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Abstract

Background: Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing

soybean consumption necessitates the improvement of varieties for more efficient production. However, both

correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to

soybean breeding.

Results: To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions

worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association

studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined

that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an

additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of

115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1,

E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits.

Conclusions: This study provides insights into the genetic correlation among complex traits and will facilitate future

soybean functional studies and breeding through molecular design.
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Background

Soybean (Glycine max [L.] Merr.) is a major crop of agro-

nomic importance as a predominant source of protein

and oil [1]. To meet the needs of the rapidly increasing

human population, soybean breeders are challenged with

finding a high-efficiency breeding strategy for developing

soybean varieties with higher yield and improved quality

[2]. Molecular breeding has been proposed to be a power-

ful and effective approach for crop breeding, but requires

a better understanding of the genetic architecture and net-

works underlying agronomical traits [3, 4]. Therefore, a

priority task for accelerating the development of soybean

varieties is a global dissection of the genetic basis of agro-

nomical traits.

Quantitative trait loci (QTL) and positional cloning

identified a set of loci that are responsible for flowering

and maturity, biotic and abiotic stresses, and growth

habits (see review from Xia et al. [5]). However, our un-

derstanding of the genetic regulation of agronomic traits

remains limited because most of them are naturally

adapted into complex traits [6]. Genome-wide association

* Correspondence: zhiwu.zhang@wsu.edu; gdwang@genetics.ac.cn;

bgzhu@genetics.ac.cn; zxtian@genetics.ac.cn
†Equal contributors
10Department of Crop and Soil Sciences, Washington State University,

Pullman, WA 99164, USA
2State Key Laboratory of Plant Genomics, Institute of Genetics and

Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
1State Key Laboratory of Plant Cell and Chromosome Engineering, Institute

of Genetics and Developmental Biology, Chinese Academy of Sciences,

Beijing 100101, China

Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Fang et al. Genome Biology  (2017) 18:161 

DOI 10.1186/s13059-017-1289-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-017-1289-9&domain=pdf
http://orcid.org/0000-0001-6051-9670
mailto:zhiwu.zhang@wsu.edu
mailto:gdwang@genetics.ac.cn
mailto:bgzhu@genetics.ac.cn
mailto:zxtian@genetics.ac.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


study (GWAS) is a powerful approach for dissecting com-

plex traits [7] and has been successfully applied for the

study of many plants, such as Arabidopsis [8], rice [9–11],

maize [12, 13], and foxtail millet [14]. In soybean, geno-

typing by either the Illumina Bead Chip or specific locus

amplified fragment sequencing, the evaluation of several

specific agronomic traits, including seed protein and oil

concentration [15, 16], sudden death syndrome resistance

[17], cyst nematode resistance [18, 19], and flowering time

[20] were conducted through GWAS. These studies

provided valuable resources for future molecular breeding

of soybean.

Nevertheless, the dissection of a specific trait is insuffi-

cient for molecular breeding because many complex traits

exhibit correlation and tend to be tightly integrated,

resulting in heritable covariation [21, 22], which add the

complexity for breeding [23]. For instance, it is difficult to

simultaneously increase grain yield and protein content

for most crops because these two traits exhibit negative

correlation and tend to change together [24–26]. The ob-

jectives of soybean breeding have expanded beyond yield;

in fact, multiple selection criteria including oil content

and protein content have been applied. Therefore, an un-

derstanding of how traits covariation is essential for the

genetic improvement of multiple complex traits [27].

In this study, we collected 809 diverse soybean acces-

sions, cultivated them at three locations for two years,

and phenotyped them for 84 agronomic traits. Whole-

genome sequencing (WGS) at an 8.3 × depth produced

more than 11 million genetic markers. The endeavor

from comprehensive GWAS analyses enabled the identi-

fication of the underlying genetic loci, loci interaction,

and genetic networks across traits.

Results

Genotyping and phenotyping of 809 diverse soybean

accessions

On the basis of our previous investigated 130 land-

races and 110 cultivars [28], we collected additional

291 landraces and 278 cultivars in this study, which

composed a population with a total of 809 soybean

accessions (Additional file 1: Table S1). The population

consisted of 70 previously reported representative acces-

sions [29], 160 Chinese core collection accessions [30],

and 579 other accessions from different countries and re-

gions. The 421 landraces and the 388 cultivars covered

the main soybean producing areas, including China,

Korea, Japan, Russia, the United States, and Canada, but

not South America (Fig. 1a; Additional file 1: Table S1). Of

the 809 accessions, 240 were sequenced in a previous

study and the other 569 lines were sequenced in the

present study. In total, 66.8 billion paired-end reads

(7.0 Tb of sequences) were generated with a mean depth of

approximately 8.3 × for each accession (Additional file 1:

Table S1). After mapping against the reference gen-

ome, single-nucleotide polymorphism (SNP) calling,

and imputation (see “Methods”), a total of 10,415,168

SNPs and 1,033,071 small indels (≤6 bp) were identified

a

c d

b

Fig. 1 Geographic distribution and genetic structure of 809 soybean accessions. a Geographic distribution of the 809 soybean accessions. Each

accession is displayed as a dot. b Genetic structure of the 809 soybean accessions. The accessions are clustered by the neighbor-joining tree using

whole-genome SNPs. The length of the lines on the tree indicates the simple matching distance. c, d The areas with dense collections (Asia and

North America) are magnified separately. The colors of the dots in (a, c, and d) correspond to their groups in (b)
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(Additional file 2: Table S2). To assess the quality of the

genotype data, we validated 37 randomly selected SNPs in

96 accessions using the Sanger method (see “Methods”)

and the results demonstrated that the accuracy of the

identified SNPs was 99.8% (Additional file 3: Table S3;

Additional file 4: Table S4).

The neighbor-joining tree suggested that the 809

accessions could be classified into four main clades

(Fig. 1b), which were associated with their geographical

distribution (Fig. 1c and d). An investigation of popula-

tion structures with varying levels of K-means using fas-

tStructure [31] also predicted that the optimal number

of subpopulations was approximately K = 4 (Additional

file 5: Figure S1). The analyses suggested that the acces-

sions exhibited a subpopulation structure, which was

used as a covariate within the GWAS model.

We grew all of the 809 accessions in Beijing for two

years (in 2013 and 2014). We assayed 45 morphology

traits each year, including those related to yield, color,

architecture, organ shape, and growth period (Additional

file 6: Table S5). In 2013, we also measured 39 nutrient

composition traits that related to oil content, protein

content, fatty acid components, and amino acid compo-

nents (Additional file 6: Table S5) through gas chroma-

tography–mass spectrometry (GC-MS).

Soybean grows across a range of latitudes from 50°N

to 35°S [32]. We found significant differences in some of

the traits, such as those related to the growth period,

architecture, yield, and nutrient composition, between

the accessions from higher latitudes (above 40.5°N) and

those from lower latitudes (below 40.5°N) (Additional

file 5: Figure S2). These differences may have been

caused by the tendency of soybean to adapt to a limited

latitudinal region due to its photoperiod sensitivity [33].

As a result, we replanted the accessions that from high

latitudes (n = 275) at a location northeast to Beijing

(Mudanjiang, Heilongjiang Province) and the rest from

low latitudes (534) at a southern location (Zhoukou,

Henan Province) to fully assess their potentials. For both

locations, most of the morphology trait measurements

were repeated in 2014 and 2015, and the nutrient com-

position trait measurements were repeated in 2014. The

overall performances of the 809 accessions were pre-

dicted as the best linear unbiased prediction (BLUP)

using a mixed linear model (MLM), which was imple-

mented using the lme4 package for R.

Whole-genome screening for significantly associated

loci (SAL)

We conducted a GWAS on the 84 traits based on more

than four million of the markers (SNPs with a minor allele

frequency [MAF] ≥ 0.05]) genotyped from the 809 acces-

sions through a MLM implemented in Efficient Mixed-

Model Association eXpedited (EMMAX) software. The

population structure was represented by the first three

principal components, which was fitted as fixed effects.

Kinship was used to define the variance structure of the

random variables for the total genetic effects of the 809

accessions. No inflated P values were found and most

markers (99%) exhibited P values equal to those expected

under the null hypothesis, suggesting that the MLM con-

trolled population structure and cryptic relationships well.

To control both false positives and false negatives, we also

conducted permutation tests by randomly shuffling the

phenotypes to break their relationship with genotypes

to derive a genome-wide threshold (see “Methods”

and Additional file 7: Table S6). By using the empir-

ical threshold, we identified 150 SAL that significantly

associated with 57 of the 84 traits, using all 809 ac-

cessions (Additional file 8: Table S7; Additional file 5:

Figures S3–86).

Epistasis, or the interaction between genes, plays an

important role in controlling complex inheritance [34].

For instance, Dt1 exerts an epistatic effect on Dt2 in the

regulation of plant height in soybean [35, 36]. In this

study, we detected three SAL for plant height using all

tested accessions (Fig. 2a–c). Among these SAL, one

overlapped with the Dt1 locus [37, 38] and another over-

lapped with E2, a locus that is responsible for bloom

date [39]. However, the Dt2 locus was not detected. If an

epistatic gene exhibits a significantly strong effect, it can

hinder the identification of other interactive genes that

exert minor effects [34, 40]. We then classified the entire

population into two sub-populations (termed Dt1 and

dt1 subgroups), based on the genotypes of the highest

association site of the Dt1 locus. A GWAS of the plant

height in each of these two subgroups revealed two add-

itional SAL in the Dt1 subgroup, which included the Dt2

locus (Fig. 2e and f). However, the Dt2 locus cannot be de-

tected in the dt1 subgroup (Fig. 2h and i). This finding con-

firmed the results of previous epistasis analyses [35, 36]. In

contrast, the E2 locus was detected in both the Dt1 and

dt1 subgroups (Fig. 2e and h), suggesting that E2 and Dt1

does not exert an epistatic effect. The Dt2 locus precisely

explains the phenotypic variation in plant height within the

subgroup of the Dt1 allele (Fig. 2g) compared with the Dt1

locus alone (Fig. 2d).

To validate our method, we performed a new investi-

gation of association loci using the previously reported

methods of SNP-fixing [41] and multiple loci analysis

[42]. These approaches provided the same results as our

method (Additional file 5: Figure S87). We further investi-

gated another trait, namely leaf area. The results obtained

from our method, the SNP-fixing, and multiple loci ana-

lysis all demonstrated that the locus of Chr19_45150769

can interact with Ln to control leaf area (Additional file 5:

Figure S88), confirming the reliability of our method. Fol-

lowing this method, for each of the primary 150 SAL, we
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subdivided the 809 accessions into two subgroups

according to the genotypes of the locus with the lowest

P value within the primary SAL. We also conducted

permutation tests to derive the empirical thresholds

and thereby to determine the secondary associated loci.

We found very similar trends for the primary and second-

ary SAL within each trait type (Additional file 7: Table S6).

Under these empirical thresholds, we identified 95 add-

itional secondary SAL (Additional file 9: Table S8). In

total, we identified 245 SAL, which included 46 SAL that

overlapped with previously reported genes, 64 SAL that

overlapped with reported QTLs, and 135 SAL that have

not been characterized (Additional file 8: Table S7;

Additional file 9: Table S8).

Genetic architecture of fatty acid content

Soybean is an important oilseed crop. Our analyses

dissected the genetic architecture of the fatty acid

content in the soybean natural population. Fatty acid

biosynthesis-related genes, such as the genes encoding

fatty acyl-ACP thioesterases B (FatB), plant stearoyl-

acyl-carrier protein desaturase (SAD), and fatty acid

desaturase 3 (FAD3), have been reported to be responsible

for fatty acid accumulation in soybean [43–45]. In this

study, we found five additional fatty acid biosynthesis-

related genes located within the SAL regions (Fig. 3a;

Additional file 10: Table S9). The differential alleles of

these eight genes exhibited significant differences in

the total fatty acid (TFA) content (Additional file 5:

Figure S89). In addition to the genes involved in fatty acid

biosynthesis, the genes that participate in lipid biosynthesis

could also affect the fatty acid accumulation [46]. We

identified six lipid biosynthesis-related genes in the fatty

acid-related SAL regions (Additional file 11: Table S10).

The different alleles of these lipid biosynthesis-related

genes also showed significant differences in the TFA con-

tent (Additional file 5: Figure S90).

We observed that the TFA content increased with the

accumulation of high-fatty-acid alleles of these genes in

the soybean germplasm (Fig. 3b). Further analysis demon-

strated that the TFA content in high-latitude accessions

was significantly higher than that of low-latitude acces-

sions (Fig. 3c). Correspondingly, we found that high-

latitude accessions accumulated more high-fatty-acid

alleles than low-latitude accessions (Fig. 3d; Additional

file 5: Figure S91a). The results indicated that, similar

to those in maize [13], the oil synthesis-related genes in

soybean functioned additively to accumulate fatty acid.

A genotype investigation of the ten most widely cultivated

a b c

d e f

g h i

Fig. 2 GWAS of the soybean plant height. a Distribution of the plant height values across all of the 809 soybean accessions. b GWAS result from

all accessions. In the GWAS result, both known genes Dt1 and E2 are identified. c Quantile–quantile plot for plant height. d The plant height

variation between different Dt1 alleles in all 809 accessions. The known gene Dt1 separates the 809 accessions into two subgroups with different

plant height means. e The GWAS result of plant height using the accessions from the Dt1 subgroup. f Quantile–quantile plot for plant height of

Dt1 subgroup. g Plant height variation between different Dt2 genotypes in the Dt1 subgroup. h The GWAS result of plant height using

the accessions from the dt1 subgroup. i Quantile–quantile plot for plant height of dt1 subgroup. GWAS results are presented by negative

log10 P values against position on each of 20 chromosomes. Horizontal dashed lines indicate the genome-wide significant threshold (2 × 10–7)
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high-oil cultivars in China illuminated that they did not

possess all of the high-fatty-acid alleles in the 14 genes

(Additional file 5: Figure S91b), which suggested that the

pyramiding of more high-fatty-acid alleles in these lines

will allow the development of a soybean variety with a

higher oil content.

Genetic network of loci associated with phenotypes

We found that the 84 traits related to growth period,

architecture, color, seed development, oil content, or

protein content tended to be correlated within these

trait classifications (Additional file 5: Figure S92), sug-

gesting that they might be genetically co-regulated. The

plotting of the SAL across the soybean genome revealed

that they were clustered according to the phylogeny rela-

tionship of traits rather than distributed randomly on

the chromosomes (Additional file 5: Figure S93).

Pleiotropy and linkage disequilibrium (LD) play import-

ant roles in identifying correlations among phenotypes

[23]. To dissect the genetic architecture of the correlations

across different traits, we analyzed the association net-

works using a previously reported method [47] with slight

modification (see “Methods”). The network analysis

revealed that the SAL were connected for most of the

traits (Fig. 4), with the exception of two traits related to

color (Additional file 5: Figure S94). Consistent with the

correlation pattern of the traits (Additional file 5:

Figure S92), the SAL controlling association pheno-

types, such as growth period, architecture, yield, oil

biosynthesis, or protein biosynthesis prefer to cluster

as more closely linked networks (Fig. 4; Additional

file 12: Table S11). Additionally, we determined that

a number of SAL, such as the E2, E1, Dt1, Dt2, Ln,

Fan, Fap, and several newly identified loci, played

roles as key nodes in the regulation of different traits

(Fig. 4; Additional file 5: Figure S93). One noteworthy ex-

ample is the Dt1 locus. We revealed that, besides control-

ling plant height, the Dt1 locus also affected other yield

related traits, such as the branch density, stem pod dens-

ity, stem node number, number of three-seed per pod, and

total seed number (Additional file 12: Table S11), which

was validated by the comparison of these traits in Dt1 and

dt1 isogenic lines (Additional file 5: Figure S95).

Yield and quality are two major considerations in

variety development for almost all crops. However, the

loci simultaneously controlling yield-related and quality-

related traits have seldom been reported [48]. In this

study, we found that E2 may exhibit pleiotropy across

the traits related to yield and seed quality. Plant height

(PH) and beginning bloom date (BBD) exhibited a signifi-

cantly positive correlation (Fig. 5a). We found that these

two traits shared a common SAL, which overlapped with

a

c d

b

Fig. 3 Dissection of genetic regulation of the fatty acid content in soybean. a Candidate genes in the lipid metabolic pathway that are responsible for

the variation of fatty acid (FA) synthesis in soybean germplasm. The pathway is modified from Arabidopsis. The dotted lines represent multiple reaction

steps. b Plot of the total FA content against the accumulation of high-oil-content alleles. The x-axis indicates the number of accumulated

high-oil alleles from all candidate genes in the soybean germplasm; the y-axis shows the total FA content in the corresponding population. c Total FA

content of the germplasm from low-latitude and high-latitude areas. ***P < 0.001 (one-sided Student’s t-test, n = 461, 219). d Proportion of accumulated

high-oil alleles in low-latitude and high-latitude populations. ACP acyl carrier protein, DAG diacylglycerol, G3P glycerol-3-phosphate, FA fatty acid, LPA

lysophosphatidic acid, PC phosphatidylcholine, PYR pyruvate, TAG triacylglycerol, ACNA acyl-CoA n-acyltransferase, FAD fatty acid desaturase, FatB fatty

acyl-ACP thioesterase B, PDHK pyruvate dehydrogenase kinase, PLC phospholipase C, PLD phospholipase D, ROD1 reduced oleate desaturation 1, SAD

stearoyl-acyl-carrier-protein desaturase, ER endoplasmic reticulum
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the E2 locus (Fig. 5b). This finding was consistent with

previous reports that the major genes and QTLs are

shared for flowering, maturity, and plant height in soybean

[33, 49]. Interestingly, we found that the ratio of linolenic

acid to linoleic acid (FA 18:3 to FA18:2, R3:2) also exhib-

ited significantly positive correlations to PH and BBD

(Fig. 5a), and shared E2 with these two traits in the associ-

ation network (Fig. 5b), suggesting that E2 exhibits plei-

otropy across PH, BBD, and R3:2. To verify the effects of

the E2 locus in the association network, PH, BBD, and

R3:2 were compared between two pairs of E2 and e2 iso-

genic lines (PI 547553, E1E2s-tt vs. PI 547549, E1e2s-tt;

ZK164, E1E2E3E4 vs. ZK166, E1e2E3E4). The results

showed that the values of PH, BBD, and R3:2 in the E2

lines were significantly higher values than those in the e2

lines (Fig. 5c–e), confirming that the E2 locus plays an

important role in regulating these three important

agronomic traits in a simultaneous manner.

Discussion

Plant breeding aims to pyramid multiple desirable traits

into a single variety. However, due to trait correlations,

breeders must choose to either simultaneously improve

correlated traits or accept potentially undesirable effects

associated with the correlation [23]. A better understand-

ing of the genetic networks underlying these different

traits helps breeders to develop effective strategies for var-

iety development. For example, in past decades, rice func-

tional genomics has progressed rapidly, resulting in the

identification of some key genes that control both yield

and grain quality [50]. The well-established genetic infor-

mation has allowed scientists to propose a clear path to

Fig. 4 Association networks across different traits in soybean. The nodes represent traits and their responsible SAL. The edges between the SAL

from different traits are linked by LD. Only the edges with an average LD≥ 0.4 are displayed. The trait abbreviations match those in Additional file

6: Table S5. The overlapped SAL covering Dt1, Dt2, E1, E2, Ln, Fan, and Fap are indicated by the actual circles. Other linked SAL covering unknown

QTL are indicated by the dotted circles
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design the breeding of high-yield, superior-quality, hybrid

super rice [4]. However, compared with rice, fundamental

studies on the genetic dissection of complex traits in soy-

bean have to take more progress to reach the same level.

Epistasis, or the interaction between genes associated

with a trait, add the complexity to the genetic dissection

of complex traits. The SNP-fixing [41] and multiple loci

analysis [42] have been proven to be two robust methods

for the identification of epistasis loci. In this study, we

developed another method to identify the epistasis loci

by splitting the entire population into sub-populations

based on the genotypes of the highest association site

and subsequently performing a second-round GWAS for

each sub-population. The reliability of our results was

comparable to that of the results obtained through the

SNP-fixing approach and multiple loci analysis (Fig. 2;

Additional file 5: Figures S87 and 88), but is an advan-

tage in determining the epistasis relationship between

different haplotypes. For instance, our analysis clearly

showed that an epistatic effect was only detected be-

tween Dt1 and Dt2 but not between dt1 and Dt2, sug-

gesting that dt1 is a loss/weak-of-function allele

compared with Dt1 (Fig. 2). Further validation of de-

tailed epistatic relationship between different alleles we

identified (Additional file 9: Table S8) using F2 or

recombinant inbred line populations will be helpful for

future functional study.

In total, we identified 245 SAL for 57 agronomical

traits. Most of the reported genes that have been identi-

fied through forward genetics to control related agrono-

mical traits, such as Dt1, Dt2, E1, E2, Ln, PDH1, Fan,

and Fap, were identified. In addition, a total of 135 SAL

were previously unchartered (Additional file 8: Table S7;

Additional file 9: Table S8), such as the three SAL for

flowering time in Chr5, Chr11, and Chr19 (Additional

file 5: Figure S96). However, we indeed failed to detect

the SAL for 27 traits.

We evaluated the statistical power of our analysis

(Additional file 5: Figure S97, see “Methods”) and the re-

sults demonstrated that the statistical power was mainly

determined by the number of quantitative trait nucleo-

tides (QTNs) although it increased with the increase of

the heritability. For instance, when a trait is controlled

by small number of QTNs, such as QTN = 2, even with

a heritability as low as 0.25, the statistical power reached

86%. However, for a trait that is controlled by more

QTNs, such as QTN = 10, the statistical power only

reached 70% even with a heritability as high as 0.75.

a

c

b

d e

Fig. 5 Phenotype correlations and genetic networks of associated loci. a The correlation among three traits: BBD, PH, and R3:2 of linolenic acid

(FA18:3) to linoleic acid (FA18:2). b The association networks across PH, BBD, and R3:2. The genetic network presents the SAL with average

LD ≥ 0.4. An overlapped SAL covering E2 is indicated by the dotted circle. Phenotype data (mean ± s.d., n = 4) of different alleles of E2 in different E2

near isogenic lines are illustrated for BBC (c), PH (d), and R3:2 of linolenic to linoleic acid (e). NIL1 (PI 547553, E1E2s-tt vs. PI 547549, E1e2s-tt). NIL2

(ZK164, E1E2E3E4 vs. ZK166, E1e2E3E4). E1, E2, E3, E4: loci controlling flowering ability, s-t: locus controlling plant height, T: locus controlling pubescence

color. DAS day after sowing. *P < 0.05; **P < 0.01 (one-sided Student’s t-test)
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Thereafter, we speculated that genetic complexity and

lack of a major QTL are the main reasons for the inabil-

ity to detect traits without SAL. For instance, we found

that the seed weight exhibited a heritability of approxi-

mately 0.62 in the studied population, but no SAL for

this trait was detected, which might be due to the fact

that dozens of genes are responsible for the seed weight

of plants [51]. Another reason might be due to the strin-

gent threshold applied in this study. For many traits for

which we did not find SAL, such as the 100-seed weight

(Additional file 5: Figure S40), number of two-seed pod

(Additional file 5: Figure S28), seed length (Additional

file 5: Figure S42), and FA18:1 content (Additional file 5:

Figure S50), clear association signals were detected, even

though these signals did not pass the threshold. Taking

the flowering time as an example, although a number of

GWAS signals did not reach the threshold (Additional

file 5: Figure S96), the homologues of the reported Ara-

bidopsis flowering time-related genes were identified

surrounding the highest-association loci of the GWAS

signals. The stringent criterion might have caused false

negatives, but guaranteed a lower false discovery rate

(FDR) for every trait. We anticipate that the scientists

working in similar areas will be quite interested in the

information from this study, which will likely facilitate

the identification of the responsible genes. Nevertheless,

we also found that the positions of a small number of

SAL might be inaccurate due to genome assembly errors

(an example is shown in Additional file 5: Figure S98).

Consequently, future studies should also use additional

genomic approaches to confirm these SAL.

In addition to the identification of many SAL, we re-

vealed the association networks across different traits.

For example, we identified some SAL that functioned as

key nodes for connecting different traits, whereas most

SAL specifically controlled individual traits (Fig. 4). This

information will be helpful guidance for the breeders

attempting to establish a clear strategy for variety devel-

opment. If the heritable covariation between different

traits needs to be broken, using the specific SAL for

individual traits might be more effective than the node

SAL. In contrast, if the heritable covariation needs to be

increased, the selection of the node SAL might be a better

choice. Furthermore, the amount of genomic data pro-

vided a better understanding of the allelic variation for

the genetic resource collections and will also facilitate

breeders to propose an efficient path for variety im-

provement by design. For instance, we found that the

five well cultivated high-yield varieties in the middle of

China (Huang Huai Hai region) possessed less high-fatty-

acid alleles for the 14 fatty acid-related SAL (Additional

file 5: Figure S91b). Because the yield-related and fatty-

acid-related networks were relatively independent (Fig. 4),

by pyramiding all the high-fatty-acid SAL alleles into these

high-yield varieties will potentially highly develop both

high-yield and high-oil new varieties. Of course, a strict

background selection should be performed because the

favor alleles for other traits from these high-yield varieties

should be maximally maintained.

Conclusions
In summary, our work presented here provides a large

dataset of loci and genes responsible for important agro-

nomic traits in soybean, which will facilitate future func-

tional studies and variety development.

Methods
Planting and phenotyping

A total of 809 soybean accessions were selected for this

study. For phenotyping, all 809 accessions were planted

at the Experimental Station of the Institute of Genetics

and Developmental Biology, Chinese Academy of Sciences,

Beijing (40°22′N and 116°23′E) during the summer sea-

sons in 2013 and 2014. The 275 accessions collected from

northern areas were planted in Mudanjiang (44°58′N and

129°60′E), Heilongjiang Province during the summer sea-

sons in 2014 and 2015. The remaining 534 accessions col-

lected from Huang Huai Hai and southern areas were

planted in Zhoukou (33°62′N and 114°65′E), Henan Prov-

ince during the summer seasons in 2014 and 2015. Normal

seeds were selected and sowed in deeply ploughed fields

with proper moisture content (15–20%). The seed was

planted in three-row plots in a randomized complete block

design with three replications for each environment. Only

one accession was planted in each plot and the plots were

5 m in length with a row spacing of 0.4 m. The space

between two plots was 0.4 m. After three weeks, the seed-

lings were manually thinned to achieve an equal density of

120,000 individuals per hectare.

We used the same phenotyping procedure and scoring

standards in all six environments. In total, we character-

ized 84 sets of phenotypes related to yield, coloration,

architecture, growth period, and seed composition with

a miss rate < 10%. The identification of growth periods,

including BBD, full bloom date, pod maturity date, and

reproduction stage length, was based on a previous de-

scription of reproductive stages [52]. Traits related to

flower and leaf were observed and measured at the full-

bloom stage. Yield-related traits, such as pod number,

seed number, and seed weight, were counted or mea-

sured in the laboratory after harvest. Detailed informa-

tion regarding the phenotyping procedure and scoring

standards is provided in Additional file 6: Table S5. For

the assessment of the traits that need to be evaluated

during the growing season, at least five healthy individ-

uals from each plot were randomly selected and used for

phenotyping. For the traits that need to be evaluated

after harvesting, the healthy plants from the three
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replications of each accession were first collected and at

least five individuals were randomly selected and used

for phenotyping. The narrow-sense heritability was esti-

mated by using GAPIT [53]. For the correlation analysis,

we treated the binary traits as continued traits and con-

verted the values into 0 or 1 and then did the correlation

analysis with other quantitative traits.

Oil and protein sample preparation and GC-MS analysis

After drying at 80 °C for 2 h, approximately 5 g of

mature and well-rounded seeds were milled to a fine

powder with an electric grinder. Solid fractions were

filtered out using a 0.25-mm sieve. The powders were

divided into two sub-samples and measured at the same

time. Six micrograms of soybean power were used to de-

termine the lipid content, according to a previously re-

ported protocol with minor modifications [54]. Fatty acids

were released from the total lipids and methylated by

adding 0.8 mL of 1.25 M HCl-methanol and 20 μL of

5 mg/mL heptadecanoic acid (used as an internal stand-

ard) for 4 h at 50 °C. Then, 1 mL of hexane and 1.5 mL of

0.9% NaCl (v/v) were added to the cooled vial. After shak-

ing for 5 min, 750 μL of the hexane layer was transferred

to a new injection vial after centrifugation for 10 min at

3000 g and dried by flow nitrogen. The dried samples were

re-dissolved in 500 μL of hexane for further GC-MS

analysis.

For total amino acid analysis, 6 mg of soybean power

was completely hydrolyzed by adding 300 μL of 6 M

HCl spiked in 0.5 mg/mL L-norleucine (used as an in-

ternal standard) for 24 h at 100 °C [55]. After centrifuga-

tion for 30 min at 16,500 g, 50 μL of supernatant was

transferred to a new 1.5 mL Eppendorf tube and dried at

100 °C. The dried samples were derivatized according to

Fiehn’s protocol [56].

One microliter of the prepared sample (for both fatty

acid and amino acid analysis) was injected into the Trace

DSQII GC-MS system (Thermo Fisher Scientific), which

was equipped with a DB-23 column (Agilent Technolo-

gies, 60 m × 0.25 mm× 0.25 μm) at a split ratio of 1:20

for fatty acid analysis and a DB-5MS column (Agilent

Technologies, 30 m × 0.25 mm × 0.25 μm) at a split ratio

of 1:50 for amino acid analysis. For fatty acid measure-

ment, the oven was programmed as follows: 150 °C for

1 min, ramp to 200 °C at 4 °C/min, ramp to 220 °C at

2 °C/min, and finally ramp to 250 °C at 25 °C/min, hold-

ing 5 min with 1.1 mL/min helium as carrier gas [57, 58].

The temperatures of the injector, transfer line, and ion

source were set to 250 °C, 250 °C, and 230 °C, respectively.

For amino acid measurement, the oven was programmed

as follows: 100 °C for 1 min, ramp to 240 °C at 10 °C/min,

and finally ramp to 300 °C at 30 °C/min, holding 5 min

with 1.1 mL/min helium as carrier gas. The temperatures

of the injector, transfer line, and ion source were set to

250 °C, 250 °C, and 280 °C, respectively.

Overall performances of the 809 soybean accessions

across environments

The overall performances of the 809 soybean accessions

were calculated as the best linear unbiased prediction

(BLUP), the same method used to calculate the overall

performances of 5000 maize inbred lines to eliminate

environment effects [12]. The calculation was performed

by using the function of “lmer” in the lme4 package. The

fixed effects in the MLM included the overall mean and

the effects of the planting environment. The planting en-

vironments were defined as each combination of year

and location. The random effects in the MLM included

the line effects, the interaction between environments

and lines, and the residuals. The solutions of line effects

(i.e. BLUP) were used as the overall performances of the

809 soybean accessions across environments.

DNA preparation and sequencing

Among the 809 soybean accessions, 240 were obtained

from our previous study [28] (Additional file 1: Table S1).

The genomic DNA of the other 569 additional accessions

was extracted from the young leaves of a single soybean

plant for each accession, after three weeks of growth.

DNA extraction was performed using the cetyltrimethy-

lammonium bromide (CTAB) method [59]. The library of

each accession was constructed with an insert size of

approximately 500 bp, following the manufacturer’s in-

structions (Illumina Inc., 9885 Towne Centre Drive,

San Diego, CA 92121, USA). All soybean varieties were

sequenced on Illumina HiSeq 2000 sequencer and Illu-

mina HiSeq 2500 sequencer at BerryGenomics Com-

pany (http://www.berrygenomics.com/. Beijing, China).

Detailed information of the 809 accessions, including

geographical distribution and sequencing depth, is pro-

vided in Additional file 1: Table S1.

Read alignment and variation calling

The re-sequencing reads of the 809 accessions were

mapped to the soybean reference genome [60] (Williams

82 assembly V2.0) at the Phytozome v11.0 website (http://

www.phytozome.net/soybean) with BWA [61] (version

0.7.5a-r405) using the default parameters. We generated

the BAM format of the mapping results and filtered the

non-unique and unmapped reads with SAMtools [62]

(version:0.1.19). The Picard package (http://broadinstitu-

te.github.io/picard/, version: 1.87) was applied to filter the

duplicated reads.

The Genome Analysis Toolkit [63] (GATK, version:

3.1-1-g07a4bf8) was applied for SNP and INDEL calling.

Annotations of SNP and INDEL were performed based

on gene model set v2.0 from Phytozome v11.0 using
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ANNOVAR [64] (version: 2015-03-22). The k-nearest

neighbor-based method (http://202.127.18.228/fimg/intr.

php) was then used for missing data imputation, after

which the miss rate decreased from 2.1% to 0.057% and

the heterozygous rate decreased from 3.4% to 0.17%. To

evaluate the SNPs calling and imputation accuracy, we

randomly selected ten fragments (primers information is

listed in Additional file 3: Table S3) across the genome

that contained 37 SNPs for additional validation. These

fragments were amplified in 96 randomly selected soybean

accessions and sequenced using the Sanger method. The

comparisons between SNP calling and Sanger sequencing

are shown in Additional file 4: Table S4.

The results showed that the accuracy rate of imputation

SNP reached 99.8%. According to the genome annotation,

the varieties were divided into exonic regions, splicing

sites (within 2 bp of a splicing junction), 5’UTRs, 3’UTRs,

intragenic regions, upstream and downstream regions

(within a 1-kb region upstream/downstream from the

transcription start/end site), and intergenic regions. The

SNPs in coding regions were further categorized into non-

synonymous SNPs (cause amino acid changes), synonym-

ous SNPs (do not cause amino acid changes), stopgain

SNPs (create a stop codon), and stoploss SNPs (eliminate

a stop codon). The INDELs in coding regions were further

categorized into non-frameshift (do not cause frameshift

changes), frameshift (cause frameshift changes), stopgain,

and stoploss INDELs.

Population genetics analysis and GWAS

A neighbor-joining tree was constructed using the PHY-

LIP software [65] (version 3.68) on the basis of a distance

matrix, using the whole-genome SNPs shared by all the

accessions. A principal component analysis (PCA) of the

population was performed via EIGENSOFT software [66]

(version 4.2). The population structure was calculated

using the Bayesian clustering program fastStructure [31].

LD was calculated using PLINK [67] (version: 1.90) with

the parameter –ld-window-r2 0 –ld-window 99999 –ld-

window-kb 1000. Only SNPs with MAF ≥ 0.05 and miss-

ing rate < 0.1 in the population were used in the GWAS.

An association analysis was performed using the EMMAX

(beta version) [68] software package. The matrix of pair-

wise genetic distances, which were derived from the sim-

ple matching coefficients, as the variance-covariance

matrix of the random effects, was also calculated by

EMMAX.

Determination of genome-wide threshold

We randomly shuffled observed real phenotypes to

break the connections between these phenotypes and

their corresponding genotypes. Then, we applied the

GWAS on the permuted phenotypes by using the same

model that was used for real observed phenotypes. The

most significant P value across the whole genome was

recorded. This random process was repeated 1000 times.

The distribution of the most significant P values across

the 1000 replicates was used to determine the threshold,

which was the P value corresponding to a 5% chance of

a type I error.

Ideally, each trait should have its own threshold. To

derive robust thresholds, we grouped the 84 traits into

four types based on their phenotypic distribution. We

found the thresholds were very similar within each of

the types we defined as follows:

1. Binary traits: examples include color

(purple vs. white)

2. Quantitative traits with normal distribution

3. Quantitative traits with skewed distribution

4. Binary-like quantitative traits: examples include

four-seed pod number and ratio with extremely

skewed frequency distributions

We tested multiple traits in each category and randomly

selected one trait out of each category to illustrate the em-

pirical thresholds (Additional file 7: Table S6). The first

three types of traits had very similar thresholds (negative

log10 P values = 6.5–6.7). We used the most stringent

threshold (6.7) as the criterion for these three types of

traits. Although this criterion may have caused false nega-

tives, it guaranteed that the type I error was below 5% for

every trait. The last type of traits had much more stringent

criteria. For example, the four-seed per pod ratio had

threshold of 8.3 (negative log10 P value). We used this

threshold for all binary-like quantitative traits.

Identification of additional minor-effect loci

To identify minor-effect loci by eliminating the effect of

epistasis or interactions between genes, additional GWAS

were performed. We first divided the 809 accessions into

two subgroups according to the genotype of the SNP with

the lowest P value out of all SAL across the whole gen-

ome. Next, association analysis was performed only if the

subgroup consisted of more than 100 accessions. With the

same method, the significant thresholds of minor loci

were determined (Additional file 7: Table S6). Negative log

P value of 8.4 was used as threshold for all binary-like

quantitative traits. We used the more stringent threshold

(6.6) as the criterion for the traits in other two categories.

The significant associated loci and not having been identi-

fied before grouping were considered as new identified

association signals.

Assessment of statistical examination

Using the genotype data of 809 soybean accessions, a set

of SNPs (2, 5, and 10) were randomly selected as causal

loci for the simulated traits using the method described
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previously [69]. Three levels of heritability (h2 = 0.25,

0.5, and 0.75) were evaluated for examination of statis-

tical power in all settings of causal loci. For each com-

bination of heritability and number of causal loci, a total

of 1000 replicates were conducted for the simulation of

phenotypes and association tests. In each of GWAS, the

threshold was set as 2 × 10–7, the cutoff from permuta-

tion tests on real traits with normal distribution.

Statistical power and false positive rate (FDR) were

evaluated on the intervals around the loci above the

threshold. An interval was defined as the consecutive re-

gion with SNPs in LD (above 0.6) around the associated

locus. Statistical power was calculated as the proportion

of intervals containing causal loci over the total number

of causal loci weighted by variance they explained. FDR

was calculated as the proportion of the intervals without

causal locus over the total number of intervals with a

SNP above the threshold. The averages and standard

error of statistical power and FDR over the 1000 repli-

cates were reported.

Construction of association networks

The association networks were constructed using the soft-

ware Cytoscape [70] (Version: 3.2.1), with traits and their

corresponding SAL as nodes, and the link between trait

and SAL, SAL and SAL (average r2 ≥ 0.4) as edges. The

effective score for each SAL was represented by the lowest

P value. The link between each two SAL was represented

by their average LD (Inter-LD). Inter-LD was calculated as

follows:

Inter−LD ¼ 1=2�
LD SAL1; SAL2ð Þ

PmaxLD SAL1ð Þ
þ
LD SAL1; SAL2ð Þ

PmaxLD SAL2ð Þ

� �

;

where LD (SAL1, SAL2) equals the mean of pairwise LD

value (r2) between all the SNPs from SAL1 to all the SNPs

from SAL2; PmaxLD (SAL1) equals the largest possible LD

value within the SAL1 region, obtained by calculating the

mean r2 of each SNP to all SNPs from the SAL1 region,

and then choosing the maximum mean of the LD value to

represent this region’s PmaxLD; and PmaxLD (SAL2)

equals the largest possible LD value within the SAL2 re-

gion, obtained by calculating the mean r2 of each SNP to

all SNPs from SAL2 region, and then choosing the max-

imum mean of the LD value to represent this region’s

PmaxLD. Pairwise r2 values were calculated between all

significant SNPs using PLINK [67].
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