaries in and surrounding

Pittsburgh, Pennsylvania, and Memphis, Tennessee. HUFS is a

population-based family study in the Washington, D.C. metro-

politan area. MEC is a prospective cohort study including a

nested breast cancer case-control study. WCHS is a case-control

study of breast cancer in the New York City and New Jersey.

CBCS is population-based case-control study on Breast cancer.

Both MEC and MDA are Prostate cancer case-control studies.

Black Women’s Health Study is an ongoing follow-up study of

59,000 African American women from across the U.S. CHS is a

population-based study of risk factors for CHD and stroke.

REGARDS is an observational cohort and SUGAR is a

community based family studies focusing on Type 2 Diabetes.

Each participating study has obtained institutional review board

approval on research involving human subjects and all subjects

provided written informed consent. Details regarding each

cohort can be found in the Text S1.

Genotyping and Imputation
Genotype information for each cohort is presented in

Supplementary Table S2. As shown in Table 1, the genetic

ancestry of our samples, African American, is also partly from

European Ancestry. Simply using all YRI sample as reference

panel would be inappropriate, given that we generally see an

average of 20% CEU admixture. To better capture the genetic

structure of our samples, all the genotypes from discovery cohorts

were imputed using combined HapMap 1:1 CEU+YRI as

reference panel. This imputation has resulted in an allelic

concordance rate of 95.6%, which is compatible to rates

calculated with the HapMap 2 YRI individuals [44]. Our

follow-up stage (Stage 2) included in silico and de novo follow-

up cohorts. In-silico follow-up studies similarly use the combined

CEU+YRI in HapMap as their reference panel for genotype

imputation. Then the expected allele dosage was used in the

association analysis to account for the uncertainty introduced by

the genotype imputation. More details regarding imputation were

in Supplementary Table S2.

Statistical Methods for Discovery (Stage 1)
In each discovery study, genome-wide tests for association

between SNPs and phenotypes were conducted separately for men

and women using linear regression with principal components

adjustment to adjust for global population substructure. In studies

from families, men and women were also combined for analyses.

Linear mixed effect models, where appropriate, were used to

account for the relatedness in family studies.

In addition to study-specific filters, a centralized quality control

procedure was performed to extensively examine and check all

study-specific results files before meta-analysis. We examined the

plausible values for all reported summary statistics to check for

potential errors. The genomic control lambda (l) value for each set

of results was checked for potential p-value inflation. We analyzed

SNPs with imputation quality scores greater than 0.3 for studies

using MACH or BimBam software, and greater than 0.4 for
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studies that used other imputation software such as IMPUTE.

Additionally, we filtered out SNPs where the minor allele

frequency times the number of subjects was smaller than or equal

to 5, to ensure robust estimates.

Meta-Analysis
We performed fixed-effects meta-analyses of study-specific

genome-wide association results using the inverse-variance weighted

approach for the traits described above. Three sets of meta-analyses

were conducted for each phenotype using (1) men only results, (2)

women only results, and (3) joint men-only and women-only results

for studies of unrelated individuals, and sex-combined results for

studies with related individuals. The calculated l genomic control

(GC) correction was applied to each cohort’s result. Recent studies

showed that under polygenic inheritance, test statistics in large

meta-analyses are expected to be elevated even when there is no

population sub-structure [22,23]. To avoid an overly conservative

adjustment, we focused on the single GC-corrected result. However,

we also report the double GC-corrected p-value for the joint meta-

analysis of the stage 1 and stage 2 samples.

Local Ancestry Analysis
As a sensitivity analysis, we assessed the impact of local ancestry

by including SNP specific local ancestry estimates as a covariate in

models for genome-wide significant signals in both the CARE and

WHI studies. Locus-specific ancestry (i.e. probabilities of whether

an individual has 0, 1, or 2 alleles of African ancestry at each locus)

was only available for directly genotyped SNPs and was estimated

using a Hidden Markov Model and the local haplotype structure to

detect transitions in ancestry along the genome [45]. We considered

signals robust to adjustment for local ancestry when the Beta was

numerically similar.

Interrogation of GIANT Loci in the Samples of African
Ancestry
We applied a procedure to evaluate the transferability of

association signals across different ethnicities [46]. Specifically, in

addition to validating the previously reported index SNPs identified

in studies of EA participants [17], we interrogated the surrounding

genomic regions in our AA samples. For each reported index EA

SNP, we first examined the results in our AA samples and tested for

consistency of direction, with respect to the beta coefficients of index

SNPs, between EA andAA samples. To accommodate the difference

of LD structure across ethnicities, we then interrogated 6250 kb

regions around the index SNPs and identified the SNP with the

smallest p-value in AA within the interrogated genomic region. The

loci-specific significance threshold was based on Bonferroni correc-

tion, defined as 0.05 divided by the number of independent SNPs

within an interrogated region. SNPs meeting genome-wide

(p,5.061028) or suggestive (5.061028
,p,5.061026) in the Stage

1 meta-analysis were carried forward for follow-up in Stage 2 and

joint Stage 1 and 2 meta-analysis. To test the consistency of effect

directions between AA and EA samples, a p-value was calculated

based on the cumulative binomial distribution for the observed or

more extreme number of variants with a consistent direction.

Follow-up Analysis (Stage 2) and Joint Analysis of
Discovery and Follow-up (Stage 1 and 2) Data
An analysis approach consistent with the discovery stage (ie Stage

1), described above, was used for the Stage 2 studies. In this stage, the

variants of interest identified from our analysis of Stage 1 and

interrogation of previously published EA WHR-BMI loci were

followed up in different samples for follow-up meta-analysis and

confirming the association.We then conducted additional jointmeta-

analysis, including studies from both Stage 1 and Stage 2 discovery

and follow-up data. In Stage 2 analysis, the replication was defined as

having a beta coefficient consistent with the discovery stage; follow-

up p-values are thus represented as one-sided tests. For the joint

analysis, we used the standard threshold of p-value,561028 for

genome-wide significance and a locus-specific Bonferroni corrected

threshold for the regions identified by the GIANT consortium.

For newly identified SNPs from both genome-wide association

analyses and previous region interrogation analyses, we performed

sex-specific association analyses and also tested the difference of

meta-analyzed sex-specific beta-estimates (bmen and bwomen) using

the t-statistic

(bmen{bwomen)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2
men

zSE2
women

{2rSEmenSEwomen

p ,

where r is the Spearman rank correlation coefficient between bmen

and bwomen across all SNPs. Note that we are comparing two

parameters and testing whether their difference is equal to zero. This

is basically the setting of a two-sample test. Although based on our

sample size (n.5000 in combined analysis), the Z-statistic should

work well due to the Central Limit Theory. However, we intended

to conservatively use the t-statistic here to calculate the p-value.

Interrogation of Novel AA Loci in GIANT
We also examined the GIANT consortium results [17] for

evidence of association for the novel loci identified in the AA

samples. We applied similar interrogation procedures detailed in

the previous section of the Interrogation of GIANT Loci in the

samples of African Ancestry. Briefly, we first looked up the

association results for the AA index SNP in GIANT and followed

up with the interrogation of its 6250 kb flanking region. The

significance was evaluated as 0.05 divided by the number of

independent variants within the interrogated region.

Cross-Trait Analyses
For the newly identified SNPs from both GWAS and the

interrogation analysis we performed cross-trait association analyses

of metabolic risk factor and related anthropometric measures,

including BMI [26] , HDL-cholesterol [24], LDL-cholesterol [24],

triglycerides [24], glucose and insulin [25], and height (Christo-

pher Haiman, personal communication), in AA samples for the

newly identified SNPs from both genome-wide association analysis

and the interrogation analysis.
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