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Abstract

Genome-wide association (GWA) studies have identified a large number of single-nucleotide

polymorphisms (SNPs) associated with disease phenotypes. As most GWA studies have been

performed primarily in populations of European descent, this review examines the issues involved

in extending consideration of GWA studies to diverse worldwide populations. Although

challenges exist with such issues as imputation, admixture, and replication, investigation of

diverse populations in GWA studies has significant potential to advance the project of mapping

the genetic determinants of complex diseases for the human population as a whole.

In the last few years, genome-wide association (GWA) studies have produced numerous

successes in identifying genetic variants that contribute to complex human traits1,2. Several

factors are recognized3,4 as having dramatically enlarged the number of genotype-

phenotype associations documented for a wide range of phenotypes5,6. These include:

increasingly dense sets of genetic markers, increasingly large sample sizes, improved

resources on genomic variation, and new statistical techniques for genotype imputation 7,8

and meta-analysis9,10 that leverage these resources.

With few exceptions, however, GWA studies have been centered in populations of European

descent (Box 1), and the degree to which knowledge gained from these studies is

transferrable to other populations has not been extensively investigated. Recent reports such

populations as Chinese11,12, Japanese13,14, Koreans15,16, and Pacific islanders from

Kosrae17,18 represent some of the first in a new wave of GWA studies in non-European

populations, as researchers seek to search additional groups for new findings on widely

distributed phenotypes, to consider new phenotypes that are more prevalent in non-European

populations, and to establish the generality of findings obtained initially in Europeans and

European Americans.
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Box 1

Populations in past GWA studies

To assess the extent to which non-European populations have been incorporated into

GWA studies, we examined the distribution of study populations across 492 GWA

articles in the National Human Genome Research Institute catalog of GWA results6,130.

This database provides a manually curated list of SNP-phenotype associations (P < 10−5)

identified in studies with at least 100,000 SNPs. Article classifications were assessed

independently by two raters, with discrepancies resolved by consensus in discussions

with a third rater. The figure on the right tabulates classifications based on whether

articles used individuals of European descent, individuals of non-European descent, or a

combination of individuals of European and non-European descent. Eight articles that

provided insufficient information about study subjects are omitted, so that each bar

represents 80 or 81 articles, grouped by date. The later date ranges are narrower,

indicating that in more recent time periods, more studies have been performed per unit

time.

The figure illustrates that most studies, ~75%, utilize populations of European descent

exclusively. It is likely that this value underestimates the true percentage of GWA effort

devoted to populations of European descent, as the tabulation counts as “both European

and non-European” studies in which non-Europeans comprise a small fraction of overall

study subjects, or in which non-Europeans are part of replication samples examined only

for a small number of SNPs. However, a slight trend over time suggests that studies with

non-European populations have begun to constitute a larger proportion of the full

collection of studies.

We further examined the representation of non-European populations by considering the

diversity of the investigators performing the studies. For each article analyzed, we

assigned weight nk/n to country k, where nk is the number of authors with affiliations in

country k (splitting multiply affiliated authors evenly across affiliations), and n is the

total number of authors of the article (excluding consortium authors). To examine

temporal trends in country representation, the 473 articles (eleven articles with uncertain

author affiliations or consortium-only authors were omitted) were divided into seven

chronological groups of near-equal size, and for each country, weights were summed

across articles to obtain a total “author weight” in each date class. Darker colors in the

figure above represent more recent time periods.
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Analysis of GWA author weights reveals that the number of countries represented, and

the representation of non-European countries such as China, South Korea, and Taiwan,

has been increasing. A plot of the first two principal components of a matrix of country

representation vectors (n1/n, n2/n, n3/n, …) appears on the right, with one point for each

of the 473 articles. The vectors displayed for the six countries with the highest author

weights represent the loadings of these countries for PC1 and PC2, describing the

contributions of these countries to the first two principal components. The PCA plot

identifies three main categories of articles—those with many UK authors, those with

many US authors, and those with many authors elsewhere. Many of the most recent

articles, represented by the darkest points, lie near the upper corner (“elsewhere”) or

along the upper edge (collaborations between authors “elsewhere” and USA authors).

What challenges exist in GWA studies of non-European populations? Will the same results

observed in Europeans be detected in diverse worldwide populations? Will causal variants

have similar allele frequencies and disease risk in different populations? What factors will

be the sources of differing results across groups? As the human genetics community

diversifies the populations in which GWA studies are performed, the effort likely to be

expended on this research program motivates careful consideration of the issues involved in

designing the new wave of GWA studies and in interpreting their outcomes.

We argue that expansion of GWA studies to diverse populations is important not only for

the ultimate goal of bringing medical advances resulting from genome science to the whole

of the worldwide population, but also because use of diverse populations provides

considerable scientific benefits in characterizing risk variants beyond what can be achieved

with populations of European descent alone. We begin by reviewing factors that have

contributed to the successes of GWA studies in Europeans. Next, we describe how

consideration of diverse populations has the potential to build on these successes. We then

discuss the challenges inherent in GWA studies in diverse populations, and the role of

population-genetic modeling in investigating variation among GWA results across

populations. We conclude with a discussion of how further development of genomic

resources has the potential to improve prospects for GWA studies in diverse worldwide

populations.

Rosenberg et al. Page 3

Nat Rev Genet. Author manuscript; available in PMC 2011 May 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Successes in Europeans

Factors influencing the choice of study population

Owing to the expense involved in the execution of GWA studies, it was sensible to perform

the first studies in a set of closely related populations for which shared resources could be

used. As a first step, a focused effort in which GWA studies of many phenotypes were

conducted largely in the same populations — and even in the same samples — had several

advantages over a dispersed effort that would have considered a larger diversity of

populations. The focus on fewer populations aided the development of standard single-

nucleotide polymorphism (SNP) panels ascertained for informativeness in detecting

common risk variants in those populations. It facilitated the use of shared controls in large

studies of multiple phenotypes, reducing the effort required in sample collection and

genotyping. Finally, it led to the collection by separate investigators of commensurable

samples, enabling large meta-analyses with closely related populations.

Given these advantages of focusing on specific populations, populations of European

descent were a natural choice for early GWA studies. Several European populations with a

strong history of human-genetic research — such as the populations of Finland, Iceland, and

Sardinia — are large enough that it was possible to conduct studies with large samples in the

setting of a comparatively homogeneous population. In addition, extensive collaborations

and long-term genetic studies had already been established involving investigators from

European countries and from non-European countries with large populations of European

descent, such as Australia, Canada, and the United States.

Population-genetic factors

Beyond these practical considerations that contributed to a focus on populations of European

ancestry, specific population-genetic properties of the European population have facilitated

the successes of GWA studies in groups of European origin. Allele-frequency variation

across populations — a source of false-positive findings in association studies19,20,21 — is

less pronounced in Europe than in other geographic regions22,23,24,25,26,27. Although

large population-genetic studies have detected subtle geographic gradients in allele

frequencies across the European continent28,29,30 as well as within individual

countries31,32, well-designed GWA studies in Europeans have generally been able to

control for the effects of underlying allele-frequency variation, and they generally have not

identified false positives owing to population structure as a significant problem.

The comparatively low level of population structure has further contributed to GWA

successes in Europeans through the utility of the HapMap CEU panel, the “CEPH

European” collection of 30 European-American families genotyped at high density by the

International Haplotype Map Project33,34. Early GWA studies used a tag-SNP approach

33,35,36, in which each SNP in a genome-wide subset of SNPs was tested for disease

association. It was hoped that each true disease SNP not genotyped in a study would be

“captured” through a minimal level of statistical association, or linkage disequilibrium

(LD)37,38,39, with an informative nearby tag SNP included among the genotyped SNPs.

The existence of a true disease SNP in an association study would then be detectable

through separate associations of the disease SNP and the phenotype with the tag SNP.

In most cases, tag SNPs chosen with the HapMap CEU panel were indeed “portable” to

studies of common variants in other Europeans36,40. Similarity of a target population to a

reference panel on which tag SNPs were selected, along with general LD levels in the

population, were identified as important determinants of the portability to a target population

of tag SNPs selected using a reference population41. LD in Europeans is moderate

compared to other populations42,43, so that Europeans are not disadvantaged in the tag-SNP
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approach by this variable. Further, portability is enhanced in Europeans owing to the low

level of population structure and the resulting high level of genetic similarity of most

European populations to the CEU sample41.

The combination of the various population-genetic factors with the pragmatic factors

affecting the choice of study populations has uniquely favored European populations in

GWA studies. These factors provide part of the explanation for two outcomes: (1) European

GWA studies have produced many successes that can be replicated in different sets of

individuals from the same European population as that in which the association was

originally detected; (2) associations in one population of European descent are often

replicable in other European populations, sometimes in groups that are quite geographically

distant within the European continent.

The case for more populations

The advantages of European populations in GWA studies suggest that Europeans might

productively be used for finding risk variants in non-Europeans. However, European

populations contain only a subset of human genetic variation. Populations vary in terms of

allele frequencies, biological adaptations, and other properties that affect the detectability

and importance of risk variants, and several observations suggest that no single population is

sufficient for fully uncovering the variants underlying disease in all populations.

First, risk variants can differ in their occurrence across populations. A high-risk variant

might only occur in certain populations, as has recently been seen for a cardiomyopathy risk

variant at MYBPC3 that has frequency ~4% in populations of the Indian subcontinent and

that is rare or absent elsewhere44. Such variants differ substantially in their relevance to

different groups.

Second, even if the same variant is present in diverse populations, allele frequencies might

differ45,46, as has been seen at TCF7L2 and KCNQ1 in type 2 diabetes (Box 2). The

particular histories of recombinations, mutations, and divergences of genealogical lineages

in the various populations can influence the “mappability” of a variant, so that a variant

might be more easily detectable in some populations than in others47,48 (Fig. 1).

Populations with lower LD, in which correlations between genotypes extend over shorter

distances along a chromosome, might be more suitable for finely localizing a risk variant

once its genomic region has been identified, as the genomic distance from true risk variants

of disease-associated markers is likely to be smaller in such populations49. Localization

methods can potentially capitalize on LD differences across populations by identifying

variants for which a causal relationship with disease underlies divergent patterns of

association signals in a genomic region50.

Box 2

Common variants for type 2 diabetes

In the last three years, large-scale genetic association studies have uncovered an

impressive array of common variants that confer risk for type 2 diabetes (T2D) in

populations of European origin131 and now also in East Asian populations13,14. GWA

studies of T2D provide a microcosm of the variety of issues that arise in considering

association results across populations.

In a study in Icelanders, Grant et al. 132 identified common alleles in TCF7L2 as

associated with T2D, a finding that has been confirmed in many populations, including

other Europeans133,134, West Africans135, East Asians136, South Asians137, and

Mexican Americans138. These TCF7L2 SNP alleles appear to have the strongest effect
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on type 2 diabetes risk among common variants in Europeans. By analyzing data in

Europeans and West Africans, Helgason et al. 135 narrowed the likely TCF7L2 candidate

region using differences in association strength with several TCF7L2-region SNPs in

these populations. Subsequent analysis of T2D association in East Asians suggests that

while genetic effect sizes for these TCF7L2 variants are similar in East Asians, risk allele

frequencies are substantially lower, so that much larger samples are required to identify

the association139.

The first T2D GWA studies in East Asians identified T2D risk variants in KCNQ113,14.

A recent metaanalysis in Europeans carried out by the DIAGRAM consortium detects

this same signal with a similar effect size, but at a level not even approaching

genomewide significance, owing to a much lower risk allele frequency (DIAGRAM

Consortium, personal communication). Interestingly, this same meta-analysis identifies a

second genome-wide significant T2D association signal ~150 kb from those discovered

in East Asians.

These examples illustrate the value of carrying out large-scale genetic association studies

in multiple populations to elucidate similarities and differences in genetic architecture

and to help narrow candidate regions for identified disease-predisposing variants.

Third, diseases can have differences in prevalence across populations. While a large portion

of this variation undoubtedly results from non-genetic factors, disease prevalence affects

both the practicality of obtaining the large sample sizes required by GWA studies for

detecting variants with small effects and the relevance to a population of the findings. A

limited population focus risks underemphasis of diseases for which prevalence is high in

non-European populations, or reduced power compared to potentially larger samples that

could be obtained in higher-prevalence populations.

Fourth, risk variants can have different effect sizes in different populations, so that variation

across populations can exist in the underlying determinants of the same disease51. The

existence of these risk differences, such as for the APOE-ε4 allele in Alzheimer’s disease52,

implies that the risk variants most relevant in a population might be most easily detected

using samples from the population itself, rather than with other populations.

The case for employing diverse populations in GWA studies has recently been strengthened

by the observation that the proportion of phenotypic variation explained by variants

discovered through GWA is typically small53. GWA studies have focused on common

variants, alleles that were typically present in ancestral African populations and that spread

worldwide with ancient human migrations. Rare variants, which have not been examined to

the same extent, provide one possible genetic source for unexplained phenotypic

variation54,55,56. They might even be responsible for some association signals currently

attributed to common variants47,57. Because rare variants are usually more recent in origin,

not having had enough time to increase in frequency and become common, they are more

likely to be geographically localized, so that separate populations are more likely to differ in

their collections of rare alleles than in their collections of common alleles (Fig. 2).

These various reasons — differences in disease-allele frequency and LD patterns,

phenotypic prevalence differences, differences in effect size, and differences in rare variants

— provide the scientific motivation for GWA studies in diverse populations. Some variants

that act in all populations might be more easily identifiable in certain groups owing to the

properties of LD and allele frequency in those groups. For some phenotypes with low

prevalence in Europeans, studies might be more practical in other groups49. In addition, use

of multiple populations is the only way to uncover true biological variation in underlying
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risk variants, including biological variation resulting from differences across populations in

the occurrence of rare risk alleles.

Challenges in non-Europeans

The properties of marker ascertainment, tag-SNP portability, and population structure that

have been favorable to association mapping in Europeans instead pose challenges for studies

in many non-European populations.

Marker ascertainment

Several investigations have found that the SNPs typically used in GWA studies are in

various ways not representative58,59. They can have comparatively higher minor allele

frequency (MAF) in Europeans and therefore higher expected heterozygosity than might be

predicted on the basis of what is known about other types of markers that have less

ascertainment bias (Fig. 3). These observations, which result from a likely focus on

populations of European ancestry in the initial detection of SNPs, in turn affect the relative

proportion of the genome suited to mapping in different populations. Because of

ascertainment effects in the development of marker panels, the fraction of the genome that

lies within a specified physical distance of at least one variable marker in a standard panel

can vary across populations. Additionally, the LD statistic r2 that measures whether a locus

is “covered” by a panel, typically on the basis of its maximal LD with some marker from the

panel60, depends on marker allele frequencies61,62, with intermediate-MAF markers

having greater potential to produce high r2 values with markers at a range of other minor

allele frequencies63. Thus, ascertainment bias producing many low-MAF markers in a

population can lead to decreased potential to detect phenotypically important alleles across

the full range of possible allele frequencies, ultimately reducing the genome-wide utility in

the population of standard marker panels.

Tag-SNP portability

Ascertainment issues might have contributed to a decreased level of tag-SNP portability

seen in some non-European populations compared to what might have been predicted on the

basis of their LD levels41. Although evaluations of tag-SNP portability have generally

found that tag SNPs chosen from the HapMap are indeed portable to most non-European

populations36,40, they have identified low-LD populations and intermediate-LD indigenous

populations genetically distant from HapMap reference panels to be among those

populations in which tag SNPs capture the fewest non-tag SNPs41. Tag-SNP portability can

potentially be improved in populations genetically intermediate between the primary

HapMap populations by using a mixture strategy to select SNPs for genotyping panels. In

this approach, tag SNPs are selected to be informative for a mixture of haplotypes drawn

from multiple HapMap groups, rather than from a single group64,65. However, this mixture

strategy does not solve the problem of low portability in sub-Saharan African populations,

whose LD levels are considerably lower than those of other populations43,49,66.

Genotype imputation

Recently, tag-SNP analyses have been augmented by a genotype-imputation approach, in

which data analysis is not restricted to SNPs that have actually been genotyped. In

imputation-based GWA studies7,8,67, densely genotyped reference individuals, typically

from the HapMap Project, provide information for predicting the genotypes at SNP positions

measured in the reference data but not in the study sample. These predicted genotypes are

then tested for disease association. Imputation is possible because two haplotypes that are

identical for a set of nearby markers are likely to share the intervening chromosomal stretch

identically by descent. Thus, if one of the two haplotypes is genotyped more densely than
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the other, then genotypes at unmeasured positions in the more sparsely genotyped haplotype

can be predicted by copying the genotypes from the more densely genotyped haplotype.

Genome-wide imputation of study haplotypes proceeds by locally copying the most

appropriate reference haplotypes in a probabilistic manner.

In imputation studies, the reduced portability of tag SNPs previously observed in

populations genetically intermediate among reference groups and in African populations has

taken the form of reduced imputation accuracy for these populations68, and consequently,

reduced statistical power for imputation-based association mapping69. The accuracy of

imputation depends largely on the same two factors that influence portability in the tag-SNP

case. First, the overall level of LD in a study population reflects the distance over which the

genotypic correlations that permit imputation extend, so that imputation is more accurate in

high-LD populations68. Second, imputation accuracy is influenced by the level of genetic

relationship of the study population to the reference population8,68, which affects the utility

of the haplotypes copied from the reference population in imputing genotypes in the study

population. In an assessment of imputation accuracy in 29 populations worldwide, similarly

to the tag-SNP case, imputation accuracy based on HapMap reference panels was highest in

European populations closely related to the HapMap CEU panel, and lowest in African

populations and populations genetically intermediate between the panels68 (Fig. 4). Use of

mixture panels as reference data in imputation algorithms can improve imputation accuracy

for GWA studies in genetically intermediate populations, but imputation in low-LD African

populations continues to pose a particular challenge49.

Admixed populations

In the effort to improve the potential of GWA studies for diverse human populations,

African populations are not the only populations that pose significant challenges. Tag-SNP

and imputation studies have found that indigenous populations genetically intermediate

between reference groups are among those that require special consideration. In these cases,

the challenges result largely from the way in which genomic resources have been developed,

rather than from intrinsic population properties. A second form of intermediate population

exists, however, in which the challenges are in fact intrinsic.

In admixed populations, individual genomes can be viewed as mosaics of ancestry

segments, with different segments arising from different “parental” populations that

participated in an admixture process. Admixed populations often have high variation across

individuals in the proportions of ancestry from the various source groups70,71,72, and in the

same way that use of multiple subgroups of a larger population in an association study can

give rise to false-positive associations, variation in admixture proportions can also produce

spurious association of genotypes and phenotypes through their separate associations with

ancestry73.

Heterogeneity of admixture has posed a barrier to association mapping in admixed

populations. These populations have instead been considered with other designs, such as

admixture mapping, in which genomic segments with excess ancestry from a high-

prevalence parental population are identified as potential locations for risk

variants74,75,76,77. The utility of admixture mapping, which has had some success in

mapping loci for traits with strong differences in phenotypic distribution between parental

populations78,79,80,81, has relied on its relative efficiency. Whereas GWA has typically

used tens to hundreds of thousands of markers, admixture mapping requires only a few

thousand markers for estimating the ancestry of genomic segments82,83,84,85. However, as

GWA designs have improved, the efficiency of GWA now exceeds that of admixture

mapping over a broad range of possible values for model parameters86. Future analyses in
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admixed populations might rely on a combination of GWA and admixture-mapping

principles, considering unusual local ancestry estimates jointly with association signals. In

addition, because it requires fewer markers, admixture mapping might continue to be

valuable in genomic regions poorly covered by typical GWA marker sets.

In the imputation context, it has been largely unclear whether genotypes in an admixed

population can be most accurately imputed using a mixture of reference panels from the

parental populations, or using a comparable reference panel from the admixed population

itself. Numerous techniques are now available for inferring ancestry blocks along the

genome87,88,89,90,91, and one recent approach uses imputation accuracy as a basis for

evaluating inference of ancestry blocks92. This set of developments now offers the

possibility of improving imputation in admixed populations by integrating the inference of

admixture and missing genotypes93, either by locally imputing from parental reference

panels along the genome (Fig. 5), or by concurrently imputing genotypes and inferring

ancestry. Although evaluations in admixed populations of the performance of different

imputation approaches have not yet utilized local ancestry94, these advances suggest that the

intrinsic challenges of working with admixed populations in GWA studies can be

surmounted or at least reduced.

Population-genetic modeling

We have seen that information on the population-genetic properties of individual

populations and sets of populations is useful in understanding the features and limitations of

GWA studies in diverse populations. Important roles for population-genetic data and

modeling have been part of the planning for GWA studies from the early stages3,95;

modeling efforts can now help in addressing concerns about the similarities and differences

among GWA results in separate populations.

Population-genetic models begin from the perspective that the factors that affect the

genealogical descent of a disease mutation — such as migrations, changes in population

size, natural selection, and local recombination landscape — ultimately affect the

distribution of the mutation across individuals in the present. Because the full genetic history

of the human population is unknown, population-genetic models based on relatively few

parameters can be used instead to simulate plausible histories, to examine the properties of

risk variants simulated under the models, and to evaluate strategies for detecting these

variants. Many of these models use the coalescent framework 96,97, which provides a

flexible, computationally efficient, and theoretically grounded approach that can simulate

one or more populations retrospectively, back in time from the present.

New population-genetic simulation tools that account for shared descent among individuals,

both through the coalescent and through forward-time approaches98,99,100,101, now

provide an improved basis for GWA modeling. Simulation programs have incorporated

newly appreciated phenomena, such as recombination hotspots102, as well as

approximations and computational advances that improve the potential for simulating large

genomic regions103,104,105,106. Human population-genetic data have been recently used

to calibrate evolutionary models107,108,109,110,111,112; further advances in human

population genetics offer the potential to make these models increasingly detailed and

therefore increasingly relevant for GWA applications.

A primary use of a population-genetic perspective in the GWA context has been in

predicting expected patterns of disease variation113,114,115. However, GWA statistical

analysis tools have not yet fully taken advantage of this perspective. From a population-

genetic standpoint, all individuals have some degree of relationship through their shared

descent in the complete human pedigree. In standard GWA analyses, however, in which
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alleles that are more common in cases than in controls are identified by testing contingency

tables locally along the genome, an implicit assumption is that the genotypes of separate

individuals can be treated as independent random variates. Approximating separate

individuals as independent has been productive as a first approximation, but more

information is potentially available by accounting for correlation among individuals owing

to shared descent. Fine-mapping association methods designed for localization of risk

variants do seek to consider this shared descent116,117,118,119,120. These methods have

been informative on a small scale, and a current challenge is to extend them for large

datasets.

Similar independence approximations are made in GWA replication analyses, which check

for close relationships among sampled individuals but otherwise treat separate studies of

nonoverlapping samples as independent. A genealogical perspective suggests that

replication studies are in fact pseudoreplication studies, owing to potential correlations

among outcomes that could arise from shared genealogy. From this viewpoint, particularly

in small populations, separate association studies identifying the same risk variant in a

population might not provide the same degree of confirmation as replicate studies in a

context in which events truly are independent121. As in the analysis of individual GWA

studies, the independence assumption has provided a sensible initial strategy for replication

studies, but unlike in the case of genealogical dependence within studies, approaches that

account for dependence between studies have not yet been considered. The magnitude in

real populations of the pseudoreplication effect — the degree to which separate association

studies provide the same outcome as a result of shared ancestry of study participants — is

unknown, so that it remains uncertain how likely a replication study is to detect a risk

variant under the hypothesis that the variant has the same disease effect in all populations;

the probability of pseudoreplicating a false positive across populations is also unknown.

Although efforts have been devoted to statistical issues of replication in relation to sample

size and measured effect size122,123, studies of the population genetics of replication are in

their infancy. As the frequency of replication studies continues to increase, methods for

evaluating intrinsic correlations between study outcomes and their effects on interpretations

of replication studies would provide a useful development.

Prospects

GWA studies have dramatically increased the number of variants known for numerous

complex diseases. They have been remarkably successful for identifying targets of

exploration, often suggesting unforeseen directions for research on disease mechanisms.

Especially for those working on diseases for which few if any genetic variants were

previously known, GWA studies have provided a true quantum advance for studies of

human biology. At the same time, they have established complex genetic diseases to be

incontestably complex, caused by many variants, with mostly small effects unsuited to

immediate risk prediction and clinical use. These results have understandably triggered a

series of reflections on the magnitude of the contributions of GWA studies in

general4,124,125,126,127. Clearly, genome-wide association is relatively new, and its full

contribution will only become clear as the biological properties of the variants it uncovers

are further investigated. Looking forward, the GWA field is now diversifying its emphasis,

with attention shifting not only to diverse populations, but also to structural variation,

interaction effects, rare sequence variation, and molecular assays of identified variants.

We and others128,129 have argued that use of diverse populations will be an essential

component of the next phase of GWA work, and we have discussed the benefits that arise

from the consideration of GWA studies in diverse populations. Not least among these

benefits is that in the long-term, as knowledge gained from GWA becomes relevant to
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medicine, reducing differences across populations in the understanding of underlying

genetic variation can help to avoid unintentionally promoting health disparities. Many GWA

studies in diverse populations are now ongoing or are imminent, largely using the same

approaches as current and past GWA studies in populations of European origin. To achieve

their maximal potential, these studies will profit from deeper investigation of such issues as

imputation, admixture, and replication, as we have described.

The current GWA strategy of using preselected markers to search for risk variants common

in human populations is giving way to a paradigm of using whole-genome sequence

approaches that can search for rare disease-risk variants as well. Future GWA studies —and

some studies now in progress — will incorporate partial or complete genome sequences on

some or all of the study participants. For many of the same reasons that GWA studies to date

have emphasized populations of European descent, early sequence studies might also have a

European focus. As we have seen, however, rare risk variants whose detection is a priority

of sequence-based studies are likely to be more geographically restricted than the common

variants currently of interest. Consequently, it will be even more important in sequence-

based GWA studies than in current studies of common variants that multiple populations be

considered.

The 1000 Genomes Project, a large-scale community effort to produce genome sequence

data on ~2000 diverse individuals, will facilitate sequence-based GWA studies in diverse

populations, serving as the analogous public resource for sequence-based GWA studies that

the HapMap provided for tag-SNP GWA studies. With sequencing, concerns about

population biases in marker ascertainment are likely to subside. Further, the larger number

of individuals in the 1000 Genomes Project compared to the initial 270 individuals in the

HapMap permits examination of a wider diversity of samples. Thus, forthcoming genomic

resources already under development are expected to improve the conditions for

examination of diverse populations in GWA studies.

At the same time, it must be remembered that the worldwide human population and its

distribution of disease-risk variation represent the singular outcome of an evolutionary

experiment, and that large portions of this experiment continue to remain untapped for their

potential to contribute to the modern enterprise of human genetics. Each new genetic

resource expands the consideration of human diversity, but necessarily provides an

incomplete picture of its full extent. Thus, many opportunities exist for identifying new

aspects of genetic variation to examine for future resources, as well as for creative

application of worldwide populations in risk-variant discovery, characterization of known

variants, and the population-genetic modeling and statistical designs that will facilitate these

efforts. As technological barriers to the production of genomic data continue to fall, it can be

hoped that the community will accept the challenge of capitalizing on the full range of

human diversity for the next wave of investigations of the variants that underlie human

genetic disease.

Highlighted references

1 An informative overview of key issues in the field of genome-wide association.

6 An investigation of the properties of GWA findings in the National Human Genome

Research Institute catalog of published genome-wide association studies.

30 This article and the seven that precede it provide extensive genome-wide analyses of

population structure in individual geographic regions.
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44 An example of a high-risk complex disease variant absent in Europe but with a nontrivial

frequency in a non-European population.

49 A review that focuses on particular challenges for GWA studies in Africa.

50 This simulation study argues that fine mapping of causal variants is improved by joint

analysis of multiple populations. The study provides an approach for selecting multi-

population samples for following up GWA discoveries.

69 This article and the article that precedes it provide detailed analyses of genotype

imputation in diverse populations.
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Glossary

GENOME-WIDE

ASSOCIATION STUDY

A study design in which many markers spread across a

genome are genotyped, and tests of statistical association

with a phenotype are performed locally along the genome

GENOTYPE

IMPUTATION

Probabilistic prediction of genotypes that have not actually

been measured experimentally

PRINCIPAL

COMPONENT

A composite variable that summarizes the variation across a

larger number of variables, each represented by a column of

a matrix

LOADING In a principal components analysis, a quantity that

represents the contribution of one of the original variables

(columns of the data matrix) to one of the principal

components

SNP A nucleotide site at which two or more variants exist in a

population. Most SNPs in GWA studies are biallelic

TAG SNP A SNP chosen from a larger set of available SNPs for use

in an association study. Tag SNPs are generally selected on

the basis of favorable linkage disequilibrium properties; to

be precise we do not require as part of the definition that

they be selected using properties of LD.

LINKAGE

DISEQUILIBRIUM

A statistical association in the occurrence of alleles at

separate loci

PORTABILITY OF TAG

SNPS

The utility of SNPs chosen as tags in one population for use

as tags in another population

MINOR ALLELE

FREQUENCY

The frequency of the less frequent allele at a biallelic

genetic locus

EXPECTED

HETEROZYGOSITY

The probability for a locus that two alleles drawn from its

allele-frequency distribution are distinct
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ASCERTAINMENT

BIAS

A distortion in results owing to use of a subsample that, in a

systematic manner, fails to properly represent a larger

sample

MICROSATELLITE A type of genetic marker in which individuals vary in their

number of tandemly repeated copies of a short DNA unit

ADMIXED

POPULATION

A population formed recently from the mixing of two or

more groups whose ancestors had long been separated

COALESCENT A specific stochastic process that describes the relationship

among genetic lineages sampled in a population

RECOMBINATION

HOTSPOT

A region of the genome in which the per-generation

recombination rate is substantially elevated above the

genome-wide average

CONTINGENCY TABLE A table of observations of two or more variables whose

statistical relationship is of interest. For each variable, a

contingency table places each observation into one of a

series of categories
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Figure 1. Differences in “mappability” of a risk variant between two populations with different
LD patterns

A disease mutation (orange) occurs on an ancestral chromosome that contains several

marker alleles (green, purple, blue, yellow). Over time, recombination events (diamonds)

break down the correlations between the disease mutation and the marker alleles. However,

the recombination history differs for populations 1 and 2, separated by a barrier to gene flow

(brown line). Consequently, if the purple or blue allele were examined in population 1, then

a disease association might be found, but it might not be found in population 2. A similar

situation applies for the yellow allele, with the roles of the populations reversed. The figure

and caption are modified from Rosenberg and VanLiere121.
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Figure 2. Effect of frequency in Europe on the occurrence of an allele in other regions

The figure illustrates that alleles that are more common in one group, in this case Europeans,

are more likely to be present in other groups. It also shows that populations that are

geographically closer to Europe, such as populations of the Middle East, tend to have more

alleles shared with Europeans than more geographically distant populations, such as those of

Oceania. The figure is based on the SNP data underlying Figure S21 of Jakobsson et al. 43,

which uses 512,762 autosomal SNPs in indigenous populations from the Human Genome

Diversity Panel140, and which standardizes sample sizes across groups by evaluating allele

frequencies in samples of size 40.
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Figure 3. Excess SNP variability in Europeans resulting from ascertainment bias

The y-axis depicts mean heterozygosity across loci in 443 individuals from 29 populations,

on the basis of 512,762 autosomal SNPs from an Illumina genotyping panel43. The x-axis

depicts mean heterozygosity in the same individuals, on the basis of 783 autosomal

microsatellite markers141,142. Because individual microsatellites, unlike SNPs, are highly

variable, microsatellite ascertainment is less dependent on the initial ascertainment sample

than is SNP ascertainment143. Thus, the imperfect correlation of SNP heterozygosity with

microsatellite heterozygosity might reflect ascertainment bias in the SNP set. This figure is

similar to Figure 3 of Conrad et al. 41.
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Figure 4. Genotype imputation accuracy in 29 populations, with and without external reference
panels

Imputation accuracy is plotted as a function of LD measured by mean r2 at a distance of 10

kb in a genome-wide dataset43. Genotypes in a genome-wide study are hidden and then

imputed, with two different designs. In the shaded region, genotypes in each population are

imputed without an external reference panel, so that the information for imputing “missing”

genotypes comes from other individuals in the population. In the unshaded region,

genotypes in the population are imputed using an external reference panel, chosen optimally

among 36 mixtures of the HapMap CEU (European American), CHB+JPT (Chinese and

Japanese), and YRI (Yoruba) panels. Color coding for populations follows that of Fig. 3.

The regression lines exclude the African populations, and they have coefficients of

determination 0.003 (external reference) and 0.953 (internal reference). The figure shows

that imputation accuracy based on an internal reference is highly correlated with LD.

However, imputation accuracy based on an external reference is not correlated with LD (and

instead depends on the composition of the particular reference panels available). The figure

is based on the data in scenarios 1, 3, and 6 in Table 1 of Huang et al. 68.
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Figure 5. Imputation in admixed populations

Admixture segments are estimated in each individual sampled from a GWA study. Consider

reference haplotypes from two separate panels (red and blue boxes). Separately for each

admixture segment of a haplotype, alleles are imputed using reference haplotypes from the

same population as the inferred source. Within a source population, a haplotype might have

alleles imputed from multiple reference haplotypes, as depicted on the left with both

haplotypes from the same (blue) source population serving as imputation templates. If

admixture estimates for a segment are uncertain, then conditional imputations at a site given

each of the possible source populations for the segment can be weighted by the probabilities

of those sources.
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