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Elevated concentrations of albumin in the urine, albumin-

uria, are a hallmark of diabetic kidney disease and are

associated with an increased risk for end-stage renal

disease and cardiovascular events. To gain insight into

the pathophysiological mechanisms underlying albu-

minuria, we conducted meta-analyses of genome-wide

association studies and independent replication in up to

5,825 individuals of European ancestry with diabetes

and up to 46,061 without diabetes, followed by func-

tional studies. Known associations of variants in CUBN,

encoding cubilin, with the urinary albumin-to-creatinine

ratio (UACR) were confirmed in the overall sample

(P = 2.4 3 10210). Gene-by-diabetes interactions were

detected and confirmed for variants in HS6ST1 and near
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RAB38/CTSC. Single nucleotide polymorphisms at these

loci demonstrated a genetic effect on UACR in indi-

viduals with but not without diabetes. The change in

the average UACR per minor allele was 21% for HS6ST1

(P = 6.33 10–7) and 13% for RAB38/CTSC (P = 5.83 1027).

Experiments using streptozotocin-induced diabetic

Rab38 knockout and control rats showed higher

urinary albumin concentrations and reduced amounts

of megalin and cubilin at the proximal tubule cell surface

inRab38 knockout versus control rats. Relative expression

of RAB38 was higher in tubuli of patients with diabetic

kidney disease compared with control subjects. The loci

identified here confirm known pathways and highlight

novel pathways influencing albuminuria.
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Urinary albumin and serum creatinine are two biomarkers
recommended for the routine assessment of chronic

kidney disease (CKD) (1). Even at physiological rates of

glomerular filtration, small elevations in urinary albumin

concentrations are associated with an increased risk for

CKD progression, end-stage renal disease (ESRD), cardio-

vascular events, and cardiovascular and all-cause mortal-

ity (2–4). Patients with diabetes are at a particularly high

risk for CKD and its sequelae: the prevalence of CKD
among individuals with diabetes is .40% compared with

;10% in the general U.S. adult population (5), and the

presence of CKD is an important contributor to the excess

mortality in diabetes (6). The appearance of significant

amounts of albumin in the urine (albuminuria) is a hall-

mark of diabetic kidney disease (DKD), the incidence of

which continues to rise along with type 2 diabetes world-

wide (7). Residual diabetes-related microvascular risk rep-
resents an important challenge even in treated individuals

(8), and DKD remains the leading cause of ESRD. No new

effective treatments for DKD have been approved in more

than two decades (9), highlighting the importance to better

understand its underlying mechanisms.

Using genome-wide association study (GWAS) meta-

analysis in general population cohorts, we previously

identified a missense single nucleotide polymorphism

(SNP) in the gene encoding cubilin (CUBN) in association
with the urinary albumin-to-creatinine ratio (UACR) (10).

CUBN is currently the only genome-wide significant locus

for UACR. However, this variant explains only a small

fraction of the previously reported heritability of albu-

minuria, ranging from 0.2 to 0.46 in the general popula-

tion and in those with diabetes (11–13), suggesting that

additional genetic variants remain to be found. Here we

report the results of a GWAS meta-analysis of albumin-
uria traits in the general population performed in almost

twice the sample size of our previous study (10), with a

special focus on those with diabetes, replication in addi-

tional independent individuals, and follow-up investiga-

tions in human tissues and a genetically modified animal

model of diabetes.

RESEARCH DESIGN AND METHODS

Study Populations

Our study was based on 30 discovery and replication

studies mostly from the general population, with the

exception of Action in Diabetes and Vascular Disease:

Preterax and Diamicron MR Controlled Evaluation

(ADVANCE) and Genetics of Diabetic Nephropathy

(GENDIAN), which enrolled exclusively individuals with

type 2 diabetes, totaling 67,452 participants of European
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ancestry across the different analyses (up to 7,787 with
diabetes in discovery and replication). The study charac-

teristics, including the distribution of albuminuria and

diabetes, are reported in Supplementary Table 1. Study

protocols were approved by each local institutional review

board or ethics committee, and all human participants

gave written informed consent.

Phenotype Definitions and Analytical Strategy

The measurement of urinary albumin and creatinine in

each study is reported in Supplementary Table 2. Urinary

albumin values below the detection limit of the used as-

says were set to the lower limit of detection. Rather than

using urinary albumin, the UACR was calculated as uri-

nary albumin/urinary creatinine (mg/g) to account for

differences in urine concentration. Microalbuminuria

(MA) was defined as UACR .25 mg/g in women and

.17 mg/g in men (10). Diabetes was defined as fasting

glucose $126 mg/dL, nonfasting glucose $200 mg/dL, or

treatment for diabetes, or by self-report if this informa-

tion was not available. Across studies, we evaluated two

traits, UACR and MA, and performed four GWAS meta-

analyses: MA and UACR in the overall sample, as well as

UACR—a continuous trait with higher statistical power—

separately among those with and without diabetes.

Diabetes-stratified genome-wide association analyses of

MA were not performed due to limited sample size. De-

tailed information on the design, genotyping, imputation,

and data management of each study is provided in Sup-

plementary Tables 2 and 3.

Discovery Meta-Analysis, Replication, and Power

Stringent quality control of the genetic data was per-

formed at the individual study level and again at the

meta-analysis level using state-of-the-art methods. Miss-

ing genotypes were imputed using the HapMap reference

panels in 19 studies and the 1000 Genomes reference

panels in two studies. Details of genotyping, imputation

software, reference panels, and quality filters in each

study are reported in Supplementary Table 3.

All GWAS were performed following a standardized

analysis protocol. In each study, the natural logarithm of

UACR was taken. Subsequently, sex-specific residuals were

obtained from linear regression models of ln (UACR) on

age and study-specific covariates, including study center

and genetic principal components, to adjust for possible

population stratification, if applicable. The continuous

sex-specific residuals were then combined and used as the

dependent variable that was regressed on imputed allelic

dosages for each SNP in the GWAS.

Before the meta-analyses, all study-specific GWAS

summary files underwent quality control using the

GWAtoolbox (14). Genomic-control (GC) (15) correction

was applied when the GC factor was .1. Inverse variance

weighted fixed-effects meta-analyses were conducted us-

ing METAL (16). The I2 statistic was used to evaluate

between-study heterogeneity (17). All meta-analyses

were performed in duplicate by two independent
researchers.

After meta-analysis, SNPs with average minor allele

frequency (MAF) ,0.01 were excluded, and another GC

correction was applied. There were 2,191,945 SNPs with

average MAF .0.05 and present in .50% of the studies,

which were then clustered based on correlation (linkage

disequilibrium pruning using r2# 0.2) with the respective

index SNP (the SNP with the lowest P value) within win-
dows of 6 1 MB to identify independent SNPs with sug-

gestive association (P , 1025) in one or more of the four

analyses.

Replication testing was then performed for signals that

were genome-wide significant (P , 5 3 1028) in any anal-

ysis or that showed suggestive association among those

with diabetes, motivated by the clinical importance of

DKD and the stronger association of the known and vali-
dated CUBN variant on UACR among those with diabetes

(18). Replication was defined as a one-sided P value ,0.05

in the meta-analysis of independent replication studies.

Five of the nine studies that contributed to replication

used imputed dosage, and four studies performed replica-

tion genotyping of the index SNPs. A meta-analysis of

the replication results was performed. The double GC-

corrected results from the discovery meta-analysis and the
results of the nine replication studies were meta-analyzed

to obtain the overall statistical significance. Unless stated

otherwise, all reported P values are two-sided.

Assuming that associated SNPs explain a respective

0.6% and 0.5% of the UACR variance in diabetes (Table 1),

there was 95% and 91% power, respectively, to repli-

cate the seven suggestive loci from the discovery stage

in an additional 1,800 samples with a one-sided P value
of ,0.05.

Additional Analyses to Characterize Novel Loci

Replicated SNPs were further evaluated even in the

absence of genome-wide significance because, in addition

to the significant replication P value, the low heterogene-

ity across cohorts and the biological plausibility of the

RAB38 locus further increased confidence in the findings.
The SNPs were evaluated in the Diabetes Control and

Complications Trial (DCCT)/Epidemiology of Diabetes In-

terventions and Complications (EDIC) study for associa-

tion with a primary clinical end point defined as time

from the DCCT baseline until time to persistent MA or

a secondary end point of time to incident albumin excre-

tion rate .300 mg/24 h or ESRD (10). Time to outcome

development or censoring was determined as the number
of visit years from the DCCT baseline up to and including

the 12th year of EDIC follow-up. Subjects with persistent

MA at DCCT baseline and DCCT year 1 were excluded

from analyses of that outcome.

Epigenomic map analyses were performed, as described

previously (19), by using data from human kidney and

kidney proximal tubule epithelial cells that can be accessed

at Gene Expression Omnibus (GSE49637).
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Genetic associations with additional renal function

traits, estimated glomerular filtration rate (eGFR), and

CKD, were evaluated based on results from GWAS meta-

analysis of the corresponding traits within the CKDGen

Consortium (C.P., personal communication).

Gene Expression Analyses in Human Tissues

Quantification of transcript abundance in microdissected
fractions of human glomeruli and tubuli from surgical

nephrectomies, living allograft donors, and portions of

diagnostic kidney biopsies (20) was performed using RNA

sequencing. Tissue from different renal compartments

was separated using microdissection, homogenized, and

stored at 280°C. Total RNA of human proximal tubule

fractions (n = 256) and glomerular cells (n = 48) was

isolated using the RNeasy Mini Kit (Qiagen) according
to the manufacturer’s instructions. RNA quality was

assessed with the Agilent Bioanalyzer 2100, and RNA

preparations exhibiting RNA integrity number scores

.7 were used for cDNA synthesis (library preparation

at DNA Sequencing Core at UT Southwestern Medical

Center). In short, 1 mg total RNA was used to isolate

poly A purified mRNA using the Illumina TruSeq RNA

Preparation Kit. Single-end 100 bp sequencing was per-
formed, and the annotated RNA counts (fastq) were cal-

culated by CASAVA 1.8.2 (Illumina). Reads were mapped

to the reference genome (National Center for Biotechnol-

ogy Information build 37, hg19) using Spliced Transcripts

Alignment to a Reference (STAR). Reads per kilobase of

transcript per million mapped for HS6ST1 and RAB38

were compared between glomerular and tubular fractions

using a two-sided t test.
Comparison of candidate gene expression between case

subjects with DKD proven by biopsy specimen and

healthy control subjects was based on publicly available

microarray data from human microdissected glomeruli

and tubuli (Gene Expression Omnibus, GSE 30122) (20).

Raw data were analyzed using the R package “Affy” ver-

sion 1.44.0, and expression levels were normalized using

robust multiarray average. Transcript abundance between

patients and control subjects was compared using two-

sided t tests; statistical significance was defined as P ,

8.3 3 1023 (a = 0.05 corrected for six comparisons).

Studies of Rab38 in Rats

To better understand the association of RAB38 with albu-

minuria in diabetes, we studied genetically modified rat

models of diabetes. Eight Rab38 knockout (KO) rats on a
fawn-hooded hypertensive (FHH) background, seven rats

transgenic for the wild-type Brown Norway rat Rab38

allele, and seven congenic rats were generated and raised

as described previously (21–23). Rab38 KO rats did not

express the protein (22). These references also describe

the recording of blood pressure and the measurement of

glucose and albuminuria. Diabetes was induced by admin-

istering streptozotocin (STZ) (STZ; 50 mg/kg i.p.; Sigma-
Aldrich, St. Louis, MO) to 9-week-old male rats.

Paraffin blocks of rat kidney samples were sectioned

(6-mm thickness) with a Leica RM2255 rotary microtome

(Thermo-Fisher Scientific, Waltham, MA) on Superfrost

Plus glass slides (12-550-15, Thermo-Fisher Scientific).

Before staining, slides were deparaffinized in changes of

CitriSolv (22-143-975, Thermo-Fisher Scientific) and 70%

isopropanol. Antigen retrieval was accomplished by incu-
bating in sodium citrate buffer (1.8% 0.1 mol/L citric acid,

8.2% 0.1 mol/L sodium citrate, in distillated water, pH

6.0) in a rice cooker for 30 min. Slides were blocked with

PBS blocking buffer (1% BSA, 0.2% nonfat dry milk in

PBS) for 30 min and stained with primary antibodies

specific for megalin or cubilin diluted in blocking buffer

overnight at 4°C. Sheep anti-megalin and rabbit anti-cubilin

were provided by Dr. P. Verroust, INSERM, Paris, France.
After two washes in 0.1% Tween 20 (v/v in PBS), slides

were incubated with corresponding fluorophore-conjugated

secondary antibodies (Invitrogen), diluted in blocking buffer

at room temperature for 1 h, and counterstained with

10 mmol/L Hoechst 33342 (Molecular Probes-Invitrogen,

H1399). Slides were subsequently mounted in Prolong Gold

Antifade reagent (Invitrogen), and images were acquired with

a Leica SP5 confocal laser scanning microscope (Center for

Table 1—Replicated SNP associations with UACR in individuals with diabetes

Sample size (n) Effect on log(UACR) mg/g SE P value I
2 %

rs649529, RAB38

Discovery 5,825 20.15 0.03 9.3 3 1026 0

Replication 1,962 20.12 0.05 0.02 0

Combined 7,787 20.14 0.03 5.8 3 1027 0

rs13427836, HS6ST1

Discovery 5,509 0.20 0.04 6.1 3 1026 10

Replication 1,890 0.16 0.07 0.03 58

Combined 7,399 0.19 0.04 6.3 3 1027 30

For both variants, the effect of each additional copy of the minor allele (T) on UACR was modeled in an additive fashion. I2 is provided

as a measure of heterogeneity across studies. Imputation quality ranged from 0.41 to 1.0 for rs649529 and from 0.44 to 1.0 for

rs13427836. The variants were directly genotyped in four of the replication studies, with a call rate ranging from 0.98 to 1.0 for rs649529

and from 0.99 to 1.0 for rs13427836. The estimated proportion of explained variance in UACR among those with diabetes is 0.6% for

rs649529 and 0.5% for rs13427836, using the formula 2 3 MAF 3 (1-MAF) 3 effect2/var(log[UACR]), based on the combined effect

estimates from Table 1 and the phenotypic variance in the large population-based ARIC Study.
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Microscopy and Image Analysis, University of Zurich) equip-
ped with a Leica APO 363 NA 1.4 oil immersion objective.

All experiments were performed in compliance with

National Institutes of Health Guide for Care and Use of

Laboratory Animals, and all used protocols were approved

by the local institutional animal care and use committee.

RESULTS

Discovery of Genomic Loci Associated With

Albuminuria Traits

The discovery GWAS meta-analyses for the four traits

included up to 20 studies and up to 54,450 individuals per

trait. The median UACR in the 20 individual studies that

contributed to the UACR meta-analysis ranged from 2.5

to 15.6 mg/g. Across all studies, the mean proportion of
women was 53%, and the median of average age was 57

years. The prevalence of diabetes in the population-based

studies ranged from 1 to 14% (Supplementary Table 1).

There was no evidence of systematic biases influencing

the genome-wide association results, as indicated by low

genomic control parameters (Supplementary Fig. 1). Only

SNPs in the previously identified CUBN locus showed genome-

wide significant association with both UACR (P = 2.43 10210,
Supplementary Table 4 and Supplementary Fig. 2) and

MA (P = 1.3 3 10210, Supplementary Table 5 and Supple-

mentary Fig. 2). The effect of the minor C allele of the index

SNP rs10795433 on logarithmic UACR values was fourfold

larger among 5,825 individuals with diabetes (0.19 log[mg/g],

P = 2.0 3 1025) compared with 46,061 individuals without

diabetes (0.045 log[mg/g], P = 8.7 3 1026; P = 8.2 3 1024

for difference). This corresponds, for each additional C allele,
to a 5% higher geometric mean of UACR (exp[0.045]) in

individuals without diabetes compared with 21% higher

average UACR in those with diabetes (exp[0.19]).

Suggestive associations were identified for all four

analyses (Supplementary Tables 4–7 and regional associ-

ation plots in Supplementary Fig. 3). Among the clinically

important group of individuals with diabetes, seven geno-

mic loci contained one or more SNPs showing a suggestive
association with UACR. These were exclusively identified in

the meta-analysis of individuals with diabetes and mapped

into or near HS6ST1, CNTN4, KBTBD8, TFAP2B/PKHD1,

CHN2, WDR11/FGFR2, and RAB38/CTSC (Supplementary

Table 7). Following our analytical strategy, we selected the

index SNP in each of these seven regions for follow-up

among up to 1,962 independent individuals with diabetes.

The Supplementary PDF document contains the QQ
and Manhattan plots of all GWAS meta-analyses, the re-

gional association plots, tables with cohort descriptions,

and association results of SNPs at P , 1025. Results from

discovery GWAS meta-analysis are publicly available at

http://fox.nhlbi.nih.gov/CKDGen/.

Replication Analyses Implicate RAB38/CTSC and

HS6ST1 as Novel Loci for UACR in Diabetes

The replication analyses included nine studies and up to

1,962 individuals with diabetes. The median UACR across

replication studies ranged from 3.8 to 14.5 mg/g. The
mean proportion of women was 49%, and the median of

average age was 55 years. For the seven SNPs tested

for replication (Supplementary Table 8), we assessed

whether the one-sided P value was ,0.05 in the com-

bined replication studies (see RESEARCH DESIGN AND METHODS).

This was the case for two SNPs: intergenic rs649529

upstream of RAB38/downstream of CTSC on chromo-

some 11q14 (Fig. 1A) and the intronic variant rs13427836
in HS6ST1 on chromosome 2q21 (Fig. 1B). As illustrated

in Fig. 1C, each additional copy of the minor T allele of

rs649529 at RAB38/CTSC was consistently associated

with lower UACR among the 5,825 individuals in the

discovery and 1,962 in the replication cohorts (combined

P = 5.8 3 1027) (Table 1), with no evidence of heteroge-

neity across cohorts (I2 = 0%). This effect corresponded

to 13% lower geometric mean of UACR per copy of the
T allele. Similarly, rs13427836 in HS6ST1 showed consis-

tent effects across cohorts (combined P = 6.3 3 1027)

(Table 1), with each copy of the T allele associated with

an ;21% higher mean UACR but moderate heterogeneity

(I2 = 29.9%) (Fig. 1D).

The association of rs649529 near RAB38/CTSC and

rs13427836 in HS6ST1 was not found in individuals

without diabetes (P = 0.64 and P = 0.38, respectively)

(Table 2). Differences in the association with UACR

among those with and without diabetes were significant

(t test for difference: P = 6.9 3 1026 for rs649529 and

P = 1.7 3 1025 for rs13427836). Effects for the index

variant in CUBN are provided for comparison. We also

evaluated the association of the replicated SNPs with

MA in the setting of diabetes. Information was obtained

from a subset of studies with sufficiently high numbers

of individuals with diabetes and MA (n = 2,552; Athero-

sclerosis Risk in Communities Study [ARIC], Cardiovas-

cular Health Study [CHS], Cohorte Lausannoise [CoLaus],

European Prospective Investigation into Cancer and Nu-

trition [EPIC], Framingham Heart Study [FHS], Koopera-

tive Gesundheitsforschung in der Region Augsburg [KORA]

F3, KORAF4, and Study of Health in Pomerania [SHIP]).

Across cohorts, the odds ratio for MA for each copy

of the minor allele was 0.84 for rs649529 near RAB38

(P = 0.019) and 1.39 for rs13427836 in HS6ST1 (P = 7.8

3 1024), consistent with the direction of the SNP effects

on UACR.

Characterization of Genetic Effects by Markers of

Kidney Function and Diabetes

We next investigated whether the gene-by-environment
interaction was also observed for the eGFR, another

measure of kidney function, and/or diabetes or glycemic

traits. No statistically significant associations were found

between rs649529, rs13427836, rs10795433, and eGFR

in those with or without diabetes (Table 2) and no asso-

ciations were found with CKD. There were also no statis-

tically significant associations of these variants with type 2

diabetes, fasting blood glucose, or plasma hemoglobin
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A1c concentrations (Table 2), indicating that the observed

associations pertain to albuminuria in the setting of di-

abetes rather than to diabetes or impaired glucose metab-

olism per se. A comprehensive search in the National

Human Genome Research Institute GWAS Catalog (24)

did not reveal any significant associations between the

two validated SNPs or their proxies with other diseases

or traits.

Variant Evaluation

Using publicly available data of genetic effects on gene

expression (25), we found an association in cis between

rs649529 and transcript levels of RAB38 (P = 5.4 3 1026)

and the neighboring CTSC (P = 7.6 3 1027), consistent

with a regulatory effect of this variant in whole blood.

Corresponding data for kidney-specific tissues are cur-

rently not available, but we used epigenetic maps generated

Figure 1—Overview of associated genomic loci at RAB38/CTSC and HS6ST1 and consistent association with albuminuria in diabetes across

the contributing studies. A: Regional association plot of the RAB38/CTSC locus on chromosome 11. B: The T allele at rs649529 is associated

with lower UACR across discovery and replication studies. C: Regional association plot of the HS6ST1 locus on chromosome 10. D: The

T allele of intronic rs13427836 is associated with higher UACR across discovery and replication studies. The solid squares indicate the mean

difference and are proportional to the weights used in the meta-analysis. The solid vertical line indicates no effect. The diamond indicates the

weighted mean difference, and the lateral tips of the diamond indicate the associated CIs. The horizontal lines represent the 95% CI.
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from human adult kidney tissue (19) (see RESEARCHDESIGN AND

METHODS) to further examine the regulatory potential of in-

dex SNPs. The intronic index SNP in HS6ST1 and several

proxies mapped into enhancer regions. Similarly, the CUBN

index variant rs10795433 mapped into an intronic enhancer

region. The region in which the index variant at RAB38/

CTSC is located was annotated as not mapped/repressed

in these cells, thus preventing further examination. All prox-

ies in strong linkage disequilibrium with these three index

SNPs (r2 . 0.6, 1000G v5 reference panel) (26) were

intronic (CUBN and HS6ST1) or intergenic (RAB38/CTSC).

Clinical Characterization Including Gene Expression of

Replicated Loci

To evaluate target tissues within the kidney, we charac-

terized the identified loci using data for tissue-specific

gene expression. Clinical characterization was conducted

using data from patients with DKD and healthy control

subjects (27) and a prospective study of individuals with

type 1 diabetes (28).

We used publicly available data (27) to compare rela-

tive expression of RAB38, CTSC, and HS6ST1 between

patients with DKD confirmed by biopsy specimen and

healthy control subjects (see RESEARCH DESIGN AND METHODS).
After multiple testing correction, only RAB38 expression

levels were significantly different, with higher expres-

sion in tubuli of DKD patients compared with control

subjects (P = 1.3 3 1024) (Fig. 2A). We also used RNA

sequencing data from microdissected human kidney

samples to quantify RAB38 and HS6ST1 expression in

human glomeruli and tubuli. HS6ST1 showed higher ex-

pression levels than RAB38, and both genes showed

Table 2—Replicated SNP associations with additional kidney function and diabetes-related traits

Trait n Effect (OR) SE P value P difference*

rs649529, RAB38/CTSC

UACR, diabetes; log(mg/g) 7,787 20.14 0.03 5.8 3 1027

6.9 3 1026

UACR, no diabetes; log(mg/g) 45,094 20.004 0.008 0.64

eGFRcrea, diabetes; log(mL/min/1.73 m2) 11,527 0.003 0.004 0.46
2.8 3 1021

eGFRcrea, no diabetes; log(mL/min/1.73 m2) 118,427 20.001 0.001 0.59

CKD (eGFR ,60 mL/min/1.73 m2) 118,114 (1.01) 0.02 0.57

Type 2 diabetes 63,390 (1.02) 0.02 0.32

Fasting glucose (mmol/L) 46,186 0.003 0.006 0.65

HbA1c (%) 46,368 0.004 0.004 0.31

rs13427836, HS6ST1

UACR, diabetes; log(mg/g) 7,399 0.19 0.04 6.3 3 1027

1.7 3 1025

UACR, no diabetes; log(mg/g) 34,830 0.010 0.012 0.38

eGFRcrea, diabetes; log(mL/min/1.73 m2) 11,092 0.008 0.006 0.13
1.3 3 1021

eGFRcrea, no diabetes; log(mL/min/1.73 m2) 114,247 0.000 0.001 0.94

CKD (eGFR ,60 mL/min/1.73m2) 113,612 (0.97) 0.02 0.23

Type 2 diabetes 63,390 (1.00) 0.03 0.94

Fasting glucose (mmol/L) 46,186 20.005 0.004 0.22

HbA1c (%) 46,368 0.003 0.005 0.61

rs10795433, CUBN†

UACR, diabetes; log(mg/g) 5,825 0.19 0.04 2.0 3 1025

8.2 3 1024

UACR, no diabetes; log(mg/g) 46,061 0.045 0.01 8.7 3 1026

eGFRcrea, diabetes; log(mL/min/1.73 m2) 11,522 0.007 0.005 0.18
1.9 3 1021

eGFRcrea, no diabetes; log(mL/min/1.73 m2) 118,299 0.0007 0.001 0.61

CKD (eGFR ,60 mL/min/1.73 m2) 118,121 (1.04) 0.02 0.08

Type 2 diabetes 63,390 (1.00) 0.03 0.88

Fasting glucose (mmol/L) 46,186 20.003 0.005 0.52

HbA1c (%) 46,368 20.002 0.005 0.73

DM, diabetes mellitus; eGFRcrea, GFR estimated by serum creatinine levels; OR, odds ratio. Effects represent the change in trait

associated with each additional copy of the minor allele for each of the SNPs. For continuous traits, units are provided; the effect for

binary outcomes, shown in parentheses, represents the OR. Except for UACR in diabetes, estimates refer to the discovery samples of

the respective trait and to the published resources for the glycemic traits. Fasting glucose and HbA1c were evaluated among individuals

free of diabetes. For the kidney traits, P values and SEs are corrected using genomic control. *P value for difference from a two-sample

t test: t = (effectDM 2 effectnonDM)/(SEDM
2 + SEnonDM

2)0.5 which, for large sample sizes is distributed as a normal (0,1). The correlation

between effectDM and effectnonDM is assumed to be 0. Associations with type 2 diabetes were tested using the publicly available

summary statistics dataset from the DIAGRAM (DIAbetes Genetics Replication And Meta-analysis) Consortium (12,171 case subjects

and 56,862 control subjects) (40). Associations with fasting glucose and plasma hemoglobin A1c concentrations were evaluated using

the publicly available results from the MAGIC Consortium (www.magicinvestigators.org) (41,42). †UACR effect estimates for UACR in

diabetes for CUBN are provided from the discovery stage.
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higher expression in tubuli than in glomeruli (Fig. 2B).

The difference between tubular and glomerular expres-

sion was more pronounced for RAB38 (P = 1.1 3 1028)

than for HS6ST1 (P = 0.015).

To investigate whether the effect of the replicated
SNPs extended to kidney disease progression in the

setting of type 1 diabetes, the SNPs were tested for asso-

ciation with incident MA (268 case subjects, primary

end point) and a combined end point of time to ma-

croalbuminuria or ESRD (133 case subjects, second-

ary end point) among up to 1,304 participants with

type 1 diabetes in the DCCT/EDIC study (28). Neither

SNP showed a significant association (Supplementary
Table 9).

Diabetic Rab38 KO Rats Show Increased Urinary

Albumin Excretion

We aimed to further substantiate our findings by obtain-

ing experimental support. We focused on the examination

of RAB38 because it was the gene implicated by higher

gene expression in tubuli of DKD patients compared with

control subjects and because previous studies of Rab38

KO and transgenic rats have confirmed its role in albu-

minuria in FHH rats and highlighted a role in tubular

albumin reuptake (21,22). We thus examined these animals

in the setting of diabetes as outlined in Fig. 3A. Injection

of STZ in 9-week-old rats successfully induced diabetes in

all strains (Fig. 3B). Blood glucose rose from normal values

before injection of STZ (congenic, 2056 3 mg/dL; transgenic,

Figure 2—RAB38 and HS6ST1 expression across kidney tissues. A: Comparison of RAB38 and HS6ST1 expression (microarray) in tubuli

and glomeruli of patients with DKD and control subjects shows significantly higher RAB38 expression in tubuli of DKD patients than in

tubuli of control subjects (significance threshold 0.05/6 = 8.3 3 1023 for investigating RAB38, CTSC, and HS6ST1 in tubuli and glomeruli).

CTSC expression was not significantly different between DKD case subjects and control subjects in tubuli (P = 0.11) or glomeruli (P = 0.03).

Expression levels are shown as robust multiarray average–processed gene intensity values. B: RAB38 and HS6ST1 transcript abundance

quantified from RNA sequencing (RNAseq) is detected at high levels in human tubuli but also in glomerular cells. Transcripts were quantified

by reads per kilobase of transcript per million mapped (RPKM). The error bars in A and B correspond to the SEM.
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227 6 11 mg/dL; KO, 198 6 7 mg/dL) to high values that

indicate severe hyperglycemia 1 week after STZ (congenic,

422 6 35 mg/dL; transgenic, 406 6 27 mg/dL; KO, 420 6

21 mg/dL). Blood glucose levels remained high at age 11, 12,
and 13 weeks and showed no significant differences among

strains (Fig. 3B). There were no significant differences in

mean arterial blood pressure among congenic, transgenic,

and KO animals freely moving around the cage. All animal

strains showed a tendency toward decreased blood pressure

3–4 weeks after injection of STZ (Fig. 3C).

As illustrated in Fig. 3D, Rab38 KO animals showed a

progressive increase in urinary albumin excretion that

became statistically significant 2 weeks after injection of

STZ. At 4 weeks after injection, Rab38 KO animals had an

albumin excretion of 79 6 14 mg/day, whereas albumin

excretion was only 286 8 mg/day in transgenic (P, 0.01)
and 41 6 13 mg/day in congenic animals (P , 0.01).

These data indicate that diabetic rats without Rab38 are

more susceptible to the development of albuminuria

than congenic and transgenic animals with functional

Rab38 despite a similar degree of hyperglycemia in all

animals. Kidney sections obtained from a subset of an-

imals showed a higher average glomerulosclerosis score

(2.9 6 0.3) compared with congenic (2.2 6 0.1) and

Figure 3—Comparison of Rab38 congenic, transgenic, and KO rats after induction of diabetes. A: Experimental setup and timeline. BP,

blood pressure measurement via radio telemetry; MC, metabolic cage. B: Comparison of blood glucose concentrations. C: Comparison of

mean arterial pressure. D: Comparison of urinary albumin concentrations. *P < 0.05, **P < 0.01 KO vs. transgenic, ##P < 0.01 KO vs.

congenic. E: Expression of endocytic markers. Immunofluorescence staining for megalin (green, top panel) and cubilin (red, bottom panel)

in kidneys from all three rat strains. Nuclei counterstained with DAPI (blue). Scale bar, 50 mm. Data are presented as mean 6 SEM. The

results for blood pressure measurement, urinary albumin excretion, and blood glucose were analyzed by two-way ANOVA, followed by the

Tukey post hoc test.
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transgenic (2.2 6 0.1) rats (P , 0.05) (Supplementary
Fig. 4), but differences were subtler than those observed

for urinary albumin excretion.

To further clarify how loss of Rab38 may lead to albu-

minuria, we performed immunohistochemistry staining of

megalin and cubilin, known to mediate albumin reuptake

in the proximal tubulus, in kidney sections of all three

animal strains. Cubilin and megalin were markedly re-

duced at the luminal membrane of proximal tubular cells
in Rab38 KO rats compared with congenic and transgenic

control animals (Fig. 3E), consistent with a role of Rab38

in regulating the abundance of cubilin and megalin at the

cell surface. In contrast, there was no significant differ-

ence in the number of structures positive for the lyso-

somal marker LAMP1 among the three strains.

DISCUSSION

In this GWAS discovery meta-analysis of 2,191,945 SNPs

in up to 54,450 participants of 20 studies, we replicated

the association of the previously identified CUBN locus

and UACR as well as MA at genome-wide significance and

identified several suggestive signals among individuals with

diabetes. Two of these loci, RAB38/CTSC and HS6ST1,

showed evidence of independent replication, and RAB38

was further supported by functional studies in a rat model.
Our findings point to mechanisms in renal handling of

albumin that associate with albuminuria in humans in

the setting of diabetes. They thus represent examples of

gene-by-diabetes interactions resulting in a complex trait

that manifests when environmental exposure and genetic

susceptibility variants occur together (29).

Not all individuals with diabetes develop DKD, sug-

gesting that neither the presence of hyperglycemia nor
genetic variants alone are sufficient to elicit the renal

damage that typically manifests itself as albuminuria in

diabetes. Our observations therefore raise the question of

how the diabetic environment may result in the manifes-

tation of genetic effects on albuminuria. The lack of

association between both genetic variants and type 2

diabetes or specific glycemic measures in humans indi-

cates that their effects occur without influencing diabetes
per se. This notion is further substantiated by the fact

that diabetic Rab38 KO rats showed higher urinary albu-

min concentrations compared with controls despite the

presence of similar blood glucose concentrations.

A difference between our observations in humans and

rats is that the effect of genetic variation near RAB38 on

albuminuria was only found in humans with but not with-

out diabetes, whereas Rab38 KO rats without diabetes
also progress to albuminuria (22). A potential explanation

is that KO rats represent a null mutation, allowing for the

genetic component to take full effect without needing

further aggravation by environmental factors. Conversely,

many human susceptibility variants of complex traits do

not result in a complete loss of function but instead are of

a regulatory nature. The effect of such variants may be-

come apparent only upon an environmental challenge,

such that genetically determined alterations in renal albu-
min handling could manifest themselves in the setting of

hyperglycemia and/or diabetes due to a number of mech-

anisms that secondarily affect albumin reabsorption, in-

cluding an increased load of filtered albumin due to

hyperfiltration or impairment of the glomerular filter.

Along these lines, our observation of significantly higher

RAB38 transcript abundance in tubuli of DKD patients

than control subjects may indicate an adaption of the
tubular machinery for albumin reabsorption in this set-

ting. Moreover, genetics effects of the index SNP at the

CUBN locus on albuminuria were four times as large in

individuals with diabetes compared with those without

diabetes, supporting alterations of tubular albumin han-

dling in the setting of diabetes.

RAB38 encodes a member of the small Rab GTPase

protein family that regulates intracellular vesicle traffick-
ing between organelles and is important in exo-, endo-,

and transcytosis (30). Expression of Rab38 at the

mRNA and protein level was observed in proximal tubule

cells of wild-type rats (31). FHH rats, a natural Rab38-null

mutation, show increased urinary albumin excretion with-

out changes in glomerular permeability (21). In these an-

imals, the expression of a Brown Norway Rab38 transgene

led to phenotypic rescue, and knockdown of Rab38 in a
proximal tubule cell system significantly decreased albu-

min endocytosis (22). Together, these observations sup-

port an important role for the small Rab GTPase RAB38

in the reabsorption of filtered albumin.

Impaired RAB38 function may lead to increased albu-

min excretion via different mechanisms: altered intracellular

vesicle transport may affect albumin reabsorption or

recycling of reabsorbed albumin back to the plasma
membrane (32). Alternatively, altered RAB38 function may

affect the delivery of proteins required, such as cubilin or

megalin, for albumin endocytosis, the mechanism underly-

ing albuminuria in Dent disease (33). Our experimental data

showing reduced abundance of cubilin and megalin in Rab38

KO but not in control rats are consistent with the latter

hypothesis. Finally, that impaired RAB38 function may di-

rectly cause glomerular damage, in turn leading to increased
concentrations of urinary albumin, is also conceivable.

Although the combined evidence from Rab38 KO rats

along with the gene expression and GWAS data strongly

implicate RAB38 as the gene underlying albuminuria in

humans, the intergenic index SNP mapped upstream of

RAB38 and downstream of CTSC and was associated with

transcript levels of both genes in whole blood. We can

therefore not exclude the possibility that CTSC may be
the causal gene underlying the observed associations or

that it contributes to the phenotype in addition to RAB38.

CTSC encodes for a lysosomal cysteine protease. Rare

mutations in the gene cause autosomal-recessive Papillon-

Lefèvre syndrome. No renal abnormalities have been

reported in affected patients (34), Ctsc KO mice do not

show kidney abnormalities (35), and the gene has not been

linked to albuminuria or kidney disease.
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The other genomic locus associated with albuminuria
in diabetes contains HS6ST1, encoding the enzyme hep-

aran sulfate (HS) 6-O-sulfotransferase that catalyzes the

6-O-sulfation of HS and heparin (36,37). HS are anionic

side chains of HS proteoglycans, which are components of

basement membranes, extracellular matrix, and cell sur-

faces. Several studies have reported that inactivation or

removal of HS leads to proteinuria, and biopsy specimens

from patients with diabetes revealed changes in HS sulfa-
tion patterns compared with control subjects (38). Thus, a

genetic variant altering the activity or abundance of the

enzyme may lead to altered albuminuria. The underlying

mechanisms could be manifold, because HS has been re-

ported to affect not only glomerular filtration but also

growth factor signaling, composition, and functions of the

glomerular basement membrane as well as functions at the

endothelial surface layer (38) and the proximal tubule (39).
Strengths of our study include its large sample size,

specific examination of individuals with diabetes, and

consistent effects across a variety of studies underscoring

the relevance of our findings at the general population level.

In addition, we performed careful characterization of a

replicated finding through in vivo experiments in RAB38 KO

and control rats that cannot, however, elucidate the exact

mechanism by which genetic variation at this locus influ-
ences albuminuria in humans.

Limitations include the fact that the replicated SNPs

did not achieve genome-wide significance, necessitating

future confirmation in even larger studies, and that we

could not assess allele-specific gene expression in human

kidney tissues. We focused on European ancestry study

participants and mostly on individuals with type 2

diabetes. Future studies should therefore examine these
associations among individuals of additional ancestries

and in well-powered studies of patients with type 1

diabetes. Although results were combined after study-

specific analyses, biological variation in UACR and differ-

ent urine collection and storage methods may have

resulted in increased variation and thus reduced statisti-

cal power to reveal significant associations.

Additional studies are required to determine the causal
variants and the exact underlying molecular mechanism

by which genetic variation at RAB38/CTSC and HS6ST1

associates with albuminuria in humans. An elucidation of

the underlying mechanisms and the contributions and

differences of albuminuria of glomerular and tubular or-

igin may improve our understanding of proteinuric kid-

ney diseases in general but may be especially relevant to

DKD, the most common cause of ESRD.
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