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Abstract

Genome-wide association studies (GWAS) based on high throughput SNP genotyping technologies open a broad avenue
for exploring genes associated with milk production traits in dairy cattle. Motivated by pinpointing novel quantitative trait
nucleotide (QTN) across Bos Taurus genome, the present study is to perform GWAS to identify genes affecting milk
production traits using current state-of-the-art SNP genotyping technology, i.e., the Illumina BovineSNP50 BeadChip. In the
analyses, the five most commonly evaluated milk production traits are involved, including milk yield (MY), milk fat yield (FY),
milk protein yield (PY), milk fat percentage (FP) and milk protein percentage (PP). Estimated breeding values (EBVs) of 2,093
daughters from 14 paternal half-sib families are considered as phenotypes within the framework of a daughter design.
Association tests between each trait and the 54K SNPs are achieved via two different analysis approaches, a paternal
transmission disequilibrium test (TDT)-based approach (L1-TDT) and a mixed model based regression analysis (MMRA). In
total, 105 SNPs were detected to be significantly associated genome-wise with one or multiple milk production traits. Of the
105 SNPs, 38 were commonly detected by both methods, while four and 63 were solely detected by L1-TDT and MMRA,
respectively. The majority (86 out of 105) of the significant SNPs is located within the reported QTL regions and some are
within or close to the reported candidate genes. In particular, two SNPs, ARS-BFGL-NGS-4939 and BFGL-NGS-118998, are
located close to the DGAT1 gene (160bp apart) and within the GHR gene, respectively. Our findings herein not only provide
confirmatory evidences for previously findings, but also explore a suite of novel SNPs associated with milk production traits,
and thus form a solid basis for eventually unraveling the causal mutations for milk production traits in dairy cattle.
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Introduction

Over the last decades, advances in DNA-based marker

technology make it possible to identify genome regions (namely

quantitative trait loci, QTL) underlying complex traits such as

milk yield in dairy cattle. Instead of traditional animal breeding

programmes solely relying on phenotype and pedigree informa-

tion, the incorporation of detected QTL into genetic evaluation

provides a great potential to enhance selection accuracies, hence

expediting the genetic improvement of animal productivity.

In dairy cattle, since the seminal work on QTL mapping by

Georges el al [1], a large number of articles have been published

concerning detection of QTLs for milk production traits. So far a

total number of 1,137 QTL for milk production traits have been

reported via genome scan based on marker-QTL linkage analyses

(http://www.animalgenome.org/QTLdb/cattle.html, May 22,

2010). The limitations of QTL mapping using linkage analysis

(LA) and/or linkage disequilibrium (LD) [2] based on panels of

low to moderate density markers have been well documented

previously [3,4]. In the past decades merely few strong candidate

genes with potential effects on milk production traits, i.e., the

DGAT1 gene [5] and the GHR gene [6], have been identified and/

or functionally confirmed from those findings derived from QTL

linkage analyses and fine mapping studies.

With the advent of genome-wide panels of single nucleotide

polymorphisms (SNPs), SNPs have been widely used for the detection

and localization of QTL for complex traits in many species [7],

and have proved powerful and useful in identification of casual

mutations associated with economically important traits in livestock

[8,9,10,11,12,13,14,15] as well as human diseases [16,17,18,19].

Most recently, along with maturing of genome sequencing and high

throughput SNP genotyping technologies, genome-wide association

studies (GWAS) are becoming practical for exploring genes associated

with complex traits. Compared with traditional QTL mapping

strategy, GWAS brings on major advantages both in power to detect

causal variants with modest effects and in defining narrower genomic

regions harboring causal variants [20]. GWAS has been widely

accepted as a primary approach for gene finding and achieved huge

success in identifying genes conferring modest disease risks in human.

However, only few GWAS focusing on identifying genes for milk

production traits have been performed [21,22]. Furthermore, the

common limitation of these studies is that low-density SNP makers

were employed in the analyses, leading to a decrease in power to

capturing causal genes.
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Motivated by searching for novel casual variants for milk

production traits beyond previous findings via traditional linkage

studies, the present study is to perform GWAS to detect potential

casual genetic variants for milk production traits, using the

Illumina BovineSNP50 BeadChip. The identified SNP loci may be

considered as preliminary foundation for further replication

studies and eventually unraveling the causal mutations for milk

production traits in dairy cattle.

Materials and Methods

The blood samples were collected along with the regular

quarantine inspection of the farms, so no ethical approval was

required for this study.

Animal resource
A daughter design was employed in this study. In total 2,093

daughters as well as their 14 corresponding sires were collected to

construct the study population. The numbers of daughters of the

14 sires range from 83 to 358 daughters with an average of 150.

These daughters were from 15 Holstein cattle farms in Beijing,

China, where regular and standard performance testing (dairy

herd improvement, DHI) has been conducted since 1999. The

official up to date estimated breeding values (EBVs) of five milk

production traits, including milk yield (MY), fat yield (FY), protein

yield (PY), fat percentage (FP), and protein percentage (PP) were

used as phenotypes in this study. These EBVs were obtained based

on a multiple trait random regression test-day model [23] using

the software RUNGE provided by Canadian Dairy Network

(CDN) (http://www.cdn.ca). The descriptive statistics of these

EBVs for the five traits as well as the average reliabilities of EBVs

of the 2,093 daughters are presented in Table 1. It is notable that

the program RUNGE gave two sets of accuracies of EBVs for the

five milk production traits. One is for milk yield (MY) and the

other for the four milk content traits (FY, PY, FP, and PP). This is

because that the amount of information used for calculating EBVs

was different for MY and for the 4 milk content traits, while all of

the 4 milk content traits provided the same amount of information

for calculating EBVs.

Genotyping
DNA was extracted from blood sample of the daughters and

semen sample of the sires using the routine procedures. DNA was

quantified and genotyped using the Illumina BovineSNP50

BeadChip containing 54001 SNPs, which is a multi-sample

genotyping panel powered by Illumina’s InfiniumH II Assay.

Features of the Illumina BovineSNP50 BeadChip have been

detailed previously [24]. All samples were genotyped using

BEADSTUDIO (Illumina) and a custom cluster file developed

from the 2180 samples.

Table 1. Descriptive statistics of EBVs and the accuracy of five milk production traits for 2,093 daughters.

Traits Mean Standard deviation Minimum Maximum Mean reliability (range)

Milk yield (MY) 379.36 608.65 21667.00 2553.00 0.63 (0.50–0.71)

Fat yield (FY) 7.49 24.37 273 94 0.52 (0.41–0.70)

Protein yield (PY) 10.72 17.05 249 74 0.52 (0.41–0.70)

Fat% (FP) 20.07 0.91 20.90 0.27 0.52 (0.41–0.70)

Protein% (PP) 20.01 0.32 20.42 0.10 0.52 (0.41–0.70)

doi:10.1371/journal.pone.0013661.t001

Table 2. Distributions of SNPs after quality control and the
average distances between adjacent SNPs on each
chromosome.

BTA No. SNPs Average distance (kb)a

1 2485 65

2 2033 69

3 1966 65

4 1869 66

5 1607 78

6 1913 64

7 1711 65

8 1797 65

9 1499 72

10 1586 67

11 1699 65

12 1233 69

13 1318 64

14 1309 62

15 1265 67

16 1180 66

17 1201 64

18 1039 64

19 1068 61

20 1205 63

21 1053 66

22 939 66

23 838 63

24 946 69

25 769 57

26 774 67

27 730 67

28 719 64

29 794 65

X 497 179

0b 1178

TOTAL 40220

aDerived from the most recent bovine genome sequence assembly (Btau_4.0)
(http://www.ncbi.nlm.nih.gov/genome/guide/cow/)
bThese SNPs are not assigned to any chromosomes.
doi:10.1371/journal.pone.0013661.t002
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Genotype quality control
To assess the technical reliability of the genotyping panel, a

randomly selected DNA sample was genotyped twice and over

99% identity of called genotypes (two mismatches) was obtained.

This demonstrates the technically robust feature of the 50K SNP

BeadChip panel employed herein.

The quality control procedure can be largely split into two

categories, including individual exclusion and SNP removal, as

follows:

Firstly, an individual would be excluded from the analyses if it

had more than 10% missing genotypes or its SNP genotypes had a

Mendelian error rate above 2%. For the second criterion, for each

sire-daughter pair, we randomly choose 10,000 genotyped SNP

loci for which both the sire and the daughter are homozygotes. A

Mendelian error happens herein if the two homozygotes are

different in the context that the maternal genotype is unavailable.

Accordingly, if more than 200 out of 10,000 SNP have Mendelian

errors, the daughter will be removed from the sample.

Secondly, a SNP would be removed if (1) its call rate was less

than 90%, or (2) its minor allele frequency (MAF) was less than

3%, or (3) it was severely depart from Hardy Weinberg

Equilibrium (HWE) with a P value lower than 1026, or (4) its

minor genotype frequency was less than five individuals.

After the quality control procedures, 73 daughters with .10%

missing genotypes and 205 daughters with Mendelian error rate

above 2% were excluded, leading to 1,815 daughters remaining

for the association analysis. On the other hand, we removed 1,218

SNPs with ,90% genotype call rate, 11,008 SNPs with a MAF

,0.03, 482 SNPs with extreme value of HWE statistics (P,10206),

and 1,073 SNPs with minor genotype frequency ,5 individuals.

Eventually, 40,220 SNPs (74.5%) passed these quality control

filters. The distribution of the remaining SNPs after filtering and

the average distances between adjacent SNPs on each chromo-

some are given in Table 2. In addition, for the L1-TDT analyses,

we excluded extra 1,057 SNPs for which all paternal genotypes are

homozygotes, and 39,163 SNPs were finally utilized.

Statistical analyses
Two methods are adopted to perform GWAS in our studies as

follows:
TDT-based single locus regression analyses (L1-TDT). L1-

TDT is a TDT-based association procedure [25], which is specifically

suitable for the situation where only a single parent instead of both

parents are genotyped for TDT analyses. As merely the genotypes of

bulls and their daughters are available within the framework of a

daughter design, we employed it to explore the existence of associations

between phenotypes and SNP allele transmissions from bulls to their

daughters within sire families. Under such circumstance, a phenotypic

observation, i.e., EBV considered herein, can be modeled by a SNP

effect within family due to transmission disequilibrium of the SNP

alleles as well as the effect of the sire corresponding to each half-sib

family. For each milk production trait, the equation of the model is

given as follows:

yij~mzsizb:TDSijzeij ð1Þ

where yij is the EBV of the jth daughter of sire i, m is the overall mean, si
is the fixed effect of sire i,TDSij is an indicator variable with a value21,

0 or 1 to indicate the transmission of a specific SNP allele from sire i to

his jth daughter, which is determined according to [26], b is the

regression coefficient (or the substitution effect of the SNP), and eij is the

residual error. For each SNP, b is estimated via a weighted least

squares analysis with the weights equal to 1/RELij, where RELij is the

reliability of the EBV of daughter j in family i. The association between

the SNP and the trait is tested via the F-test.

Mixed model based single locus regression analyses

(MMRA). Similar to the studies of [21] and [22], we

performed association test for each SNP via regression analysis

based on the following linear mixed model:

y~1mzbxzZaze ð2Þ

where y is the vector of EBVs of all daughters, b is the regression

coefficient of EBV on SNP genotypes, x is the vector of the SNP

genotype indicators which takes values 0, 1 or 2 corresponding to

the three genotypes 11, 12 and 22 (assuming 2 is the allele with a

minor frequency), a is the vector of the residual polygenetic effects

with a*N(0,As2a) (where A is the additive genetic relationship

matrix and s2a is the additive variance, and e is the vector of

residual errors with e*N(0,Ws2e) (where W is a diagonal matrix

with the diagonal elements equal to 1/RELij and s2e is the residual

error variance). For each SNP, the estimate of b and the

corresponding sampling variance Var(b̂b) can be obtained via

mixed model equations (MME), and a Wald chi-squared statistic

b̂b2=Var(b̂b) with df=1 is constructed to examine whether the SNP

is associated with the trait.

We employed Fortran 95 to code the computing programs for

L1-TDT and MMRA and they are available upon request.

Statistical Inference
For both analyses, the Bonferroni method was adopted to adjust

for multiple testing from the number of SNP loci detected. We

declared a significant SNP at the genome-wise significance level if

a raw P value,0.05/N, here N is the number of SNP loci tested in

analyses.

Population stratification assessment
Confounding due to population stratification has been consid-

ered as a major plague to the validity of genetic association studies

Figure 1. Genome-wide plots of 2log10(p-values) for association of SNP loci with five milk production traits in sequential order.
Chromosomes 1–29 and X are shown separated by color. Fig. 1-a1, 1-a2, 1-a3, 1-a4 and 1-a5 refer to plots generated by L1-TDT for MY, FY, PY, FP and
PP, respectively. Fig. 1-b1, 1-b2, 1-b3, 1-b4 and 1-b5 refer to plots generated by MMRA for MY, FY, PY, FP and PP, respectively. The corresponding
horizontal lines indicate the genome-wise significance levels (2log10(1.28610

26) for L1-TDT and 2log10(1.24610
26) for MMRA).

doi:10.1371/journal.pone.0013661.g001

Table 3. Numbers of significant SNPs detected by L1-TDT
and MMRA.

Trait L1-TDT MMRA Overlapa Totalb

MY 11 18 9 20

FY 1 9 1 9

PY 5 21 5 21

FP 37 61 33 65

PP 10 27 9 28

aNumbers of SNPs commonly detected by both methods.
bNumbers of SNPs detected by either L1-TDT or MMRA.
doi:10.1371/journal.pone.0013661.t003
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[27]. To view if the population stratification exists in our

experimental population, we examined the distribution of the test

statistics obtained from the numerous association tests performed

and assessed their deviation from the expected distribution of no

SNP being associated with the trait of interest utilizing a quantile-

quantile (Q-Q) plot, which is a routine and most frequently used

tool for scrutinizing the population stratification in GWAS. Since

merely MMRA method is not immune to potential population

stratification, ‘‘Q-Q’’ plots for the test statistics of MMRA were

conducted for the five traits.

Results

Significant SNPs
The profiles of P values (in terms of 2log(p)) of all tested SNPs

for the five investigated traits are shown in Fig. 1. The numbers of

Table 4. Genome-wise significant (p,0.05) SNPs for milk yield (MY).

SNP Chr. Position (bp) Nearest genec Raw P value Adjusted P value

Name Distance (bp)

ARS-BFGL-NGS-91705b (rs43282015) 1 149650628 LOC614166 5490 9.21E-07 3.70E-02

Hapmap38643-BTA-95454b 3 92862402 LOC534011 Within 6.24E-07 2.51E-02

BFGL-NGS-110018a (rs41647754) 5 64833594 HAL 357 1.50E-07 5.89E-03

ARS-BFGL-NGS-49079b (rs42517915) 9 5763632 LOC788012 56757 3.53E-07 1.42E-02

BTB-01921442b (rs43030751) 9 21062122 LOC100139865 30952 6.61E-07 2.66E-02

Hapmap30383-BTC-005848ab 14 76703 C14H8orf33 87 7.58E-16 3.05E-11

ARS-BFGL-NGS-57820ab 14 236532 FOXH1 3396 1.39E-20 5.59E-16

ARS-BFGL-NGS-34135ab 14 260341 CYHR1 Within 6.18E-08 2.49E-03

ARS-BFGL-NGS-94706b (rs17870736) 14 281533 VPS28 Within 4.08E-09 1.64E-04

ARS-BFGL-NGS-4939ab 14 443937 DGAT1 160 1.16E-25 4.67E-21

Hapmap52798-ss46526455a (rs41256919) 14 565311 MAF1 Within 8.22E-08 3.22E-03

ARS-BFGL-NGS-107379ab 14 679600 LOC786966 460 2.33E-20 9.37E-16

UA-IFASA-6878ab (rs41629750) 14 1044041 GRINA 15662 8.74E-08 3.52E-03

Hapmap25486-BTC-072553b 14 1285037 GML Within 3.32E-07 1.34E-02

Hapmap30646-BTC-002054ab 14 1461085 GPIHBP1 1295 1.02E-10 4.10E-06

Hapmap30086-BTC-002066ab 14 1490178 ZNF66 1566 7.74E-10 3.11E-05

ARS-BFGL-NGS-100480ab 14 2607583 NIBP Within 2.91E-09 1.17E-04

UA-IFASA-6329b (rs41579243) 14 3465237 COL22A1 9864 1.59E-09 6.39E-05

BFGL-NGS-110563b 14 3799228 COL22A1 84554 2.25E-07 9.05E-03

Hapmap50053-BTA-61516b 26 39018261 C26H10orf84 28724 4.83E-07 1.94E-02

Note: SNPs with a superscript ‘‘a’’ are detected by L1-TDT only, SNPS with a superscript ‘‘b’’ are detected by MMRA only, SNPs with a superscript ‘‘ab’’ are detected by
both L1-TDT and MMRA, and SNPs in italic are located within the QTL regions reported previously. Names in parentheses are standard RRS/RS names in the NCBI
database (http://www.ncbi.nlm.nih.gov).
cThe nearest known gene to the significant SNP.
doi:10.1371/journal.pone.0013661.t004

Table 5. Genome-wise significant (p,0.05) SNPs with fat yield (FY).

SNP Chr. Position (bp) Nearest gene Raw P value Adjusted P value

Name Distance (bp)

Hapmap57440-rs29017368b (rs29017368) 5 62242550 LOC515967 2419 2.22E-07 8.93E-03

Hapmap40191-BTA-73919b (rs41648982) 5 76882812 LOC511240 69845 8.10E-07 3.26E-02

Hapmap30381-BTC-005750b 14 50872 C14H8orf33 23701 1.14E-06 4.59E-02

ARS-BFGL-NGS-57820b 14 236532 FOXH1 3396 1.23E-10 4.95E-06

ARS-BFGL-NGS-34135b 14 260341 CYHR1 Within 1.29E-11 5.19E-07

ARS-BFGL-NGS-94706ab (rs17870736) 14 281533 VPS28 Within 8.93E-07 3.50E-02

ARS-BFGL-NGS-4939b 14 443937 DGAT1 160 1.01E-14 4.06E-10

ARS-BFGL-NGS-107379b 14 679600 LOC786966 460 1.47E-09 5.91E-05

BTA-90435-no-rsb (rs41664719) X 70532837 LOC516454 285289 3.35E-07 1.35E-02

Note: See note to Table 4.
doi:10.1371/journal.pone.0013661.t005
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genome-wise significant SNPs detected by L1-TDT or MMRA for

the five traits are presented in Table 3. In total, the numbers of

significant SNPs detected by either L1-TDT or MMRA for the

five traits are 20, 9, 21, 65 and 28, respectively. Since some of

these SNPs are associated with more than one trait, the total

number of distinct identified SNPs is 105. Of these 105 SNPs, 38

were commonly detected by both methods, while four and 63 were

solely detected by L1-TDT and MMRA, respectively. With

exception of only four SNPs, all SNPs detected by L1-TDT were

also detected by MMRA. The details of these significant SNPs for

the five traits, including their positions in the genome, the nearest

known genes and the raw P values, are given in Tables 4 through

8, respectively, and further described as follows.

Milk Yield (MY). As seen from Table 4, 14 out of 20 SNPs

are located within a 3.63 Mb segment (between 0.07 and 3.7 Mb)

on BTA 14. Ten of them fall into the regions that have been

reported to harbor QTL for MY [5,21,28,29,30,31,32].

Furthermore, 6 of these SNPs are harbored within the regions of

known genes, and the others are located 87 to 84,554 bp away

from the nearest known genes.

Fat Yield (FY). As presented in Table 5, 6 out of 9 SNPs are

clustered within a 0.55 Mb segment (between 0.05 and 0.6 Mb) on

BTA 14. Eight out of them fall in the regions which have been

reported to harbor QTL for FY previously [5,28,31,33,34,35].

Furthermore, two of these SNPs fall within the regions of known

genes, and the others are located 160 to 285,289 bp away from the

nearest known genes.

Protein Yield (PY). As shown in Table 6, among these 21

SNPs, 7 out of them are located within a 3.33 Mb segment

(between 0.07 to 3.4 Mb) on BTA 14. Further, 14 out of these

SNPs are within the QTL regions for PY reported in previous

studies [5,21,28,33,36,37,38,39]; 5 of them are located within the

regions of known genes, and the others are located 87 to

385,764 bp away from the nearest known genes.

Fat Percentage (FP). From Table 7, 60 are located within a

6.2 Mb segment (between 0.05 to 6.25 Mb) on BTA 14. 53 of

them are located within the QTL regions for FP reported in

previous studies [5,34,39,40,41,42,43,44]. Further, 27 of the 65

detected SNPs are located within the regions of known genes, and

the others are 71 to 560,215 bp away from the nearest known

genes.

Protein Percentage (PP). As given by Table 8, out of 28

identified SNPs, there are 4, 7, and 14 SNPs located within a

8.0 Mb segment (between 33.9 to 41.9 Mb) on BTA6, a 2.59 Mb

segment (between 0.23 to 2.82 Mb) on BTA14, and a 7.9 Mb

segment (between 34.0 to 41.9 Mb) on BTA20, respectively.

Among these 28 SNPs, 17 are located within the QTL regions for

PP identified in previous studies [5,28,29,34,42,45]. Further, 11 of

these 28 SNPs are located within the regions of known genes, and

the others are 160 to 401,634 bp away from the nearest known

genes.

Population stratification assessment
The ‘‘Q-Q’’ plots for the test statistics of MMRA are shown in

Fig. 2-1 to 2-5. From these plots, it is apparent that the

distributions of the x2 statistics generated from the association

tests across the SNPs tested show no evidence of overall systematic

bias. That is, the observed x2 statistics of the significant SNPs are

Table 6. Genome-wise significant (p,0.05) SNPs with protein yield (PY).

SNP Chr. Position (bp) Nearest gene Raw P value Adjusted P value

Name Distance (bp)

BTA-55340-no-rsb (rs41586699) 1 145954149 PDE9A Within 9.72E-07 3.91E-02

BFGL-NGS-113002b 1 149153073 DIP2A Within 4.56E-07 1.83E-02

ARS-BFGL-NGS-91705b (rs43282015) 1 149650628 LOC614166 5490 3.57E-09 1.44E-04

ARS-BFGL-NGS-98387b 1 154783580 ETS2 169745 4.93E-07 1.98E-02

INRA-701b (rs41589462) 3 33837442 LOC539739 Within 7.75E-07 3.12E-02

BFGL-NGS-115461b 3 45261895 SLC30A7 7306 8.47E-07 3.41E-02

Hapmap58769-rs29025951b (rs29025951) 3 47803786 LOC100138725 219493 3.11E-07 1.25E-02

ARS-BFGL-NGS-4358b 3 50781421 LOC781902 385764 3.04E-07 1.22E-02

Hapmap38643-BTA-95454b 3 92862402 LOC534011 Within 3.77E-07 1.52E-02

BFGL-NGS-110018b (rs41647754) 5 64833594 HAL 357 8.53E-07 3.43E-02

ARS-BFGL-NGS-7249b 6 30503076 PDHA2 13265 8.38E-08 3.37E-03

BTA-83825-no-rsb (rs41659807) 9 7704446 LOC788115 60854 9.79E-07 3.94E-02

Hapmap30383-BTC-005848ab 14 76703 C14H8orf33 87 2.99E-13 1.20E-08

ARS-BFGL-NGS-57820ab 14 236532 FOXH1 3396 1.71E-12 6.88E-08

ARS-BFGL-NGS-4939ab 14 443937 DGAT1 160 5.81E-13 2.34E-08

ARS-BFGL-NGS-107379ab 14 679600 LOC786966 460 6.18E-12 2.49E-07

Hapmap30646-BTC-002054b 14 1461085 GPIHBP1 1295 1.55E-07 6.23E-03

ARS-BFGL-NGS-100480ab 14 2607583 NIBP Within 1.16E-06 4.67E-02

UA-IFASA-6329b (rs41579243) 14 3465237 COL22A1 9864 7.59E-07 3.05E-02

ARS-BFGL-BAC-10793b 14 27452257 NKAIN3 106885 7.15E-07 2.88E-02

Hapmap50053-BTA-61516b 26 39018261 C26H10orf84 28724 1.11E-06 4.46E-02

Note: See note to Table 4.
doi:10.1371/journal.pone.0013661.t006

GWAS in Chinese Holstein
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Table 7. Genome-wise significant (p,0.05) SNPs with fat percentage (FP).

SNP Chr. Position (bp) Nearest gene Raw P value Adjusted P value

Name Distance (bp)

Hapmap39717-BTA-112973 (rs41617243) 2 27529202 KBTBD10 Within 1.80E-07 7.24E-03

Hapmap51303-BTA-74377b (rs41652649) 5 89694749 ITPR2 Within 1.20E-06 4.83E-02

BTB-00285653b (rs43499009) 8 31663727 NFIB Within 2.41E-07 9.69E-03

BFGL-NGS-119907ab 11 106766451 GFI1B 15556 1.30E-06 5.23E-02

ARS-BFGL-NGS-26919a 11 107216562 LOC526069 Within 6.87E-08 2.69E-03

Hapmap30381-BTC-005750ab 14 50872 C14H8orf33 23701 2.28E-18 9.17E-14

Hapmap30383-BTC-005848ab 14 76703 C14H8orf33 87 1.05E-28 4.22E-24

BTA-34956-no-rsab (rs41630614) 14 101473 LOC785799 3479 2.37E-18 9.53E-14

ARS-BFGL-NGS-57820ab 14 236532 FOXH1 3396 1.82E-48 7.32E-44

ARS-BFGL-NGS-34135ab 14 260341 CYHR1 Within 1.71E-30 6.88E-26

ARS-BFGL-NGS-94706ab (rs17870736) 14 281533 VPS28 Within 5.78E-30 2.32E-25

ARS-BFGL-NGS-4939ab 14 443937 DGAT1 160 5.23E-64 2.10E-59

Hapmap52798-ss46526455ab (rs41256919) 14 565311 MAF1 Within 4.56E-12 1.83E-07

ARS-BFGL-NGS-71749ab 14 596341 OPLAH 3237 1.20E-11 4.83E-07

ARS-BFGL-NGS-107379ab 14 679600 LOC786966 460 1.77E-45 7.12E-41

ARS-BFGL-NGS-18365ab 14 741867 LOC524939 15242 2.13E-08 8.57E-04

Hapmap25384-BTC-001997b 14 835054 MAPK15 Within 6.22E-08 2.50E-03

Hapmap24715-BTC-001973b 14 856889 MAPK15 Within 2.74E-08 1.10E-03

BTA-35941-no-rsab (rs41627764) 14 894252 ZNF623 8779 2.72E-15 1.09E-10

ARS-BFGL-NGS-101653b 14 931162 EEF1D Within 8.84E-11 3.56E-06

ARS-BFGL-NGS-26520ab 14 996982 ZC3H3 Within 3.94E-14 1.58E-09

UA-IFASA-6878ab (rs41629750) 14 1044041 GRINA 15662 1.69E-13 6.80E-09

ARS-BFGL-NGS-22866b 14 1131952 LYPD2 2653 3.30E-10 1.33E-05

Hapmap25486-BTC-072553ab 14 1285037 GML Within 1.09E-13 4.38E-09

Hapmap29758-BTC-003619ab 14 1339276 CYP11B1 36652 1.95E-08 7.84E-04

Hapmap30646-BTC-002054ab 14 1461085 GPIHBP1 1295 6.30E-20 2.53E-15

Hapmap30086-BTC-002066ab 14 1490178 ZNF66 1566 6.61E-20 2.66E-15

Hapmap30374-BTC-002159ab 14 1546591 RHPN1 Within 5.44E-13 2.19E-08

ARS-BFGL-NGS-74378b 14 1889210 GPR20 71 1.46E-08 5.87E-04

BFGL-NGS-117542b 14 1913108 GPR20 23969 7.64E-10 3.07E-05

ARS-BFGL-NGS-33248ab 14 2130912 PTK2 Within 1.26E-08 5.07E-04

UA-IFASA-9288b (rs41624797) 14 2201870 PTK2 Within 2.19E-12 8.81E-08

ARS-BFGL-NGS-22111ab 1 2347219 EIF2C2 25806 6.59E-08 2.65E-03

UA-IFASA-7269ab (rs41576704) 14 2370256 EIF2C2 2769 1.02E-08 4.10E-04

Hapmap26072-BTC-065132b 14 2391826 EIF2C2 Within 2.15E-08 8.65E-04

ARS-BFGL-NGS-56327b 14 2580414 NIBP Within 1.58E-08 6.35E-04

ARS-BFGL-NGS-100480ab 14 2607583 NIBP Within 9.14E-16 3.68E-11

UA-IFASA-5306b (rs55617160) 14 2711615 NIBP Within 2.12E-13 8.53E-09

UA-IFASA-5765a 14 2763657 NIBP Within 5.82E-07 2.28E-02

ARS-BFGL-BAC-25166a 14 2805785 NIBP Within 5.11E-08 2.00E-03

Hapmap27703-BTC-053907ab 14 2826073 NIBP Within 3.03E-11 1.22E-06

Hapmap22692-BTC-068210b 14 3018726 KCNK9 25312 2.08E-07 8.37E-03

Hapmap23302-BTC-052123b 14 3099635 KCNK9 106221 2.03E-07 8.16E-03

Hapmap25217-BTC-067767b 14 3189312 KCNK9 195898 1.04E-07 4.18E-03

UA-IFASA-6329ab (rs41579243) 14 3465237 COL22A1 9864 4.29E-13 1.73E-08

ARS-BFGL-NGS-3571ab 14 3587018 COL22A1 Within 5.38E-09 2.16E-04

BFGL-NGS-118478a 14 3660264 COL22A1 Within 2.92E-07 1.14E-02

BFGL-NGS-110563ab 14 3799228 COL22A1 84554 3.31E-16 1.33E-11

Hapmap32262-BTC-066621b 14 3834069 LOC618755 67321 3.92E-11 1.58E-06

BFGL-NGS-115947b 14 3865962 LOC618755 35428 3.79E-07 1.52E-02

Hapmap30091-BTC-005211b 14 3940998 LOC618755 Within 2.10E-07 8.45E-03
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above the expected x2 statistics, which are largely at the adjusted

genome-wide significance level. The profiles of the Q-Q plots

clearly show that the significant SNPs identified by MMRA are

unlikely threaten by potential population stratification.

Discussion

In this study, we performed a GWA study for five milk

production traits using a daughter design in Chinese Holstein

population. To our knowledge, this is one of the first GWA studies

for milk production traits using the Illumina BovineSNP50

BeadChip. Two statistical methods, L1-TDT and MMRA, were

implemented to analyze association between SNPs and pheno-

types. These two methods belong to two distinct analytical

approaches, i.e., family-based (L1-TDT) and population-based

(MMRA) approaches, respectively, both of which have been

widely employed in GWAS. Comparisons between the two

methods have been well conducted by many investigators

[27,46,47,48]. Consensus with respect to their performance is

twofold. On the one hand, population-based analyses largely

outperform family-based analyses in statistical power and

efficiency. The power limitation of family-based analyses results

from ‘‘overmatching’’ on genotype [49]. Much fewer significant

SNPs detected by L1-TDT compared with MMRA in this study

present consistent evidence for this aspect in practice. On the other

hand, family-based analysis always guards against population

admixture/stratification caused by recent migration and/or non-

random mating, and do not give spurious significant results,

although at the expense of some loss of power [50]. The ‘‘Q-Q’’

plots for the test statistics of MMRA (Fig. 2-1 to 2-5) demonstrate

that no population admixture/stratification exists in our popula-

tion. Therefore, it is safe to declare that the SNPs detected by

MMRA as well as L1-TDT have convincing associations with the

traits of interest.

BTA14 has been received wide attention by many investigators.

Apart from a large number of QTL reported on BAT14

[34,39,51,52], the well-known DGAT1 gene[5] located at

,0.44Mb is generally accepted as a major gene affecting milk

production traits. BENNEWITZ et al. [28] revisited the QTL on

BTA14 and concluded that there should exist a further conditional

QTL which should be in linkage with the DGAT1 gene, and

possible epistatic effects arising from them may be an additional

source of genetic variation for milk production traits. Indeed,

KAUPE et al. [53] recently reported that the CYP11B1 gene located

at ,1.33Mbp has significant effects on MY, PY, FP and PP, and

the allele substitution effects of CYP11B1 and DGAT1 together

explained more variation in milk production traits than DGAT1
alone. In our study, an apparent feature of our findings is that a

large proportion of the significant SNPs (61 out of 105) are located

on BTA14. Of the 61 SNPs, 59 are located within the reported

QTL regions. In particular, all segments on BTA14 which harbor

multiple SNPs for the five traits also harbor the DGAT1 gene, and

the four segments for MY, PY, FP and PP also harbor the

CYP11B1 gene. Within these segments, 13 SNPs are located very

close (within 1Mb) to the DGAT1 gene with the closest one (ARS-

BFGL-NGS-4939) only 160bp away from it and 14 SNPs very

close to the CYP11B1 gene with the closest one (Hapmap25486-

BTC-072553 ) only 8,693bp away from it.

In addition to the SNPs on BTA14, most (27 out of 44) of the

significant SNPs on other chromosomes are also located within the

reported QTL regions. Further, some SNPs are also within or

close (within 1Mb) to the reported candidate genes (for a summary

of cattle candidate genes for milk production traits, see [54]). In

particular, a SNP (BFGL-NGS-118998) located at 34,036,832 bp

on BTA20 was found to fall within the GHR gene, which is also

generally accepted as a functional causal gene affecting milk yield

and components [5,6]. The other SNPs include the SNPs BTA-

121739-no-rs and Hapmap24324-BTC-062449 on BTA6, which

are 20,591bp and 450,868bp away from the ABCG2 gene [55],

respectively, and the SNP ARS-BFGL-NGS-26919 on BTA11,

which is 41,562bp away from the LGB gene [56].

It is notable that for either L1-TDT or MMRA some detected

SNPs are associated with phenotypic variation in multiple

production traits, including the SNPs ARS-BFGL-NGS-4939,

ARS-BFGL-NGS-57820, and ARS-BFGL-NGS-107379 on

BTA14 (for all of the five traits), the SNPs ARS-BFGL-NGS-

SNP Chr. Position (bp) Nearest gene Raw P value Adjusted P value

Name Distance (bp)

Hapmap27709-BTC-057052ab (rs42305942) 14 4276966 LOC100138440 38554 4.14E-07 1.67E-02

Hapmap51646-BTA-86764b (rs41657812) 14 4302229 LOC100138440 13291 7.91E-08 3.18E-03

Hapmap26591-BTC-056596b 14 4477036 LOC100138440 157701 6.62E-07 2.66E-02

Hapmap23618-BTC-056528b (rs42310935) 14 4518666 LOC100138440 199331 2.06E-08 8.29E-04

Hapmap30988-BTC-056315ab 14 4693901 LOC100138440 374566 2.88E-08 1.16E-03

UA-IFASA-6228b 14 5204594 KHDRBS3 560215 8.09E-07 3.25E-02

ARS-BFGL-BAC-20965b 14 5225004 KHDRBS3 539805 2.77E-07 1.11E-02

BFGL-NGS-110894b 14 5282438 KHDRBS3 482371 9.21E-09 3.70E-04

Hapmap33635-BTC-049051b 14 5318261 KHDRBS3 446548 3.64E-07 1.46E-02

Hapmap23851-BTC-048718b 14 5387836 KHDRBS3 376973 1.26E-06 5.07E-02

Hapmap32234-BTC-048199ab 14 5640338 KHDRBS3 124471 3.82E-16 1.54E-11

UA-IFASA-6647ab 14 5808644 KHDRBS3 Within 2.29E-14 9.21E-10

Hapmap32948-BTC-047992b 14 5839290 KHDRBS3 Within 3.71E-07 1.49E-02

ARS-BFGL-BAC-8730ab 14 6252101 MIRN30D 221420 7.03E-13 2.83E-08

Note: See note to Table 4.
doi:10.1371/journal.pone.0013661.t007
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94706 and ARS-BFGL-NGS-34135 on BTA14 (for MY, FY, FP,

and PP), the SNPs Hapmap30383-BTC-005848, Hapmap30646-

BTC-002054, ARS-BFGL-NGS-100480, and UA-IFASA-6329

on BTA14 (for MY, PY, and FP), the SNP UA-IFASA-6878 on

BTA14 (for MY, FP, and PP), the SNPs Hapmap52798-

ss46526455, BFGL-NGS-110563, Hapmap25486-BTC-072553,

and Hapmap30086-BTC-002066 on BTA14 (for MY and FP), the

SNPs ARS-BFGL-NGS-91705 on BTA1, Hapmap38643-BTA-

95454 on BTA3, BFGL-NGS-110018 on BTA5, and Hap-

map50053-BTA-61516 on BTA26 (for MY and PY), the SNPs

Hapmap30381-BTC-005750 on BTA14 (for FY and FP), and the

SNP Hapmap27703-BTC-053907 on BTA14 (for FP and PP).

This could be explained by pleiotropic effects of these SNPs on

multiple milk production traits, leading to genetic correlations

among them and there were similar result in many prior studies

[28,53].

In this study, we performed GWAS in the way of SNP by SNP

individually via regressing the observations of a single trait on

either the genotypes of a SNP (MMRA) or the allele transmission

patterns of a SNP from bulls to corresponding half-sib offspring

(L1-TDT). Previous studies have shown that single marker tests

provide similar or greater power than haplotype-based approaches

[57,58]. In contrast to haplotype-based methods, the main

advantage of the single locus test is that it does not necessitate

information of SNP positions and reconstruction haplotypes of

multiple SNP loci. Thus, it is the preferable method for large scale

genome-wise association analyses, e.g., GWAS. Also, we individ-

ually perform GWAS for each of five milk production traits. This

is the most conventional strategy for current GWAS. However, the

five milk production traits considered here are generally regarded

as correlated and thus should share common environmental/

genetic factors. A multiple traits instead of single trait analysis may

be a promising way to take correlations among these traits into

consideration. Multivariate analyses have been widely adopted in

linkage studies [59,60,61,62,63], and it has been generally

accepted that multivariate analyses outperform univariate analyses

in terms of increasing statistical power and precision of parameter

estimation [64,65]. In the next step, an optimal multiple traits

analytical strategy will be pursued to further enhance our GWA

studies.

In our study, the EBVs of daughters were used as phenotypes

for association analysis. Besides EBVs, yield deviation (YD) and

Table 8. Genome-wise significant (p,0.05) SNPs with protein percentage (PP).

SNP Chr. Position (bp) Nearest gene Raw P Value Adjusted P value

Name Distance (bp)

Hapmap48524-BTA-92140b (rs42552739) 5 80965296 NCF4 24749 3.69E-11 1.48E-06

ARS-BFGL-NGS-21133b 5 81003368 CSF2RB 2032 3.29E-07 1.32E-02

Hapmap59369-rs29018333b (rs29018333) 6 33989255 LOC536367 Within 1.52E-08 6.11E-04

Hapmap24324-BTC-062449b 6 37024132 HERC3 6738 2.33E-17 9.37E-13

BTA-121739-no-rsb (rs41622323) 6 37454409 PKD2 Within 7.08E-07 2.85E-02

BTB-00251047b (rs43463988) 6 41928694 LOC100140991 401634 4.33E-07 1.74E-02

Hapmap41083-BTA-76098b (rs41652041) 6 80715299 LOC100140587 4319 1.17E-06 4.71E-02

ARS-BFGL-NGS-57820ab 14 236532 FOXH1 3396 2.82E-08 1.13E-03

ARS-BFGL-NGS-34135ab 14 260341 CYHR1 Within 3.88E-09 1.56E-04

ARS-BFGL-NGS-94706ab (rs17870736) 14 281533 VPS28 Within 2.28E-08 9.17E-04

ARS-BFGL-NGS-4939ab 14 443937 DGAT1 160 3.73E-08 1.50E-03

ARS-BFGL-NGS-107379ab 14 679600 LOC786966 460 7.73E-07 3.11E-02

UA-IFASA-6878b (rs41629750) 14 1044041 GRINA 15662 6.79E-07 2.73E-02

Hapmap27703-BTC-053907a 14 2826073 NIBP Within 3.95E-07 1.55E-02

BFGL-NGS-118998ab 20 34036832 GHR Within 7.87E-07 3.17E-02

ARS-BFGL-BAC-2469b (rs41937533) 20 35552477 LOC518808 22514 1.21E-08 4.87E-04

BTA-50402-no-rsb (rs41945918) 20 36668000 LOC782462 19510 7.57E-07 3.04E-02

Hapmap57531-rs29013890b (rs29013890) 20 36955575 LOC782833 32019 8.97E-08 3.61E-03

BTB-00778154ab (rs41941646) 20 37399087 C9 10219 6.21E-07 2.50E-02

BTB-00778141ab (rs41941633) 20 37442583 FYB 35360 1.91E-11 7.68E-07

ARS-BFGL-NGS-38482b 20 37708167 RICTOR Within 1.99E-08 8.00E-04

Hapmap39660-BTA-50453b (rs41581059) 20 37865657 LOC100138964 Within 2.97E-07 1.19E-02

ARS-BFGL-NGS-22355b 20 38899763 GDNF 17831 5.65E-07 2.27E-02

BTB-00782435b (rs41942492) 20 39485917 NIPBL Within 1.02E-07 4.10E-03

BTA-13793-rs29018751b (rs29018751) 20 39518857 NIPBL Within 6.27E-10 2.52E-05

BTB-01842107b (rs42954630) 20 39601103 NIPBL Within 1.53E-10 6.15E-06

Hapmap53199-rs29014437a (rs29014437) 20 39728147 LOC782284 38124 3.35E-07 1.35E-02

BTA-102910-no-rsb (rs41574319) 20 41947097 RAI14 171370 2.64E-07 1.06E-02

Note: See note to Table 4.
doi:10.1371/journal.pone.0013661.t008
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de-regressed EBVs of individuals are also commonly used as

phenotypic observations in GWAS as well as in LA and LA/LD

analyses for milk production traits. Comparison among these three

kinds of phenotypes with respect to their influence on QTL

mapping [66] and marker assisted selection studies [67] demon-

strate that none of them has absolute advantages over the others.

We also compared using EBVs and de-regressed EBVs as

phenotypes for our GWAS and it turned out that the findings of

them are basically overlap (data not shown). Therefore, only the

findings from using EBVs are reported herein.

In all, the present study revealed 105 genome-wise significant

SNPs for milk production traits in Chinese dairy cattle population

using two different association analysis approaches (L1-TDT and

MMRA). Most of these SNPs (86 out of 105) are located within the

previously reported QTL regions, and some within or close to the

reported candidate genes. The general consistence of the

significant SNPs detected herein with the reported QTL and

candidate genes and the agreement of the results of the two

analysis approaches present strong support for the outcomes of this

study. Our findings herein lay a preliminary foundation for

guiding follow-up replication studies, and eventually revealing the

causal mutations underlying milk production traits in dairy cattle.

Acknowledgments

We are grateful to the two reviewers for their insightful comments and

constructive suggestions that greatly improved our manuscript. We thank

Dairy Association of China for supplying the official EBVs and Beijing

Dairy Cattle Center for providing blood and semen samples.

Author Contributions

Conceived and designed the experiments: QZ. Performed the experiments:

LJ DS PM. Analyzed the data: JL. Contributed reagents/materials/

analysis tools: XD YY. Wrote the paper: LJ JL QZ.

References

1. Georges M, Nielsen D, Mackinnon M, Mishra A, Okimoto R, et al. (1995)

Mapping quantitative trait loci controlling milk production in dairy cattle by

exploiting progeny testing. Genetics 139: 907–920.

2. Meuwissen TH, Goddard ME (2001) Prediction of identity by descent

probabilities from marker-haplotypes. Genet Sel Evol 33: 605–634.

3. Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic

animals and their use in breeding programmes. Nat Rev Genet 10: 381–391.

4. Andersson L, Georges M (2004) Domestic-animal genomics: deciphering the

genetics of complex traits. Nat Rev Genet 5: 202–212.

5. Grisart B, Farnir F, Karim L, Cambisano N, Kim JJ, et al. (2004) Genetic and

functional confirmation of the causality of the DGAT1 K232A quantitative trait

nucleotide in affecting milk yield and composition. Proc Natl Acad Sci U S A

101: 2398–2403.

6. Blott S, Kim JJ, Moisio S, Schmidt-Kuntzel A, Cornet A, et al. (2003) Molecular

dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in

the transmembrane domain of the bovine growth hormone receptor is associated

with a major effect on milk yield and composition. Genetics 163: 253–266.

7. Daw EW, Heath SC, Lu Y (2005) Single-nucleotide polymorphism versus

microsatellite markers in a combined linkage and segregation analysis of a

quantitative trait. BMC Genet 6 Suppl 1: S32.

8. Georges M (2007) Mapping, fine mapping, and molecular dissection of

quantitative trait Loci in domestic animals. Annu Rev Genomics Hum Genet

8: 131–162.

9. Amills M, Vidal O, Varona L, Tomas A, Gil M, et al. (2005) Polymorphism of

the pig 2,4-dienoyl CoA reductase 1 gene (DECR1) and its association with

carcass and meat quality traits. J Anim Sci 83: 493–498.

10. Kaminski S, Help H, Brym P, Rusc A, Wojcik E (2008) SNiPORK - a

microarray of SNPs in candidate genes potentially associated with pork yield and

quality - development and validation in commercial breeds. Anim Biotechnol 19:

43–69.

11. Brym P, Kaminski S, Wojcik E (2005) Nucleotide sequence polymorphism

within exon 4 of the bovine prolactin gene and its associations with milk

performance traits. J Appl Genet 46: 179–185.

12. Haegeman A, Williams JL, Law A, Van Zeveren A, Peelman LJ (2003) Mapping

and SNP analysis of bovine candidate genes for meat and carcass quality. Anim

Genet 34: 349–353.

13. Vallet JL, Freking BA, Leymaster KA, Christenson RK (2005) Allelic variation

in the erythropoietin receptor gene is associated with uterine capacity and litter

size in swine. Anim Genet 36: 97–103.

14. Vallet JL, Freking BA, Leymaster KA, Christenson RK (2005) Allelic variation

in the secreted folate binding protein gene is associated with uterine capacity in

swine. J Anim Sci 83: 1860–1867.

15. Horin P, Osickova J, Necesankova M, Matiasovic J, Musilova P, et al. (2008)

Single nucleotide polymorphisms of interleukin-1 beta related genes and their

associations with infection in the horse. Dev Biol (Basel) 132: 347–351.

16. Craig DW, Stephan DA (2005) Applications of whole-genome high-density SNP

genotyping. Expert Rev Mol Diagn 5: 159–170.

17. Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, et al. (2007) A high-

density whole-genome association study reveals that APOE is the major

susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry

68: 613–618.

18. Ng CC, Yew PY, Puah SM, Krishnan G, Yap LF, et al. (2009) A genome-wide

association study identifies ITGA9 conferring risk of nasopharyngeal carcinoma.

J Hum Genet 54: 392–397.

19. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, et al. (2007) A genome-

wide association study of type 2 diabetes in Finns detects multiple susceptibility

variants. Science 316: 1341–1345.

20. Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common

diseases and complex traits. Nat Rev Genet 6: 95–108.

21. Daetwyler HD, Schenkel FS, Sargolzaei M, Robinson JA (2008) A genome scan

to detect quantitative trait loci for economically important traits in Holstein

cattle using two methods and a dense single nucleotide polymorphism map.

J Dairy Sci 91: 3225–3236.

22. Kolbehdari D, Wang Z, Grant JR, Murdoch B, Prasad A, et al. (2009) A whole

genome scan to map QTL for milk production traits and somatic cell score in

Canadian Holstein bulls. J Anim Breed Genet 126: 216–227.

23. Schaeffer LR, Jamrozik J, Kistemaker GJ, Van Doormaal BJ (2000) Experience

with a test-day model. J Dairy Sci 83: 1135–1144.

24. Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, et al. (2009)

Development and characterization of a high density SNP genotyping assay for

cattle. PLoS One 4: e5350.

25. Kolbehdari D, Jansen GB, Schaeffer LR, Allen BO (2006) Transmission

disequilibrium test for quantitative trait loci detection in livestock populations.

J Anim Breed Genet 123: 191–197.

26. Sun FZ, Flanders WD, Yang QH, Zhao HY (2000) Transmission/disequilib-

rium tests for quantitative traits. Ann Hum Genet 64: 555–565.

27. Pearson TA, Manolio TA (2008) How to interpret a genome-wide association

study. Jama 299: 1335–1344.

28. Bennewitz J, Reinsch N, Paul S, Looft C, Kaupe B, et al. (2004) The DGAT1

K232A mutation is not solely responsible for the milk production quantitative

trait locus on the bovine chromosome 14. J Dairy Sci 87: 431–442.

29. Bagnato A, Schiavini F, Rossoni A, Maltecca C, Dolezal M, et al. (2008)

Quantitative trait loci affecting milk yield and protein percentage in a three-

country Brown Swiss population. J Dairy Sci 91: 767–783.

30. Harder B, Bennewitz J, Reinsch N, Thaller G, Thomsen H, et al. (2006)

Mapping of quantitative trait loci for lactation persistency traits in German

Holstein dairy cattle. J Anim Breed Genet 123: 89–96.

31. Lund MS, Guldbrandtsen B, Buitenhuis AJ, Thomsen B, Bendixen C (2008)

Detection of quantitative trait loci in Danish Holstein cattle affecting clinical

mastitis, somatic cell score, udder conformation traits, and assessment of

associated effects on milk yield. J Dairy Sci 91: 4028–4036.

32. Wiener P, Maclean I, Williams JL, Woolliams JA (2000) Testing for the presence

of previously identified QTL for milk production traits in new populations. Anim

Genet 31: 385–395.

33. Schulman NF, Sahana G, Lund MS, Viitala SM, Vilkki JH (2008) Quantitative

trait loci for fertility traits in Finnish Ayrshire cattle. Genet Sel Evol 40: 195–214.

34. Heyen DW, Weller JI, Ron M, Band M, Beever JE, et al. (1999) A genome scan

for QTL influencing milk production and health traits in dairy cattle. Physiol

Genomics 1: 165–175.

35. Awad A, Russ I, Emmerling R, Forster M, Medugorac I (2010) Confirmation

and refinement of a QTL on BTA5 affecting milk production traits in the

Fleckvieh dual purpose cattle breed. Anim Genet 41: 1–11.

Figure 2. Quantile-quantile (Q-Q) plots of genome-wide association results by MMRA for five milk production traits. Under the null
hypothesis of no association at any SNP locus, the points would be expected to follow the slope lines. Deviations from the slope lines correspond to
loci that deviate from the null hypotheses.
doi:10.1371/journal.pone.0013661.g002

GWAS in Chinese Holstein

PLoS ONE | www.plosone.org 11 October 2010 | Volume 5 | Issue 10 | e13661



36. Looft C, Reinsch N, Karall-Albrecht C, Paul S, Brink M, et al. (2001) A
mammary gland EST showing linkage disequilibrium to a milk production QTL
on bovine Chromosome 14. Mamm Genome 12: 646–650.

37. Gao H, Fang M, Liu J, Zhang Q (2009) Bayesian shrinkage mapping for
multiple QTL in half-sib families. Heredity 103: 368–376.

38. Lund MS, Sorensen P, Madsen P, Jaffrezic F (2008) Detection and modelling of
time-dependent QTL in animal populations. Genet Sel Evol 40: 177–194.

39. Ashwell MS, Heyen DW, Sonstegard TS, Van Tassell CP, Da Y, et al. (2004)
Detection of quantitative trait loci affecting milk production, health, and
reproductive traits in Holstein cattle. J Dairy Sci 87: 468–475.

40. Rodriguez-Zas SL, Southey BR, Heyen DW, Lewin HA (2002) Detection of
quantitative trait loci influencing dairy traits using a model for longitudinal data.
J Dairy Sci 85: 2681–2691.

41. Viitala SM, Schulman NF, de Koning DJ, Elo K, Kinos R, et al. (2003)
Quantitative trait loci affecting milk production traits in Finnish Ayrshire dairy
cattle. J Dairy Sci 86: 1828–1836.

42. Boichard D, Grohs C, Bourgeois F, Cerqueira F, Faugeras R, et al. (2003)
Detection of genes influencing economic traits in three French dairy cattle
breeds. Genet Sel Evol 35: 77–101.

43. Bennewitz J, Reinsch N, Grohs C, Leveziel H, Malafosse A, et al. (2003)
Combined analysis of data from two granddaughter designs: A simple strategy
for QTL confirmation and increasing experimental power in dairy cattle. Genet
Sel Evol 35: 319–338.

44. Ashwell MS, Van Tassell CP, Sonstegard TS (2001) A genome scan to identify
quantitative trait loci affecting economically important traits in a US Holstein
population. J Dairy Sci 84: 2535–2542.

45. Viitala S, Szyda J, Blott S, Schulman N, Lidauer M, et al. (2006) The role of the
bovine growth hormone receptor and prolactin receptor genes in milk, fat and
protein production in Finnish Ayrshire dairy cattle. Genetics 173: 2151–2164.

46. Benyamin B, Visscher PM, McRae AF (2009) Family-based genome-wide
association studies. Pharmacogenomics 10: 181–190.

47. Gauderman WJ, Witte JS, Thomas DC (1999) Family-based association studies.
J Natl Cancer Inst Monogr. pp 31–37.

48. Little J, Bradley L, Bray MS, Clyne M, Dorman J, et al. (2002) Reporting,
appraising, and integrating data on genotype prevalence and gene-disease
associations. Am J Epidemiol 156: 300–310.

49. Thomas DC, Haile RW, Duggan D (2005) Recent developments in genomewide
association scans: a workshop summary and review. Am J Hum Genet 77:
337–345.

50. Ewens WJ, Spielman RS (1995) The transmission/disequilibrium test: history,
subdivision, and admixture. Am J Hum Genet 57: 455–464.

51. Farnir F, Grisart B, Coppieters W, Riquet J, Berzi P, et al. (2002) Simultaneous
mining of linkage and linkage disequilibrium to fine map quantitative trait loci in
outbred half-sib pedigrees: revisiting the location of a quantitative trait locus with
major effect on milk production on bovine chromosome 14. Genetics 161:
275–287.

52. Coppieters W, Riquet J, Arranz JJ, Berzi P, Cambisano N, et al. (1998) A QTL
with major effect on milk yield and composition maps to bovine chromosome 14.
Mamm Genome 9: 540–544.

53. Kaupe B, Brandt H, Prinzenberg EM, Erhardt G (2007) Joint analysis of the

influence of CYP11B1 and DGAT1 genetic variation on milk production,

somatic cell score, conformation, reproduction, and productive lifespan in

German Holstein cattle. J Anim Sci 85: 11–21.

54. Ogorevc J, Kunej T, Razpet A, Dovc P (2009) Database of cattle candidate

genes and genetic markers for milk production and mastitis. Anim Genet.

55. Cohen-Zinder M, Seroussi E, Larkin DM, Loor JJ, Everts-van der Wind A, et al.

(2005) Identification of a missense mutation in the bovine ABCG2 gene with a

major effect on the QTL on chromosome 6 affecting milk yield and composition

in Holstein cattle. Genome Res 15: 936–944.

56. Kuss AW, Gogol J, Geidermann H (2003) Associations of a polymorphic AP-2

binding site in the 59-flanking region of the bovine beta-lactoglobulin gene with

milk proteins. J Dairy Sci 86: 2213–2218.

57. Zhao HH, Fernando RL, Dekkers JC (2007) Power and precision of alternate

methods for linkage disequilibrium mapping of quantitative trait loci. Genetics

175: 1975–1986.

58. Grapes L, Dekkers JC, Rothschild MF, Fernando RL (2004) Comparing linkage

disequilibrium-based methods for fine mapping quantitative trait loci. Genetics

166: 1561–1570.

59. Williams KJ (2009) Some things just have to be done in vivo: GPIHBP1, caloric

delivery, and the generation of remnant lipoproteins. Arterioscler Thromb Vasc

Biol 29: 792–795.

60. Lange C, Whittaker JC (2001) Mapping quantitative trait Loci using generalized

estimating equations. Genetics 159: 1325–1337.

61. Huang J, Jiang Y (2003) Genetic linkage analysis of a dichotomous trait

incorporating a tightly linked quantitative trait in affected sib pairs. Am J Hum

Genet 72: 949–960.

62. Allison DB, Thiel B, St Jean P, Elston RC, Infante MC, et al. (1998) Multiple

phenotype modeling in gene-mapping studies of quantitative traits: power

advantages. Am J Hum Genet 63: 1190–1201.

63. Liu J, Liu Y, Liu X, Deng HW (2007) Bayesian mapping of quantitative trait loci

for multiple complex traits with the use of variance components. Am J Hum

Genet 81: 304–320.

64. Liu YZ, Pei YF, Liu JF, Yang F, Guo Y, et al. (2009) Powerful bivariate genome-

wide association analyses suggest the SOX6 gene influencing both obesity and

osteoporosis phenotypes in males. PLoS One 4: e6827.

65. Liu J, Pei Y, Papasian CJ, Deng HW (2009) Bivariate association analyses for the

mixture of continuous and binary traits with the use of extended generalized

estimating equations. Genet Epidemiol 33: 217–227.

66. Thomsen H, Reinsch N, XU N, LOOFT C, GRUPE S, et al. (2001)

Comparison of estimated breeding values, daughter yield deviations and de-

regressed proofs within a whole genome scan for QTL. J Anim Breed Genet 118:

357–370.

67. Thomsen H (2006) The choice of phenotypes for use of marker assisted selection

in dairy cattle 8th World Congress on Genetics Applied to Livestock Production.

Belo Horizonte, MG, Brasil.

GWAS in Chinese Holstein

PLoS ONE | www.plosone.org 12 October 2010 | Volume 5 | Issue 10 | e13661


