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Genome-wide association studies (GWAS) have led to a rapid increase in available data on common genetic variants
and phenotypes and numerous discoveries of new loci associated with susceptibility to common complex diseases.
Integrating theevidence fromGWASandcandidate genestudiesdependsonconcertedefforts in data production, online
publication, database development, and continuously updated data synthesis. Here the authors summarize current
experience and challenges on these fronts, which were discussed at a 2008 multidisciplinary workshop sponsored by
the Human Genome Epidemiology Network. Comprehensive field synopses that integrate many reported gene-
disease associations have been systematically developed for several fields, including Alzheimer’s disease, schizophre-
nia, bladder cancer, coronary heart disease, preterm birth, and DNA repair genes in various cancers. The authors
summarize insights from these field synopses and discuss remaining unresolved issues—especially in the light of
evidence fromGWAS, for which they summarize empiricalP-value and effect-size data on 223 discovered associations
for binary outcomes (142 with P < 10�7). They also present a vision of collaboration that builds reliable cumulative
evidence forgeneticassociationswithcommoncomplexdiseasesanda transparent, distributed,authoritativeknowledge
baseongenetic variationandhumanhealth.Asanext step in theevolutionofHumanGenomeEpidemiology reviews, the
authors invite investigators to submit field synopses for possible publication in the American Journal of Epidemiology.

association; database; encyclopedias; epidemiologic methods; genome, human; genome-wide association study;
genomics; meta-analysis

Abbreviations: dbGaP, Database on Genotypes and Phenotypes; GWAS, genome-wide association studies; HuGE, Human
Genome Epidemiology; HuGENet, Human Genome Epidemiology Network; NAT2, N-acetyltransferase type 2; STREGA,
Strengthening the Reporting of Genetic Association Studies.

Editor’s note: This article also appears on the Web site of
the Human Genome Epidemiology Network (http://
www.cdc.gov/genomics/hugenet/default.htm).

The rapid growth in published genetic association studies
(1) and the more recent success of genome-wide association

studies (GWAS) in finding disease susceptibility loci for
several common diseases (2) present major challenges for
knowledge synthesis and dissemination. Knowledge synthe-
sis is needed to guide further research, drug discovery ef-
forts (3), and translational efforts for personalized risk
assessment and therapy. The recent trend toward direct-to-
consumer advertising of whole-genome analysis by several
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companies underscores the importance of a credible process
for data synthesis and evaluation of the validity and utility of
claims related to genetic prediction of disease risks (4–7).

In 2008, over 7,000 original articles on human genome
epidemiology were published, and the annual number has
been rising rapidly (8) (Table 1). Furthermore, published
literature represents only a fraction of the data actually col-
lected and analyzed. In addition, until recently, most studies
have targeted 1 or a few gene variants (the candidate gene
approach), but many new articles report the results of
GWAS, and such studies are expected to become increas-
ingly common. More than 300 GWAS have been published,
with an accelerating pace since 2007 (8). Only a few of these
studies, however, have been deposited into accessible online
databases such as the Database on Genotypes and Pheno-
types (dbGaP) at the National Library of Medicine (http://
www.ncbi.nlm.nih.gov/sites/entrez?db ¼ gap), the Cancer
Genetic Markers of Susceptibility database at the National
Cancer Institute (http://www.cgems.cancer.gov/), and the
Wellcome Trust Case-Control Consortium database (http://
www.wtccc.org.uk/). This number is expected to increase
under a new policy governing data-sharing for GWAS (9),
although issues pertaining to type of access and confidenti-
ality may continue to need careful consideration (10).

Despite a massive amount of primary data, the conclu-
sions of genetic association studies are not always clear,
requiring an evidence-based synthesis that takes into ac-
count the amount of evidence, the extent of replication,
and protection from bias. Although approximately 1,000
systematic reviews and meta-analyses have been published
since 2001, most have addressed only 1 or a few specific
gene-disease associations at a time (8). Moreover, the
amount of accumulated data that needs to be integrated
continues to grow rapidly, with high-throughput genotyping
platforms raising the challenge exponentially.

As part of ongoing efforts in this field, we report here
findings and recommendations from a multidisciplinary
workshop including geneticists, epidemiologists, journal ed-
itors, and bioinformatics experts that was sponsored by the
Human Genome Epidemiology Network (HuGENet) and
held in Atlanta, Georgia, on January 24 and 25, 2008. The
meeting was convened to discuss synthesis and appraisal of
cumulative evidence on genetic associations and to develop
a strategy for an online encyclopedia of genetic variation
and common human diseases.

PROGRESS IN THE HuGENet ROAD MAP

HuGENet is an informal global collaboration of individ-
uals and organizations interested in accelerating the devel-
opment of the knowledge base on genetic variation and
human health (11) (http://www.cdc.gov/genomics/hugenet/
default.htm). HuGENet has developed a ‘‘road map’’ (12)
with several components: 1) working with genetic epidemi-
ology study platforms (primarily consortia and networks) to
improve the execution and output of these groups under the
rubric ‘‘Network of Networks’’ (13); 2) promoting the pub-
lication of results from methodologically sound genetic as-
sociation studies with transparent reporting of their methods
(Strengthening the Reporting of Genetic Association Stud-
ies (STREGA) (14)) and avoidance of selective reporting;
3) developing methods for synthesis and meta-analysis of the
literature on genetic associations (see the HuGENet HuGE
Review Handbook, Version 1.0 (15)); and 4) developing ‘‘field
synopses’’ with an online encyclopedia summarizing what we
do and do not know about genetic associations through a sys-
tematic assessment of the cumulative evidence. Such field
synopses were also called for in a 2006 Nature Genetics
editorial (16).

FIELD SYNOPSES: ASSESSING CUMULATIVE
EVIDENCE FOR GENETIC ASSOCIATIONS

An initial meeting of the Network of Networks in 2005 led
to the formation of a working group on methods for assessing
cumulative evidence. Aworkshop organized in Venice, Italy,
in 2006 (17) generated interim guidelines for grading the
cumulative evidence on genetic associations based on 3 cri-
teria: 1) the amount of evidence, 2) the extent of replication,
and 3) protection from bias (18). The proposed scheme al-
lows for 3 categories of descending credibility (A, B, C) for
each of these criteria and also for a composite assessment of
‘‘strong,’’ ‘‘moderate,’’ or ‘‘weak’’ credibility (see Appendix
Table and Ioannidis et al. (18) for more details). Briefly, an
overall ‘‘strong’’ rating is reserved for an AAA rating, while
an overall ‘‘weak’’ rating is reserved for associations with
1 or more C ratings. The rest are labeled as ‘‘moderate.’’ Note
that these ratings could change over time with data accruing
from additional studies. The panel also discussed issues of
biologic and other experimental evidence and of the clinical
importance of genetic associations. Pilot studies were
planned in selected fields to assess cumulative evidence on
gene-disease associations, calibrate the proposed guidelines,
and integrate the findings into comprehensive field synopses.

Table 1. Trends in Numbers of Published Articles on Human

Genome Epidemiology, Meta-Analyses, and Genome-Wide

Association Studies and Numbers of Genes Studied, by Year,

2001–2008a

Year
No. of
Genesb

No. of
Diseases

No. of Articles Published

Total GWAS Meta-Analysesc

2001 633 690 2,492 0 34

2002 794 855 3,196 0 45

2003 832 880 3,476 3 65

2004 1,124 1,021 4,280 0 86

2005 1,308 1,077 5,029 5 113

2006 1,502 1,109 5,364 12 155

2007 2,142 1,292 7,222 104 208

2008 3,336 1,203 7,659 134 206

Abbreviations: HuGE, Human Genome Epidemiology; GWAS,

genome-wide association studies.
a Data were obtained through a HuGE Navigator query (http://

www.hugenavigator.net/) conducted on February 14, 2009.
b Does not include the numbers of studied variants per gene, as

such information is difficult to obtain. Individual genes were not

counted unless they were featured in the paper.
c Includes HuGE reviews.
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As of 2008, pilot field synopses have been conducted for
several diseases, including Alzheimer’s disease, bladder can-
cer, schizophrenia, preterm birth, and coronary heart disease,
as well as DNA repair genes and cancer phenotypes.

A field synopsis is a regularly updated snapshot of the
current state of knowledge about genetic associations in
a particular field of research defined by a disease (e.g.,
Alzheimer’s disease), phenotype (e.g., body mass index),
or family of genes (e.g., DNA repair genes). The ideal at-
tributes of a field synopsis are that it: 1) is freely available;
2) uses online databases that are curated by researchers to
develop regularly updated ‘‘online tables’’ on the volume of
the evidence and the magnitude of the associations between
the disease and all genetic variants investigated; 3) uses
objective and transparent criteria for grading the credibility
of cumulative evidence; 4) summarizes the information in
peer-reviewed articles; and 5) updates information on a reg-
ular basis. The first field synopsis—the source of AlzGene,
the Alzheimer’s disease genetic association database—was
developed by Bertram et al. (19) and published in January
2007. This was followed by the publication of a field syn-
opsis on schizophrenia (20) and one on DNA repair genes
(21), while several other synopses are currently under de-
velopment or peer review.

EXPERIENCE WITH FIELD SYNOPSES TO DATE

At the HuGENet workshop, several teams presented find-
ings from and experiences in developing field synopses and
grading the epidemiologic evidence according to the interim
Venice guidelines (18). Key features of these efforts are
summarized in Table 2. All synopses included results from
multiple meta-analyses involving large numbers of data sets,

except for preterm birth, where evidence is sparse.
Researchers performing synopses have used different
thresholds or trigger points for conducting a meta-analysis.
For example, in the coronary heart disease field synopsis,
investigators have considered only those associations for
which at least 1 previous effort to perform a meta-analysis
has been made. Data from GWAS have been incorporated in
synopses on Alzheimer’s disease, schizophrenia, DNA re-
pair genes, and bladder cancer. The preterm birth field syn-
opsis points out the need for further research on the genetic
contribution to this major public health challenge.

Many associations in the Alzheimer’s disease, schizo-
phrenia, and 2 cancer-related field synopses yielded for-
mally statistically significant results at the P < 0.05 level
(Table 2). Nevertheless, only a few associations met the
designation of ‘‘strong’’ evidence according to the Venice
criteria. Similarly, in several synopses, none of the probed
associations attained the status of ‘‘strong’’ evidence.
Finally, so far, field synopses have examined only 1 main
phenotype, except in the case of DNA repair genes. In
addition to main effects, synopses have investigated ge-
netic effects according to different genetic models and for
subgroups—for example, subgroups based on exposure, eth-
nic group, participant characteristics, or phenotypic sub-
groups. Decisions to undertake additional analyses need to
be made on the basis of data availability. For example, in
most field synopses, investigators were able to assess dif-
ferent genetic models. Often, available epidemiologic evi-
dence may be stronger for one genetic model than for
another. By contrast, there have been relatively fewer sub-
group analyses based on exposures and participant char-
acteristics, because of suboptimal reporting of these
factors in genetic epidemiology studies, a deficiency that
the STREGA guidance aims to address (14).

Table 2. Key Characteristics of Pilot Field Synopses of Genetic Associations

No. of
Meta-

Analyses

No. of
Data Setsa

Thresholdb for
Meta-Analysis

No. of
Statistically
Significant

Associationsc

Strongd

(Grade A)
World Wide
Web Address

Alzheimer’s diseasee 228 1,072 4 data sets 53 NA www.alzgene.org

Schizophreniaf 118 1,179 4 data sets 24 4 www.szgene.org

DNA repair genes and
various cancers

241 1,087 2 independent
teams

31 3 www.episat.org

Bladder cancer 36 356 3 data sets 7 1 Not yet online

Coronary heart disease 48 1,039 4 0 www.chdgene.com

Preterm birth 17 87 3 data sets 2 0 www.prebic.net

Major depression 22 131 3 data sets 6 2 Not yet online

Abbreviation: NA, not applicable.
a Total number of data sets included in the meta-analyses (not including data sets that did not undergo meta-

analysis).
b Authors’ prerequisite condition for conducting a meta-analysis.
c Statistically significant (P < 0.05) by random-effects calculations on the default (per allele) analysis (for coronary

heart disease, results are based on a meta-regression model and correspond to effects in the largest studies, while

for DNA repair genes, both recessive and dominant models were investigated).
d Grade AAA with regard to all 3 Venice criteria (18).
e Current on February 27, 2008.
f Current on April 30, 2008.
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INSIGHTS FROM CURRENT FIELD SYNOPSES

The pilot field synopses provided detailed insight about
the grading process in the 3 specified areas: amount of ev-
idence, replication, and protection from bias. They identi-
fied limitations that will help us refine the current approach.

Amount of evidence

For amount of evidence, synopses have used a classifica-
tion scheme based on the sample size of the minor genetic
group (participants or alleles, depending on the genetic
model). This is a simple measure that is readily available
and has a close connection to power, Bayes factors, or false
discovery rate (18). For candidate-gene variants, several
postulated associations fail to reach grade A evidence (see
Appendix Table). Currently, with large collaborative efforts
stemming from GWAS and subsequent replication studies,
this is likely to be less of a problem, at least for common
variants with a frequency greater than 5%–10%. For variants
with lower frequency, very large sample sizes may be re-
quired. Nevertheless, some consortia have the potential of
reaching even sample sizes exceeding 100,000, which
means more than 1,000 for the minor allele, even for vari-
ants that occur in 0.5% of the general population. For ex-
ample, the international consortium on osteoporosis
(Genetic Factors for Osteoporosis) funded by the European
Commission includes 61 studies with 133,333 participants,
and for at least 14 of these studies, investigators have al-
ready conducted or plan to conduct GWAS. We may need to
revisit the criteria on amount of evidence once we have
a better sense of the effect sizes regularly encountered for
more rare variants.

Replication

Field synopses have used I2 to assign grades for inconsis-
tency (amount of heterogeneity) (i.e., A for <25%, B for
25%–50%, C for >50%) across studies (19–21). One-third
to one-half of the formally significant associations have
moderate or large I2 values. However, I2 often has large
uncertainty when there are only a few studies (22). More-
over, qualitative epidemiologic considerations about the
presence of and potential explanation for heterogeneity
would need to be taken into account in judging replication.
For example, the association between N-acetyltransferase
type 2 (NAT2) variants and bladder cancer risk is expected
to be exposure-specific; thus, heterogeneity may readily be
expected between populations with different exposures
(e.g., different types of tobacco in European populations
vs. other populations) (23, 24).

Another consideration is whether I2 reflects heterogeneity
of estimates around the null value or heterogeneity in the
magnitude of association. The former would question the
presence of an association, whereas the latter would ques-
tion the strength of the association. For instance, even for
a consistent association such as the glutathione S-transferase
M1 null genotype and bladder cancer risk, there is some
evidence for heterogeneity in the magnitude of the associa-
tion across studies (24). However, such epidemiologic in-

sight must be considered with caution, to avoid introducing
subjective, speculative processes in the grading. At a mini-
mum, considerations for upgrading or downgrading should
be explicit. It may be reasonable to grade as A on this
criterion associations with moderate or high heterogeneity
with an extensive replication record. This replication in-
cludes a P value for the summary effect (excluding the
discovery data set) of P < 10�7, even in random-effect
models that account for between-study heterogeneity or
have a false-positive report probability rate less than 10%
or a Bayes factor less than 10�5.

For example, the apparent heterogeneity in the effect of
NAT2 slow acetylation on bladder cancer risk can be ex-
plained by differences in the pattern of tobacco smoking
across study populations (24). However, the presence of
heterogeneity would reflect even in these cases the possibil-
ity that, bias set aside, one would need to identify the sour-
ces of heterogeneity in subsequent studies. These could
include not only differential effects under different expo-
sures but also the possibility that the association is with
a correlated phenotype and not the one tested (e.g., the fat
mass and obesity-associated (FTO) gene, diabetes, and obe-
sity) (25), the impact of the different ascertainment schemes
used in different studies (26), genotype misclassification
(especially in isolated candidate gene studies), or a marker
polymorphism that is in variable linkage disequilibrium
with the causative variant across the populations (27). The
latter scenario could become common in associations that
emerge out of ‘‘agnostic’’ GWAS, where it is unlikely that
the causal variant will be directly identified. In the setting of
GWAS, it is easy to check whether linkage disequilibrium
structures are different in different populations; in the pres-
ence of similar linkage disequilibrium structure, a cause of
heterogeneity can be quickly excluded. It has been demon-
strated that beyond a given threshold of inconsistency, no
matter how large the studies we conduct, we may never have
enough power to replicate an association (nonreplicability
threshold) (28).

Another issue is the ability of the cumulative evidence to
exclude an association based on lack of replication. It is
notable that the Venice criteria include, under ‘‘replication
C,’’ also the possibility of ‘‘no association and failed repli-
cation,’’ based on traditional nonsignificant results for the
meta-analysis. Minute effects can never be excluded, and
in fact, in GWAS, many true associations yield modest
results that do not cross genome-wide association P-value
thresholds. Many true findings do not rise to the top of
the single nucleotide polymorphism P-value ranks in phase
1 of a genome-wide association study (29). Despite ex-
tremely large sample sizes and cumulative meta-analyses
of many GWAS, many associations may remain undiscov-
ered and/or inconclusive. The Venice criteria should not be
used to conclude that there is strong evidence for a null
association.

Protection from bias

A research finding cannot reach sufficient credibility
(>50%) unless the probability of a false-positive association
due to bias is less than the prestudy odds of an association’s
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being true (30). The Venice criteria include an extensive
checklist for sources of biases in different settings. The
checklist has different considerations depending on whether
the evidence comes from retrospective meta-analyses of
published data or prospective GWAS and replication studies
from collaborative consortia with harmonization of data
collection and analysis.

Bias checks that have been adopted in these synopses for
retrospective meta-analysis include automated checks that
can be readily applied to all meta-analyses of published
data. These are shown in Table 3, along with a list of issues
that need to be considered. General checks (that can be
applied automatically to all fields) have the advantage of
being objective and unambiguous, but they cannot provide
definitive proof for the presence or absence of bias. For
instance, a small effect size (e.g., odds ratio < 1.15) could
be explained by bias, but many of the confirmed associations
between single nucleotide polymorphisms and chronic dis-
eases are of this order of magnitude. Therefore, small effect
sizes, if seen consistently across many studies and with no
evidence for publication bias, should not be automatically
penalized. For prospective evidence, such as data accumu-
lated from 1 or more GWAS with prospective replication
across several teams in a consortium or prospective meta-
analysis of many GWAS from collaborative studies (31), the
considerations are quite different. Here, the small magni-
tude of the effect size should not be invoked as evidence
of lack of protection from bias, and similarly small-study
effect bias or an excess of single studies with significant
findings is not an issue here, provided that there is no selec-
tive reporting of results (there is no reason for such selective
reporting in a consortium).

For example, in the schizophrenia synopsis (20), of the 24
associations with nominal statistical significance, 9 were
graded as ‘‘A’’ and 15 as ‘‘C’’ for ‘‘protection from bias.’’
The main reasons for low grades were a small summary
odds ratio (odds ratio < 1.15) in what are retrospective
meta-analyses of published data (n ¼ 6 associations) and

loss of significance after exclusion of the initial study (n¼ 6).
Less common reasons were loss of significance after exclu-
sion of studies that violated Hardy-Weinberg equilibrium
and significant differences in effect between small and
larger studies.

ISSUES TO CONSIDER FOR MOVING FORWARD

Defining thresholds for evaluating credibility

The threshold for considering an association for further
assessment must be defined in each synopsis, but it may be
difficult to reach full consensus on this issue. Given that
current synopses have used a large amount of evidence from
candidate gene studies, most have considered for grading all
probed associations that pass very lenient levels of statistical
significance in meta-analysis (typically, P < 0.05 inferred
from random-effects calculations). However, experience to
date indicates that associations with a grade of A for the
amount of evidence but P values just below 0.05 have either
very small effects (and get a C for protection from bias if
a retrospective meta-analyses) or moderate/large heteroge-
neity (and thus get a B or C for replication consistency).
Even for such associations that stem from the candidate
gene era, it is uncommon to get a rating of ‘‘strong’’ epide-
miologic evidence grading (AAA), unless the P value for the
summary effect is substantially lower. Associations that
arise out of GWAS require an even more demanding thresh-
old. Thresholds may be set either on the basis of P-value
criteria for genome-wide significance or using Bayesian ap-
proaches, of which there are several variants (32–35).

In view of the potential multiplicity of phenotypes exam-
ined and analyses performed, some authors believe that the
rigorous criteria for statistical significance used in GWAS
should be applied to candidate gene-derived associations. If
so, P values of 10�7 or lower would be required for a locus
to be considered ‘‘confirmed’’ (36, 37). Figure 1, part A,
shows the distribution of P values of the loci identified by

Table 3. Some Checks for Retrospective Meta-Analyses in Field Synopses of Genetic Associations

General checks for the occurrence of or susceptibility to potential problemsa

Small effect size (e.g., odds ratio less than 1.15-fold from the null value)

Association lost with exclusion of first study

Association lost with exclusion of HWE-violating studies or with adjustment for HWE

Evidence for small-study effect in an asymmetry regression test with proper type I error (52)

Evidence for excess of single studies with formally statistically significant results (53)

Topic- or subject-specific checks: consider whether they are problems

Unclear/misclassified phenotypes with possible differential misclassification against genotyping

Differential misclassification of genotyping against phenotypes

Major concerns for population stratification (need to justify for affecting odds ratio greater than 1.15-fold; not invoked to date)

Any other reason (case-by-case basis) that would render the evidence for association highly questionable

Abbreviation: HWE, Hardy-Weinberg equilibrium.
a All general checks are likely to have only modest, imperfect sensitivity and specificity for detecting problems. In particular, for effect size,

a small effect size may very well reflect a true association, since many genetic associations have small effect sizes. However, if this effect has been

documented in a retrospective meta-analysis that is susceptible to publication and other reporting biases, it also needs to be replicated in a pro-

spective setting where such biases cannot operate before high credibility can be attributed to it.
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GWAS for binary outcome phenotypes and which have been
included in the National Human Genome Research Institute
GWAS catalog as of October 14, 2008 (38, 39). Of the 466
entries in the catalog, after excluding those pertaining to
studies that did not reach any hits with P < 10�5 and those
that had nonbinary outcomes, 223 loci are included here. As
shown, fewer than two-thirds of them (142/223) have a
P value less than 10�7 and only 39% (87/223) have a P value
less than 10�10. When several studies and data sets are
combined in genome-wide investigations, typically re-
searchers have used pooled, stratified, or simple fixed-
effects analyses; random-effects or other approaches that
also take into account the heterogeneity between data sets
would have often yielded even more conservative P values
(40). This suggests that the majority of signals emerging
from current GWAS and early replication efforts do not
yet cross stringent levels of ‘‘genome-wide significance.’’
This further highlights the need to include far more data
from additional GWAS and replication data sets, and this
can be routinely accomplished in the setting of field synop-
ses collating all of this information.

Bayesian approaches offer the advantage of allowing dif-
ferent prior probabilities for an association’s being present
based on external evidence (thus bridging agnostic and can-
didate approaches) (32–35). These methods also allow con-
sideration of the impact of different assumptions about the
genetic effect sizes. Empirical evidence from GWAS can
offer insight about typical discovered effects. Figure 1, part
B, shows the distribution of odds ratios (typically per allele,
as reported in the National Human Genome Research In-
stitute catalog) among the 223 loci discovered in GWAS. As
shown, the median effect corresponds to an odds ratio of
1.28, and the same median is seen for the 142 associations

with P < 10�7 (Figure 1, part C). These estimates may be
inflated in comparison with the true effects, because of the
‘‘winner’s curse’’ phenomenon (inflation of effects selected
based on significance thresholds) (41, 42). A median true
odds ratio of 1.1–1.2 is therefore reasonable for these asso-
ciations, and some effects many be even smaller, while ex-
ceptions of large odds ratios are probably uncommon.
Nevertheless, one should acknowledge that the effect of
the causal factor that is in the neighborhood of the tagging
polymorphism may be larger, and we cannot yet exclude the
possibility of considerably larger odds ratios for low-
frequency variants (43). Such variants were not assessed
in the first wave of GWAS, but they are being increasingly
targeted in current and future efforts (44, 45).

As more synopses accrue, we can examine the stability of
the Venice grading for various associations. This will help
us understand whether some types of associations can
change from having weak credibility to having strong cred-
ibility (and vice versa). As is described below, gathering
empirical evidence into field synopsis databases will allow
greater insight in the assessment of cumulative evidence on
genetic associations.

Defining conglomerate evidence

It is already established practice for hypotheses about
specific postulated associations to be tested using data from
combinations of prospective consortia analyses stemming
from GWAS and their meta-analyses and replication stud-
ies; possibly several consortia working on the same disease
and phenotypes; additional scattered studies by teams that
are not included in any of the consortia; and even retrospec-
tive meta-analyses encompassing some/many/all of these

Figure 1. A) Levels of statistical significance for associations of genetic loci with P values of 10�5 or lower identified through genome-wide
association studies (GWAS) and entered in the National Human GenomeResearch Institute catalog of GWAS as of October 14, 2008 (38, 39); data
are limited to those loci that have binary outcome phenotypes (n ¼ 223). For details on selection of loci in the catalog, see Hindorff et al. (38)
and Manolio et al. (39). B) Odds ratios (per allele) for the 223 associations. C) Odds ratios for the 142 of the 233 associations that had P values less
than 10�7. Not shown are the 5, 13, and 7 outliers that had values outside of the depicted range in the 3 panels, respectively.
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sources of data. Such ‘‘conglomerate evidence’’ from vari-
ous sources of data may appear in various time sequences.
The Venice criteria suggested that one should consider the
highest possible level of evidence when data come from
disparate sources. Perhaps the best currently available
source is a well-designed prospective consortium analysis
including several teams that have performed GWAS and
replications. The results of such an analysis should have
a much greater weight than the results of scattered smaller
studies. If the consortium evidence results in ‘‘strong’’ ev-
idence, it would not be reasonable to underrate this evidence
because of a few small, scattered, inconclusive studies.
However, the challenge will become more serious when
many consortia with 1 or more genome-wide platforms
are available, and when the scattered or retrospectively
meta-analyzed data are much larger in amount than the
original consortium-level data on which the reported asso-
ciation was based. Dealing efficiently with this situation
requires transparent and comprehensive availability of the
evidence from these diverse studies, as we discuss below.

GLOBAL COLLABORATION: FROM DATA TO
KNOWLEDGE

After reviewing pilot field synopses, participants in the
HuGENet workshop discussed how to link emerging data on
genetic associations with other sources of information on
the biology of genes and gene-disease relations. Clearly,
the advent of GWAS in large-scale collaborative studies in-
volving networks and consortia is a crucial first step towards
the generation of large-scale data sets. Furthermore, the de-
position of these data in accessible public databases can help

to address the problem of publication bias commonly seen
in candidate gene association studies. Nevertheless, addi-
tional efforts are needed to transform data into a knowledge
base. Systematic reviews and meta-analyses represent a cru-
cial step in building the knowledge base on genetic variation
and human health. Such efforts need to be transparent and
their results made available in online databases and publi-
cations. The willingness of journal editors to contribute to
these efforts is critical, as investigators and systematic
reviewers struggle to gain academic recognition for
their work, which is often part of multinational, multiple-
investigator studies. Finally, the National Library of Medi-
cine (http://www.ncbi.nlm.nih.gov/) plays a leading role in
linking genetic association studies with other existing data-
bases on gene sequences, products, and linkages to disease
processes.

At the HuGENet workshop, a vision emerged of collab-
oration to create a sustainable, credible knowledge base on
genetic variation and human diseases. As Figure 2 shows,
the collaboration involves research investigators, systematic
reviewers, online publishers, and database developers with
variable degrees of overlap among the groups. For example,
investigators who are part of research consortia have their
own informatics tools and databases, and they can conduct
systematic reviews of their own field based on their own
data or also including data from teams external to the con-
sortium. In addition, other reviewers could contribute to
these efforts, as evidenced by many previous efforts in
meta-analyses and Human Genome Epidemiology (HuGE)
reviews. Figure 2 shows the flow from generation of new
data to systematic appraisal and synthesis and to online
dissemination via journals and databases.

Networks/Investigators
(Research Publications

Field-Specific Databases)

Global Collaboration
Platforms

(HuGENet, P3G, HVP)

Online Publishers
(National Library of
Medicine, Journals,
Informatics Tools)

Systematic Reviewers
(Appraisal, Field Synopses,

Encyclopedia Entries,
Updates)

Figure 2. A vision for collaboration among disease- and gene-specific investigators, systematic reviewers, and online publishers. HuGENet,
Human Genome Epidemiology Network; HVP, Human Variome Project; P3G, Public Population Project in Genomics.
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A successful example of collaboration already exists in
the field of type 2 diabetes. Investigators from diverse con-
sortia have combined efforts to conduct comprehensive
meta-analyses of all GWAS and replication studies. A first
meta-analysis combined 3 GWAS with a total of over
10,000 samples; this was followed by a second stage of
replication of the most interesting signals in over 22,000
independent samples and a subsequent third stage of repli-
cation on over 57,000 samples, with data being combined by
means of formal meta-analysis methods (46). In another
example, the GIANT [Genetic Investigation of Anthropo-
metric Traits] consortium has already published results of
a meta-analysis including data from 15 GWAS, followed by
replication in another 14 cohorts (47). Similar meta-analyses
are being designed and carried out by collaborating consor-
tia in several other fields—for example, the Psychiatric
GWAS Consortium, which is conducting meta-analyses
within and between 5 psychiatric disorders (https://pgc.
unc.edu/faqs.html).

Several global collaborations focused on genotype-
phenotype correlations can help support fields where
large-scale studies are still in the making. For example,
HuGENet sponsors the HuGE Navigator (8) (http://www.
hugenavigator.net/), a knowledge base with online tools for
capturing and organizing the most up-to-date information
on genetic associations and other related information. The
Human Variome Project is focused on the production and
synthesis of gene- and gene-variant-centered databases with
linked phenotypic outcomes (48). The Public Population
Project in Genomics (http://www.p3gconsortium.org/) aims
to harmonize data collected from large-scale cohort studies
and biobanks around the world. Cross-links among
HuGENet, the Public Population Project in Genomics, the
Human Variome Project, and other groups are crucial to
convene and facilitate collective efforts in developing the
knowledge base on genetic variation and human diseases.
Efforts in coordinating these global collaborations are al-
ready under way through cross-linking of these enterprises.
For example, the Public Population Project in Genomics has
an international working group in epidemiology and bio-
statistics that is closely related to the HuGENet movement.
Another, more specialized online knowledge base develop-
ment effort that can be synergistic is the Pharmacogenomics
Knowledge Base (49). In addition, GeneReviews are expert-
authored, peer-reviewed disease descriptions focused on
the use of genetic testing in the diagnosis, management,
and genetic counseling of patients and their families.
GeneReviews are part of the GeneTests Web site (http://
www.genetests.org), which also includes international
directories of genetics clinics and genetics laboratories
(50). Finally, it is important for epidemiologic efforts to
be linked with biologic efforts, including experimental
work, assessment of endophenotypes, and functional studies
in different model systems.

SCHIZOPHRENIA: FIELD SYNOPSIS AND EXAMPLE
OF DEVELOPMENT OF A KNOWLEDGE BASE

As an example of the collaboration among primary inves-
tigators, systematic reviewers, and online publishers,

Bertram et al. (19) provide a model approach to a distributed
knowledge base of genetic variants that features collabora-
tion among the 3 groups outlined above. They have synthe-
sized primary research on genetic associations in
schizophrenia, and they developed a regularly updated on-
line database, SZGene (www.szgene.org), that collects and
curates published results in this area. A peer-reviewed field
synopsis summarizes the cumulative evidence and evaluates
it according to the Venice criteria. The field synopsis is
regularly updated online with updated cumulative meta-
analyses. Bertram et al. have developed similar resources
for Alzheimer’s disease (www.alzgene.org).

The HuGE Navigator Web site (http://www.hugenavigator.
net/) serves to link field-specific efforts like SZGene
with other online databases through the HuGEpedia. The
HuGEpedia can be accessed by using either a phenotype
(Phenopedia) or a gene (Genopedia) as the starting point.
For example, searching the Phenopedia for schizophrenia
leads users to a page that provides an up-to-date summary
of genes studied for a possible association with schizophrenia,
links to abstracts of the original publications in PubMed,
meta-analyses and HuGE reviews, and abstracted meta-
tables. HuGE Navigator can also be searched to locate in-
vestigators in the field and to display geographic and
temporal trends in the published literature. Finally, HuGE
Navigator attempts to identify and link to all published
GWAS in the field, as well as to data sets deposited and
available through the National Center for Biotechnology
Information’s dbGaP. Although HuGE Navigator is not
a comprehensive data repository, it serves as a first stop
for orientation and links to more authoritative data sources
and field synopses. The highest level of data integration in
this example occurs through links with National Center for
Biotechnology Information databases (such as PubMed,
Entrez Gene, and dbGaP). The National Center for Biotech-
nology Information’s online book, Genes and Disease (51),
could also expand to accommodate the most current
synopses in individual fields.

CONCLUDING REMARKS: INVITATION TO SUBMIT
FIELD SYNOPSES FOR PUBLICATION

This is a crucial time in human genomics research, when
advances in genome-wide analysis platforms coupled with
declining costs are producing an unprecedented outpouring
of replicated genetic associations with common diseases. To
make the most of the research enterprise and to promote
reliable and timely knowledge synthesis, the multidisciplin-
ary working group offers the following recommendations.

First, data from GWAS should be made available for in-
terested researchers in order to avoid selective positive
reporting of spurious associations and to facilitate meta-
analyses of particular associations. Involvement of the pri-
mary investigators from the GWAS in collaborative projects
and meta-analyses should be encouraged. There is a risk of
errors’ and misconceptions’ being introduced if the primary
investigators who are intimately familiar with the data are
not involved. Second, researchers and research networks
should develop field synopses that use meta-analysis to in-
tegrate published and unpublished data and evaluate the
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cumulative evidence. The Venice guidelines offer interim
guidance, and further empirical research is needed to assess
the stability and implementation of these guidelines. Third,
we encourage the development of field-specific databases,
such as the SZGene database discussed above. Fourth, we
encourage journal editors to publish field synopses with
regular updates, as called for by Nature Genetics in 2006
(16). Fifth, we recommend that journals and online publish-
ers develop and make widely available databases that
include standardized and systematically collected informa-
tion from original research for research synthesis. The
HuGE Navigator is one approach presented here, but others
could emerge in the future. The rapidity of data accumula-
tion necessitates such a systematic approach as a starting
point for evaluating the gaps in our knowledge base. To
succeed, these efforts depend on collaboration fueled by
the availability of funding not only for generating original
research data but also for efforts in research synthesis and
dissemination. Finally, we need to ensure that the epidemi-
ologic research synthesis discussed here is accompanied by
critical appraisal and synthesis of biologic research. The
combination of epidemiology and biology is crucial to en-
hance the credibility of genetic associations and to acceler-
ate their applications in clinical medicine and population
health.

We invite prospective authors to submit field synopses to
the American Journal of Epidemiology using the criteria laid
out above with an assessment of cumulative evidence on
genetic associations. This is a crucial next step beyond
HuGE reviews and meta-analyses of the association be-
tween 1 gene and 1 disease, into comprehensive develop-
ment of the knowledge base pertaining to specific fields.
Additional instructions on preparing field synopses can be
found on the HuGENet Web site (http://www.cdc.gov/
genomics/hugenet/default.htm).
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Appendix Table. Considerations for Epidemiologic Credibility in the Assessment of Cumulative Evidence on Genetic Associationsa

Criteria and Categories Proposed Operationalization

Amount of evidence

A: Large-scale evidence Thresholds may be defined on the basis of sample size, power, or false-discovery
rate considerations. The frequency of the genetic variant of interest should be
accounted for. As a simple rule, we suggest that category A require a sample size
of more than 1,000 (total number in cases and controls, assuming a 1:1 ratio)
evaluated in the least common genetic group of interest; that B correspond to a
sample size of 100–1,000 evaluated in this group; and that C correspond to a
sample size of less than 100 evaluated in this group (see ‘‘Discussion’’ section in
the text and Table 2 for further elaboration).b

B: Moderate amount of evidence

C: Little evidence

Replication

A: Extensive replication including at least
1 well-conducted meta-analysis with little
between-study inconsistency

Between-study inconsistency entails statistical considerations (e.g., defined by
metrics such as I 2, where values of 50% and above are considered large and
values of 25%–50% are considered moderate inconsistency) and also
epidemiologic considerations for the similarity/standardization or at least
harmonization of phenotyping, genotyping, and analytical models across studies.
See ‘‘Discussion’’ section in the text for the threshold (statistical or other) required
for claiming replication under different circumstances (e.g., with or without inclusion
of the discovery data in situations with massive testing of polymorphisms).

B: Well-conducted meta-analysis with some
methodological limitations or moderate
between-study inconsistency

C: No association; no independent replication;
failed replication; scattered studies; flawed
meta-analysis or large inconsistency

Protection from bias

A: Bias, if at all present, could affect the magnitude
but probably not the presence of the association

A prerequisite for A is that the bias due to phenotype measurement, genotype
measurement, confounding (population stratification), and selective reporting (for
meta-analyses) can be appraised as not being high (as shown in detail in
Table 3)—plus, there is no other demonstrable bias in any other aspect of the
design, analysis, or accumulation of the evidence that could invalidate the presence
of the proposed association. In category B, although no strong biases are visible,
there is no such assurance that major sources of bias have been minimized or
accounted for, because information is missing on how phenotyping, genotyping,
and confounding have been handled. Given that occult bias can never be ruled out
completely, note that even in category A, we use the qualifier ‘‘probably.’’

B: No obvious bias that may affect the presence
of the association, but there is considerable
missing information on the generation of evidence

C: Considerable potential for or demonstrable bias
that can affect even the presence or absence of
the association

a Based on the Venice criteria (18).
b For example, if the association pertains to the presence of homozygosity for a common variant and if the frequency of homozygosity is 3%, then

category A under ‘‘Amount of evidence’’ requires over 30,000 subjects and category B between 3,000 and 30,000. The sample size refers to

subjects when genotype contrasts are used and to alleles when alleles are contrasted.
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