

Open access • Posted Content • DOI:10.1101/411546

Genome-wide association studies in Samoans give insight into the genetic architecture of fasting serum lipid levels — Source link \square

Jenna C. Carlson, Daniel E. Weeks, Nicola L. Hawley, Guangyun Sun ...+6 more authors Institutions: University of Pittsburgh, Yale University, University of Cincinnati, Brown University Published on: 08 Sep 2018 - bioRxiv (Cold Spring Harbor Laboratory) Topics: Population and Genome-wide association study

Related papers:

- Genome-wide association studies in Samoans give insight into the genetic architecture of fasting serum lipid levels.
- Examination of genetic variants influencing lipid traits in pediatric populations.
- Genetic causes of high and low serum HDL-cholesterol.
- No evidence of interaction between known lipid-associated genetic variants and smoking in the multi-ethnic PAGE population.
- Investigation of gene-by-sex interactions for lipid traits in diverse populations from the population architecture using genomics and epidemiology study.

1	Genome-wide association studies in Samoans give insight into the genetic
2	architecture of fasting serum lipid levels
3	
4	Jenna C. Carlson ^{1,2*} , Daniel E. Weeks ^{1,2¶} , Nicola L. Hawley ³ , Guangyun Sun ⁴ , Hong
5	Cheng ⁴ , Take Naseri ⁵ , Muagututi'a Sefuiva Reupena ⁶ ; Ranjan Deka ⁴ ¶, Stephen T.
6	McGarvey ^{7,8} ¶, Ryan L. Minster ¹ ¶
7	
8 9	¹ Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
10 11 12	² Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
13 14 15	³ Department of Epidemiology, School of Public Health, Yale University, New Haven, Connecticut, United States of America
10 17 18	⁴ Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
19 20 21	⁵ Ministry of Health, Government of Samoa, Apia, Samoa
22	⁶ Lutia i Puava ae Mapu i Fangalele, Apia, Samoa
23 24 25	⁷ International Health Institute and Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island, United States of America
26 27 28 29	⁸ Department of Anthropology, Brown University, Providence, Rhode Island, United States of America
30	* Corresponding Author
31	Email: jnc35@pitt.edu
32	
33	[¶] DEW, RD, STM, RLM are Joint Senior Authors
34	

35 Abstract

36 The current understanding of the genetic architecture of lipids has largely come 37 from genome-wide association studies. To date, few studies have examined the genetic 38 architecture of lipids in Polynesians, and none have in Samoans, whose unique 39 population history, including many population bottlenecks, may provide insight into the biological foundations of variation in lipid levels. Here we performed a genome-wide 40 41 association study of four fasting serum lipid levels: total cholesterol (TC), high-density 42 lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides (TG) in a sample of 43 2,849 Samoans, with validation genotyping for associations in a replication cohort 44 comprising 1,798 Samoans and American Samoans. We identified multiple genomewide significant associations ($P < 5 \times 10^{-8}$) previously seen in other populations – 45 APOA1 with TG, CETP with HDL, and APOE with TC and LDL – and several suggestive 46 47 associations ($P < 1 \times 10^{-5}$), including an association of variants downstream of MGAT1 48 and RAB21 with HDL. However, we observed different association signals for variants 49 near APOE than what has been previously reported in non-Polynesian populations. The 50 association with several known lipid loci combined with the newly-identified associations 51 with variants near *MGAT1* and *RAB21* suggest that while some of the genetic 52 architecture of lipids is shared between Samoans and other populations, part of the 53 genetic architecture may be Polynesian-specific. 54 **Key words:** complex trait genetics; founder population genetics; lipids; genome-wide 55

56 association study; Polynesia

57 Introduction

58	The Samoan Islands, comprising both the U.S. Territory of American Samoa
59	(American Samoan) and the Independent State of Samoa (Samoa), have experienced a
60	rise in prevalence of cardiovascular disease and other non-communicable diseases in
61	the last 30 years partly due to economic modernization, rapid urbanization, and lifestyle
62	changes such as increased caloric intake and sedentary behavior [1–3]. A 2010
63	population-based survey in Samoa, which gathered the "discovery cohort" studied
64	further here, found that many Samoans are at elevated risk of cardiovascular disease
65	based on known risk factors—increased total cholesterol (TC), low-density lipoprotein
66	cholesterol (LDL), and triglycerides (TG), as well as decreased high-density lipoprotein
67	(HDL) [4–6]—with 47% of the 2,938 adult Samoans examined in the study having
68	elevated TC (\geq 5.2 mmol/L), 88% of men and 91% of women having elevated LDL (>
69	2.59 mmol/L), and 43% of women having low HDL (< 1.29 mmol/L) [1].
70	
71	Our current understanding of the genetic component of serum lipid level variation
72	has been largely due to genome-wide association studies (GWAS) [7]. The Global
73	Lipids Genetics Consortium found strong evidence for 157 loci associated with one or

more of these traits using a sample of 188,577 individuals of European, East Asian,

South Asian, and African ancestry [8]. However, few GWAS of serum lipid levels have been conducted in Pacific Islanders [9, 10] and to our knowledge only one has included a small number of Polynesians [11]. Previous studies have estimated the heritability of serum lipid levels in Samoans, ranging from 16% for HDL to 23% for TG, and have identified genetic susceptibility loci via linkage analysis [12], warranting further study of

the genetic architecture of serum lipid levels in Samoans. Samoans are a geneticallyisolated founder population, with unique evolutionary history, making them particularly
useful in genomic studies [13, 14]. Thus, genomic studies of serum lipid levels could
reveal novel lipid-altering loci specific to Pacific Islander populations, as well as highlight
susceptibility loci shared with global populations.

85

86 Here we report the results of a GWAS of fasting TC, LDL, HDL, and TG in up to 87 2.849 individuals from independent Samoa followed by replication in up to 1,798 88 individuals from independent Samoa and American Samoa, as part of ongoing genome-89 wide association studies of cardiometabolic disease and adiposity-related traits in the 90 Samoan Islands [1]. We identified multiple genome-wide significant associations 91 previously seen in other populations – APOA1 with TG, CETP with HDL, and APOE 92 with TC and LDL – and several suggestive associations, including an association 93 between variants downstream of MGAT1 and RAB21 with HDL. 94

95 Methods

96 Discovery Cohort and Genotyping

97 The discovery cohort data are available from dbGaP (accession number:
98 phs000914.v1.p1). The discovery cohort of 2,849 individuals is drawn from a
99 population-based sample recruited from Samoa in 2010 (Table 1). The sample
100 selection, data collection methods, and phenotyping, including the laboratory assays for

serum lipid and lipoprotein levels, have been previously reported [1, 13]. Briefly, serum

102 lipid levels were derived from fasting whole blood samples collected after a minimum

103 10-hour overnight fast. Genotyping was performed using Genome-Wide Human SNP 104 6.0 arrays (Affymetrix). Extensive quality control was conducted on the basis of a 105 pipeline developed by Laurie et al [15]. Additional details for sample genotyping and 106 genotype quality control are described in Minster et al [13]. This study was approved by 107 the institutional review board of Brown University and the Health Research Committee 108 of the Samoa Ministry of Health. All participants gave informed consent. Imputation was 109 not performed in this study because prior experience with this population using extant 110 imputation panels such as the Phase 3 1000 Genomes panel showed that the resulting 111 imputed genotypes did not correlate well with observed genotypes [13].

113 Table 1. Demographic, anthropometric, and blood biochemistry statistics of the genotyped discovery and

114 replication cohorts.

115

	2010 D Co	iscovery hort	2002–2003 Samp	Replication le Set	1994–1995 Samp	Replication le Set	2002–2003 Sam	Replication	1994–1995 Replication Sample Set				
	Samoa,	n = 2849	Samoa,	n = 490	Samoa,	n = 468	American Sa	imoa, n = 592	American Samoa, n = 24				
	Women	Men	Women	Men	Women	Men	Women	Men	Women	Men			
	n = 1703	n = 1146	n = 245	n = 245	n = 243	n = 225	n = 337	n = 255	n = 137	n = 111			
age (years)	44.8 (11.10)	45.6 (11.10)	44 (17.00)	40.7 (16.30)	43.3 (8.60)	43.2 (8.90)	43 (16.00)	43.2 (16.60)	43.3 (9.10)	45.5 (10.60)			
BMI (kg/m²) total	34.8 (6.70)	31.3 (5.90)	33.2 (7.70)	28.8 (5.40)	31.9 (5.70)	28.8 (5.00)	36.5 (8.40)	33.4 (7.60)	37.4 (6.90)	34.9 (6.00)			
cholesterol (mg/dL)	199.3 (36.10)	200.3 (38.70)	202.3 (35.90)	195.5 (40.60)	199.1 (37.20)	197.4 (35.00)	187.1 (38.60)	189.6 (37.80)	197.8 (31.20)	194.1 (31.00)			
HDL (mg/dL)	46.5 (10.80)	43.7 (11.20)	47.1 (10.30)	46.3 (11.20)	43.4 (11.00)	42.5 (11.40)	40.9 (8.80)	40 (8.80)	34.8 (7.60)	32.8 (8.30)			
LDL (mg/dL)	130 (32.60)	129.6 (35.30)	130.3 (32.80)	128.6 (37.50)	140.2 (34.80)	133.5 (33.00)	118.5 (33.70)	118.9 (35.10)	136.6 (32.40)	136 (37.50)			
trigylcerides (mg/dL)	114.9 (80.50)	139.3 (113.10)	110.9 (58.90)	120.1 (91.30)	85.6 (72.80)	102.8 (97.20)	130.8 (78.10)	200.2 (206.50)	118.9 (63.40)	168.2 (109.00)			
glucose (mg/dL)	107.6 (56.20)	107.4 (54.80)	102.2 (46.40)	98.6 (49.80)	90.9 (38.00)	85.3 (18.90)	104.2 (50.30)	108.8 (54.70)	107.3 (49.80)	125.2 (61.70)			

117 Replication Cohort and Genotyping

118 The replication cohort of 1,798 individuals contains two sample sets recruited 119 from Samoa and American Samoa (Table 1). Although there is substantial economic 120 variation across the two polities, with American Samoans generally having a higher 121 standard of living, the Samoans from both territories form a single socio-cultural unit 122 with frequent exchange of mates; genetically, they represent a single homogenous 123 population [3, 16]. The first sample set, referred to as the 1990–95 replication sample 124 set, contains 716 unrelated individuals derived from a longitudinal study of adiposity and 125 cardiovascular disease risk factors among adults from American Samoa and Samoa 126 (Table 1). Detailed descriptions of the sampling and recruitment have been reported 127 previously [17–19]. Briefly, participants were recruited from 46 villages and worksites in 128 American Samoa in 1990 and 9 villages in Samoa (Western Samoa, at the time of 129 recruitment) in 1991 and followed up four years later in 1994 and 1995, respectively. All 130 participants were, at baseline, free of self-reported history of heart disease, 131 hypertension, or diabetes. This study was approved by the institutional review board of 132 the Miriam Hospital, Providence, RI. All participants gave informed consent. The second 133 sample set, referred to as the 2002–03 replication sample set, contains 1,082 134 individuals from American Samoa and Samoa and was drawn from an extended family-135 based genetic linkage analysis of cardiometabolic traits (Table 1) [12, 20–23]. Probands 136 and relatives were unselected for obesity or related phenotypes. The recruitment 137 process and criteria used for inclusion in this study have been described in detail 138 previously [21, 23]. This study was approved by the institutional review board of Brown 139 University and research ethics review committees in both Samoa and American Samoa.

All participants gave informed consent. Imputation was not performed in these studies
for the same rationale as the discovery cohort above, but also because genome-wide
marker data was not available for the samples in these studies.

143

144 In both replication sample sets, blood samples were collected in the morning 145 after a minimum of 10 hours fasting, from which serum lipid levels were derived using 146 assay methods published previously [12, 17]. Genotyping of variants selected for 147 validation in the replication cohort (described below) was performed using custom-148 designed TagMan OpenArray Real-Time PCR assays (Applied Biosystems). SNPs that 149 could not be genotyped using OpenArray assays were genotyped individually using 150 TagMan SNP Genotyping assays (Applied Biosystems). Eight variants could not be 151 genotyped due to technical difficulties.

152

153 Statistical Analyses

154 Prior to association analyses, residuals were generated for all four lipid traits. 155 First, traits were transformed to normality with the Box–Cox power transformation; 156 secondly. model selection was performed using step-wise linear regression with initial 157 model covariates previously associated with serum lipid levels; age, age², sex, log-158 transformed BMI, fasting glucose, smoking status, farming status (as a measure of physical activity), and interactions between age, age², and sex. The final TC model 159 160 adjusted for age, age², sex, age × sex, and age² × sex; the final LDL and TG models adjusted for age, age², sex, and age² × sex; the final HDL model adjusted for age and 161 162 sex.

163

164	Preliminary associations were performed, and variants were selected for
165	validation without consideration of hypolipidemic medication use, as it was not
166	measured. However, participants did self-report use of heart disease medication.
167	Sensitivity analysis revealed that this self-reported use of medication to treat heart
168	disease was significantly associated with TC and LDL (results not shown); individuals
169	reporting such medication use (n = 17) were excluded from analyses. The prioritization
170	of variants for validation genotyping was updated using these analyses, but only after
171	available resources were fully expended. Unfortunately, not all variants that should have
172	been prioritized for validation genotyping were successfully genotyped. All results
173	presented are those of the corrected analyses, removing the individuals with heart
174	disease medication use.
175	
176	Additional sensitivity analysis was performed for TG by excluding one outlying
177	observation (i.e., TG > 4 standard deviations above mean); results did not change
178	qualitatively, and, since the recorded value was within the range of plausible values for

179 TG, the individual was retained for presented analyses.

180

Association between lipid residuals and autosomal genotypes of 659,492 SNPs with minor allele frequency (MAF) \geq 0.05 and Hardy-Weinberg Equilibrium (HWE) test *P* value \geq 5 × 10⁻⁵ was assessed using linear mixed modelling in GenABEL, including previously-derived empirical kinship estimates to adjust for subject relatedness [13, 24]. The association between X-chromosome genotypes and the lipid phenotypes were 186 calculated in GenABEL, without adjustment using the empirical kinship estimates. 187 Genomic inflation due to population stratification and cryptic relatedness was assessed 188 by estimating λ_{GC} using the lower 90% of the *P* value distribution [25]. GWAS *P* values 189 in the discovery cohort (*P*_D) were compared to a threshold for genome-wide significance 190 of *P*_D < 5 × 10⁻⁸ and a suggestive association threshold of *P*_D < 1 × 10⁻⁵. Statistical 191 power to detect signals at these thresholds was calculated using the Genetic Power 192 Calculator [26].

193

194 Gene-set enrichment analysis with MAGENTA was also performed to identify any 195 biological pathways enriched for discovery association signals [27]. Briefly, gene scores 196 were obtained from the most significant P value among SNPs located within each gene 197 using the association results from each lipid GWAS. Genes scores were adjusted for 198 confounding factors including gene size, number of variants, and linkage disequilibrium-199 related properties by using step-wise multiple linear regression. The 95th percentile of 200 all gene scores was used as the enrichment cutoff for each trait [28]. Gene-set 201 enrichment P values were obtained for highly ranked gene scores. Gene sets were 202 obtained from Gene Ontology (April 2010), pathway information from the Ingenuity 203 (June 2008) and KEGG (June 2010), and biological processes and molecular function 204 from PANTHER (January 2010).

205

For each of the lipid traits, the INRICH program [29] was used to test for enrichment of known genes (as constructed from Teslovich et al. [30] and Willer et al [8]). INRICH tests if more known genes are contained in associated intervals than

209	expected by chance, using permutation based on 1 million replicates to generate
210	experiment-wide empirical P values. For each lipid trait, we defined the associated
211	intervals as 100 kb intervals centered on the most significant SNP within association
212	peaks with $P_D < 1 \times 10^{-4}$.
213	
214	We selected 21 regions demonstrating at least suggestive association for
215	association validation in the replication cohort. An additional 10 regions which should
216	have selected for validation were not followed-up because their exclusion was based on
217	preliminary analyses that included 17 participants taking heart disease medication—
218	participants who were ultimately excluded from these studies. The variant from each
219	locus with smallest P value across the four lipid scans (defined as 1 Mb windows
220	surrounding the peak SNP) or a proxy SNP in high linkage disequilibrium with the
221	lowest-P value SNP was selected as representative of the locus for replication
222	genotyping.
223	
224	Statistical association was measured in the 1990–95 and 2002–03 replication
225	sample sets independently, and results were combined using meta-analysis (see
226	below). Association analyses for both sample sets were performed using GenABEL [31]
227	in R [32], using the same regression models as in the discovery cohort but additionally
228	adjusting for polity (American Samoa or Samoa); the 2002-03 sample set was
229	additionally adjusted using expected kinship, as derived from familial pedigree
230	information [33].
231	

232	Prior to meta-analysis, quality control was performed using EasyQC to check for
233	strand and allele frequency consistency [34]. P value-based meta-analysis using
234	sample sizes as weights was performed using METAL [35] to generate two P values:
235	one for the meta-analysis of the two replication cohorts (P_R) and one for the replication
236	cohorts and discovery sample together (P_{DR}). Resulting meta-analysis signals were
237	evaluated based on genome-wide significance and suggestive thresholds (as described
238	above) and by the contribution of the replication sample to the signal. Effect directions
239	for meta-analysis results of peak SNPs were qualitatively compared to those of
240	previously reported lead SNPs.
241	
242	For ease of reference, any locus identified here with a corresponding signal
243	within 1 mega base pairs (Mb) in a prior lipid study is referred to by the previously
244	prescribed locus name [8, 10]; for loci not previously associated with lipid traits, the
245	symbol of the gene nearest the peak SNP in the locus or the hyphen-separated symbols
246	of the nearest two genes is used as the locus label.
247	

248 **Results**

The demographic, anthropometric, and biochemical characteristics of the 2,849 participants composing the discovery cohort for this GWAS of serum lipids levels and the 1,798 participants composing the replication cohort are presented in Table 1. A detailed description of the discovery cohort and its trends compared to the historical sample sets making up the replication cohort has been previously reported [1]. Briefly, the average age was similar for all cohorts; average BMI was higher among women

255 compared to men and in American Samoa compared to Samoa; average BMI for men 256 and women in Samoa was higher in more recent studies; average lipid levels are largely 257 similar across cohorts with minor exceptions. 258 259 We assessed 659,492 unique genome-wide markers for association with 4 260 traits—TC, HDL, LDL and TG—in up to 2,849 Samoans in the discovery cohort. 261 Relatedness within the discovery cohort was well-controlled using the empirical kinship 262 coefficients; λ_{GC} ranged between 1.03 and 1.07 for the four lipid traits (Figs S2, S4, S6, 263 and S8 in S1 Appendix). We observed 38 genome-wide suggestive or significant 264 associations across 31 loci from the four GWAS (Fig 1; Figs S1, S3, S5, and S7 in S1 265 Appendix; Tables S1, S7, S10, and S13 in S1 Appendix). 266 267 Fig 1. Manhattan plots for GWAS of four lipid traits in the discovery cohort of 268 **2.849 Samoans.** The dashed and solid lines denote genome-wide suggestive and genome-wide significant P value thresholds ($P < 1 \times 10^{-5}$ and $P < 5 \times 10^{-8}$, 269 270 respectively). Peaks are labeled with the candidate gene or closest gene in the region if 271 they have at least suggestive association in the discovery cohort for at least one trait 272 and demonstrate evidence of replication or have been previously associated. 273 274 Genome-wide significant association was observed in the discovery cohort between all four traits and markers near APOE: TC and rs4420638 ($P_D = 2.67 \times 10^{-16}$, 275 Fig 2E); HDL and rs4420638 ($P_{\rm D}$ = 9.07 × 10⁻⁹, Fig 2F); LDL and rs1160985 ($P_{\rm D}$ = 2.61 276

 \times 10⁻²⁰; Fig 2G); and TG and rs4420638 (P_D = 7.44 × 10⁻¹⁰, Fig 2H). Additionally, HDL

278 was associated with markers near CETP (rs289708, $P_D = 1.19 \times 10^{-11}$), and TG, with 279 APOA1 (rs6589566, $P_{\rm D}$ = 3.98 × 10⁻¹⁸, Fig 2C). Suggestive associations were observed 280 between lipid levels and markers at an additional 28 loci, including the MGAT1 and 281 *RAB21* loci and HDL (Fig 2A,D), and *APOA1* with TC (rs3741298, P_D = 1.63 × 10⁻⁷, Fig. 2B). We had 80% power at $a = 1 \times 10^{-5}$ and $a = 5 \times 10^{-8}$ to detect SNPs that account 282 283 for 1.0% and 1.5%, respectively, of the residual variance in a phenotype. 284 285 Fig 2. Regional association plots for selected loci. Regional association plots 286 generated in LocusZoom [36] showing -log10(P values) for SNPs in the (A) MGAT1 287 locus and HDL, (B) APOA1 locus and TC, (C) APOA1 locus and TG, (D) RAB21 locus 288 and HDL, and the APOE locus and (E) TC, (F) HDL, (G) LDL, and (H) TG. Points are 289 color coded within each plot according to pairwise linkage disequilibrium (r^2) with the 290 labeled SNPs; the saturation of the color of each plotted SNP measures the linkage 291 disequilibrium (r^2) with the labeled SNP sharing the same color. 292 293 Gene-set enrichment analysis with MAGENTA highlighted, at a < 5% false-294 discovery rate (FDR), several lipid homeostasis pathways and gene ontologies for HDL 295 and TG (Tables S8 and S14 in S1 Appendix). Four gene sets were below the FDR for 296 both HDL and TG: HDL particle remodeling, reverse cholesterol transport, cholesterol 297 efflux, and phospholipid efflux. An additional 12 gene sets were implicated for HDL and 298 three gene sets for TG. The HDL particle remodeling and reverse cholesterol transport 299 gene sets had significant enrichment for TC (Table S3 in S1 Appendix), and a single 300 gene set was implicated with LDL, the amylase pathway (Table S11 in S1 Appendix). All four traits had significant enrichment for known TC, HDL, LDL, and TG loci using the
INRICH method (Tables S5, S9, S12, and S15 in S1 Appendix).

303

304 Validation of peak SNPs was attempted for 21 loci. At loci with multiple 305 associated variants, the most significant variant was chosen as representative of the 306 locus. For some loci, the exclusion of participants using self-reported heart disease 307 medication resulted in a different peak SNP. Thus, for the APOE locus rs1160985 was genotyped instead of rs4420638 ($P_{\rm D}$ = 2.67 × 10⁻¹⁶ for TC, $P_{\rm D}$ = 9.07× 10⁻⁹ for HDL, 308 309 and $P_D = 7.44 \times 10^{-10}$ for TG); for the APOA1 locus rs964184 was genotyped instead of 310 rs3741298 ($P_{\rm D}$ = 1.63 × 10⁻⁷ for TC) or rs6589566 ($P_{\rm D}$ = 3.98 × 10⁻¹⁸ for TG); for the 311 MGAT1 locus rs1038143 was genotyped instead of rs249356 ($P_D = 1.06 \times 10^{-6}$ for 312 HDL); for the APOB locus rs754523 was genotyped instead of rs1469513 (P_D = 2.71 × 10⁻⁶ for LDL). 313

314

315 We successfully genotyped the peak SNP, or a proxy SNP, in the replication cohorts for 15 loci. Two loci (APOA1 with TG, P_{DR} = 1.81 × 10⁻²⁹; APOE with TC, P_{DR} = 316 4.29×10^{-21} , and LDL, $P_{DR} = 1.53 \times 10^{-27}$) demonstrated genome-wide significant 317 318 associations in the discovery-replication meta-analysis (Table 2 and Tables S1, S7, 319 S10, and S13 in S1 Appendix). An additional four associations demonstrated evidence 320 of replication with consistent directions of effect and suggestive joint P_{DR} values (GCKR with TG, $P_{DR} = 5.62 \times 10^{-8}$; *MGAT1* with HDL, $P_{DR} = 2.91 \times 10^{-7}$; *APOA1* with TC, $P_{DR} =$ 321 322 1.72×10^{-6} ; *RAB21* with HDL, $P_{DR} = 5.92 \times 10^{-7}$). Three associations had suggestive 323 joint P_{DR} values driven by the discovery associations only (APOB with LDL, P_{DR} = 5.81 ×

- 324 10^{-6} ; *LIPC* with HDL, $P_{DR} = 9.15 \times 10^{-7}$; *CDH4* with HDL, $P_{DR} = 8.77 \times 10^{-6}$);
- 325 associations at APOB and CDH4 had consistent directions of effect. Among the
- remaining loci with at least suggestive association in the discovery sample, but not in
- 327 the discovery-replication meta-analysis, consistent effect directions were also seen for
- 328 TC and APOB and ZHX2; LDL and ALG10 and CPNE8 (Table 2 and Tables S1, S7,
- 329 S10, and S13 in S1 Appendix).

Table 2. Suggestive loci and replication genotyping

Total Choleste	rol																
Locus	SNP	Chr	BP	ΕA	OA	Dir	P_D	P_{R}	P_{DR}	Known gene	Traits	SAM	EAS	SAS	EUR	AMR	AFR
APOB	rs754523	2	21311691	G	Α	+++	6.25E-06	0.178	1.20E-05	APOB	C,H,L,T	0.247	0.265	0.140	0.309	0.306	0.201
PDE4D	rs7711093	5	59593138	G	Α	++-	3.01E-06	0.747	5.37E-04			0.506	0.643	0.553	0.856	0.775	0.852
LUCAT1	rs10072084	5	90539203	С	Т	$+\cdot\cdot$	9.48E-06					0.541	0.559	0.422	0.232	0.429	0.822
FILIP1**	rs2951921	6	76165524	Т	С	$+\cdot\cdot$	9.04E-07					0.073	0.022	0.063	0.015	0.030	0.293
ZHX2	rs7841763	8	123971081	Т	С	+++	4.82E-06	0.631	1.03E-04			0.043	0.023	0.146	0.102	0.058	0.169
APOA1	rs964184*	11	116648917	С	G	+++	5.37E-05	0.009	1.72E-06	APOA1	C,H,L,T	0.560	0.760	0.771	0.838	0.723	0.779
SIRT2	rs10405150	19	39387919	С	Т	$+\cdot\cdot$	6.34E-06					0.056	0.147	0.144	0.081	0.117	0.774
ZNF283	rs16976816	19	44339377	G	Α	$+\cdot\cdot$	9.78E-06					0.977	0.970	0.994	0.987	0.976	0.864
APOE	rs1160985*	19	45403412	С	Т	+++	2.13E-13	3.36E-09	4.29E-21	APOE	C,H,L,T	0.724	0.659	0.590	0.554	0.447	0.378
HDL																	
Locus	SNP	Chr	BP	ΕA	OA	Dir	P_D	P_{R}	P_{DR}	Known gene	Traits	SAM	EAS	SAS	EUR	AMR	AFR
STON1-	rs6739536	2	48831901	А	G		1.58E-06					0.762	0.676	0.837	0.918	0.842	0.609
GTFZATL MCAT1	ro1020142*	5	100010070	т	C		2 725 06	0.016	201507			0 200	0 1 1 0	0 127	0 1 1 0	0 001	0.012
MGATT AKAD7	ro2777/86	6	12159/6/9	Ġ	~		3.72E-00 2.00E.06	0.010	2.97E-07			0.309	0.110	0.137	0.140	0.001	0.013
	rc1626142	Q	131304040	т	ĉ		3.09L-00	0.000	4.37L-04			0.970	0.909	0.090	0.000	0.795	0.949
DAR21	ro228722	12	72107574	÷	č		2.57E.06	0.036	5 02E 07			0.012	0.400	0.433	0.290	0.392	0.004
7NE10	re220700	12	13373/113	Δ	Ğ		2.07E-00	0.050	J.92L-07			0.700	0.020	0.700	0.003	0.750	0.011
HS6ST3	rs16953620	13	97508453	Δ	G		8 48F-06					0.175	0.112	0.204	0.243	0.100	0.000
LIPC	rs10438284	15	58629424	G	Δ	-+-	4 00F-07	0 133	9 15E-07	LIPC	СНТ	0.286	0.326	0.040	0.040	0.011	0.000
CETP	rs289708	16	57038162	т	ĉ		1.19F-11	0.100	0.102 01	CETP	СНІТ	0.905	0.815	0.800	0.860	0.823	0.597
UPG	rs16950739	18	47138509	Ċ	т		1 07F-07			LIPG	С.Н	0.019	0.058	0 190	0.057	0 140	0.004
APOE	rs1160985*	19	45403412	č	Ť	-+-	0.003	0.342	0.004	APOE	C.H.L.T	0.724	0.659	0.590	0.554	0.447	0.378
CDH4	rs817687	20	59753355	Ā	Ġ		2.31E-06	0.237	8.77E-06		-,,_,.	0.986	0.924	0.945	0.967	0.855	0.610
LDL																	
Locus	SNP	Chr	BP	ΕA	OA	Dir	P_D	P_{R}	P_{DR}	Known gene	Traits	SAM	EAS	SAS	EUR	AMR	AFR
APOB	rs754523*	2	21311691	G	А	+++	3.25E-06	0.158	5.81E-06	APOB	C,H,L,T	0.247	0.265	0.140	0.309	0.306	0.201
KALRN	rs6789134	3	123942339	G	Α	++-	3.22E-06	0.925	1.96E-04			0.078	0.161	0.120	0.046	0.118	0.212
ZHX2	rs7841763	8	123971081	Т	С	++-	1.80E-06	0.557	3.78E-05			0.043	0.023	0.146	0.102	0.058	0.169
SH2D4B	rs10509415	10	82473065	А	С	$+\cdot\cdot$	7.96E-06					0.706	0.510	0.735	0.758	0.808	0.708
ALG10	rs3912355	12	34079616	С	Т	+++	2.12E-06	0.544	3.97E-05			0.855	0.872	0.651	0.605	0.732	0.863
ALG10B	rs10880642	12	38554152	А	G	$+\cdot\cdot$	5.56E-06					0.802	0.715	0.555	0.481	0.532	0.299
CPNE8	rs11169807	12	39244161	С	Т	+++	4.77E-06	0.418	4.13E-05			0.794	0.644	0.536	0.505	0.408	0.898
LINC02408	rs17104016	12	67969929	А	Т	$+\cdot\cdot$	9.29E-06					0.574	0.734	0.924	0.853	0.906	0.838
LINC00922	rs254371	16	65943650	Т	С	$+\cdot\cdot$	9.04E-06					0.555	0.698	0.650	0.599	0.693	0.884
ZNF283	rs16976816	19	44339377	G	А	$+\cdot\cdot$	1.78E-06					0.977	0.970	0.994	0.987	0.976	0.864
APOE	rs1160985	19	45403412	С	Т	+++	2.61E-20	5.07E-09	1.53E-27	APOE	C,H,L,T	0.724	0.659	0.590	0.554	0.447	0.378

Triglycerides

	Locus	SNP	Chr	BP	ΕA	OA	Dir	P_D	P_{R}	P_{DR}	Known gene	Traits	SAM	EAS	SAS	EUR	AMR	AFR
	GCKR	rs780094	2	27741237	Т	С	+++	9.84E-07	0.01	5.62E-08	GCKR	C,T	0.334	0.476	0.198	0.411	0.360	0.132
	CD200	rs2399416	3	112059213	Α	G	++-	5.12E-06	0.668	9.29E-04			0.021	0.148	0.140	0.393	0.272	0.101
	SPIN1	rs7861888	9	90886340	A	G	+ • •	4.24E-06	0.075.44	4 0 4 5 00	40044	о т	0.706	0.719	0.897	0.921	0.842	0.989
	APOA1 KIDDEL 2	rs964184*	11	116648917	C	G	+++	2.3/E-1/	8.97E-14	1.81E-29	APOA1	C,H,L,I	0.440	0.240	0.229	0.162	0.277	0.221
	APOF	rs1160985*	19	45403412	Т	C	+-+	4.70E-00	0.836	0.507	APOF	СНІТ	0.910	0.803	0.920	0.800	0.657	0.974
332	711 OL	131100000	10	40400412	•	0		0.012	0.000	0.007	711 OL	0,11,∟,1	0.270	0.041	0.410	0.440	0.000	0.020
552																		
333	EA =	effect allele																
334	OA =	other allele	(refer	ence allele)														
335	Dir =	direction of t	he ef	fect in each	of t	he fo	our sa	amples (+	indicates	the effect	allele is incr	easing t	he trait	value	on the	raw s	cale)	
336	$P_D = 0$	discovery co	hort (GWAS <i>p-</i> va	lue							U					,	
337	<i>P</i> _R = 1	replication co	ohort	<i>p</i> -value														
338	$P_{DR} =$	joint discove	ery a	nd replicatio	n co	bhort	s p-v	alue										
339	Know	n aene = Lo	ci ob	served in Te	eslov	vich	et al.	2010 or V	Viller et al	l. 2013								
340	Traits	s = Traits loci	us as	sociated wit	h in	Tes	slovic	h et al. 20)10 or Wil	ler et al. 2	2013							
341		C = TC																
342		H = HDL																
343		L = LDL																
344		T = TG																
345	SAM	= Samoan e	ffect	allele freque	ency	(EA	F)											
346	EAS :	= East Asian	EAF				,											
347	SAS :	= South Asia	n EA	F														
348	EUR	= European	EAF															
349	AMR	= Admixed A	Ameri	can EAF														
350	AFR = African FAF																	
351	•																	
352	*The SNP aer	notyped in th	ne rec	lication pop	ulat	ion v	vas n	ot the pea	ak SNP at	this locus	s for this trait							
353	9-	7 1	- 1-	· · · · · · · · · · · · · · · · · · ·					-									
555																		

354	We compared the directions of effect to those previously reported in Willer et al.
355	[8] and Teslovich et al. [30] for APOB, GCKR, APOA1, LIPC, LIPG, and APOE (i.e.,
356	genome-wide suggestive loci that have been previously associated with lipid traits). We
357	observed a consistent direction of effect for the representative SNP for all associations
358	except for <i>LIPG</i> and HDL (Table 2).
359	
360	The effect allele frequencies in the two samples—discovery and replication—
361	were largely similar for each of the 15 successfully genotyped SNPs (Tables S1, S7,
362	S10, and S13 Appendix). However, many loci had markedly different effect allele
363	frequencies between Samoans and other 1000 Genomes populations (Table 2). For
364	example, compared to 1000 Genomes populations, there were higher effect allele
365	frequencies (EAFs) in Samoans for rs964184 near APOA1 (G allele frequency: 0.440 in
366	Samoans vs. < 0.277 in 1000 Genomes populations), rs1160985 near APOE (C allele
367	frequency: 0.724 in Samoans vs. < 0.659 in 1000 Genomes populations), and
368	rs1038143 near <i>MGAT1</i> (A allele frequency: 0.309 in Samoans vs. < 0.148 in 1000
369	Genomes populations).

- 370
- 371

372 **Discussion**

In this study, we examined four measures of fasting lipid levels—TC, HDL, LDL and TG—for associations with 659,492 SNPs from a genome-wide array in a discovery cohort of 2,849 Samoans, with follow-up genotyping of significant and suggestive findings in a replication cohort comprising 1,798 Samoans from Samoa and American Samoa. Thirty-one loci had at least suggestive evidence of association with one or more
lipid traits in the discovery cohort, of which eight have been reported to be associated
with lipid levels previously: *APOB, GCKR, MGAT1, APOA1, LIPC, CETP, LIPG,* and *APOE* [8, 10, 30] although the direction of effect for the variant near LIPG was in the
opposite direction from previous results. Enrichment analyses highlighted known lipid
metabolism gene sets and previously associated lipid loci.

383

384 We observed a difference in the architecture of the statistical association signals 385 between the four lipid traits and variants near APOE (Fig 2E-H). The peak SNP for TC 386 and LDL was rs1160985, an intronic variant in TOMM40 upstream of APOE; whereas 387 the peak SNP for HDL and TG was rs4420638, an intergenic variant downstream of 388 APOC1 and APOE, rs1160985 demonstrated evidence of replication for TC and LDL 389 but not for HDL and TG, consistent with the discovery findings. These markers are in 390 low linkage disequilibrium with each other ($r^2 = 0.093$) and may represent distinct 391 association signals. While this could support a shared genetic architecture for TC and 392 LDL and for HDL and TG in Polynesians, this study was not positioned to adequately 393 capture the association signal present at this locus. Future studies with sequencing or 394 imputation of the 19q13.2 region will be necessary to dissect the genetic architecture of 395 APOE and lipid levels in Polynesians.

396

We did not observe suggestive or genome-wide significant association with
several loci which have figured prominently in multiple lipid GWAS (e.g., *LPL*, *LDLR*, *CILP2*, *FADS1/2/3*, *ANGPTL3*, *SORT1*, *PPP1R3B*, *MIXIPL*, *HNF4A*, *PCSK9*, *GALNT2*,

HMGCR) either because we lacked sufficient power to detect their effects, the effects
are negligible in Samoans, or the allele frequencies of associated variants are different
enough in Samoans to hinder detection. However, it is important to note that this study
was not designed to evaluate the effect of known lipids loci in Samoans, nor were
previously-associated loci examined specifically.

405

406 We detected and replicated a suggestive association between HDL and a variant 407 on 5q35.3 (Fig 2A). While the peak SNP lies within an intron of BTNL8, the variant 408 selected for follow-up genotyping is intergenic, downstream of MGAT1. A suggestive 409 association between variants near MGAT1 and HDL in a GWAS in the Micronesian 410 population of Kosrae has been previously reported [10]. Although there is no evidence 411 of association between MGAT1 and lipids as reported in prior studies of non-Pacific 412 Islanders, variation near MGAT1 has been associated with BMI, serum fatty acid levels 413 and composition, and glucose response in Europeans [37–39]. The encoded MGAT 414 enzyme plays a major role in the absorption of dietary fat in the intestine [40]. Due to the 415 greater frequency of the HDL-associated risk variant observed in Samoans compared to 416 1000 Genomes populations, it is plausible that variation near MGAT1 may have a 417 unique role in or a stronger effect on the lipid metabolism of Pacific Islanders.

418

We also detected and replicated a novel suggestive association between HDL and a variant downstream of *RAB21* (Fig 2D). Unlike the variant downstream of *MGAT1*, we observed similar allele frequencies between Samoans and 1000 Genomes populations (i.e., < 20% difference between Samoans and another 1000 Genomes

423	population) in the HDL-associated variant downstream of RAB21. This region, 12q21,
424	was previously seen in linkage analysis with both univariate and bivariate scans of TC
425	and LDL [12]. The individuals included in this linkage analysis are also included in our
426	2002–03 replication sample set, however, they do not appear to be driving the
427	association signal near RAB21 (Table S7 in S1 Appendix). Variation near RAB21 has
428	been previously associated with obesity [41]. RAB21 belongs to the family of
429	monomeric GTPases involved in control of cellular membrane trafficking and is involved
430	in the targeted trafficking of integrins and the regulation of cell adhesion and migration
431	[42, 43].
432	
433	This study is limited in drawing conclusions about the genetic architecture of
434	lipids in Samoans, as replication genotyping was unavailable for many loci and due to
435	the lack of genome-wide imputation. Future studies, evaluating the evidence of
436	association between associations seen here in separate cohorts as well fine-mapping
437	loci with genotype imputation (given the availability of a relevant reference panel), are
438	necessary to fully evaluate the genetic architecture of lipids in Samoans.
439	
440	This is the first GWAS of lipid phenotypes in Samoans, and we observed

association with many known lipid loci, which was further supported by the gene-set
enrichment analysis highlighting lipid metabolism gene sets. However, the difference in
association results near *APOE*, coupled with evidence of Pacific-Islander–specific
associations with *MGAT1* and *RAB21* suggest that some, but not all, of the genetic
architecture of lipids is shared between Samoans and other populations. Given this

evidence of a partially distinct genetic architecture of lipids in Samoans, further

447 investigation and fine-mapping of lipid loci, especially that across multiple ethnicities, is

448 warranted.

449

450 Acknowledgements

The authors would like to thank the Samoan participants of the study, local village authorities, and the many Samoan and other field workers over the years. We acknowledge the Samoan Ministry of Health, the Samoa Bureau of Statistics, and the American Samoan Department of Health for their support of this research. We give particular thanks to two research assistants, Melania Selu and Vaimoana Lupematasila, who contributed to the 2010 recruitment and continue to assist us in our work in Samoa.

458 **References**

- 459 1. Hawley NL, Minster RL, Weeks DE, Viali S, Reupena MS, Sun G, Cheng H,
- 460 Deka R, Mcgarvey ST (2014) Prevalence of adiposity and associated
- 461 cardiometabolic risk factors in the samoan genome-wide association study. Am J
 462 Hum Biol 26:491–501
- Keighley E., McGarvey ST, Quested C, Mccuddin C, Viali S, Maga UA (2007)
 Nutrition and health in modernizing Samoans: temporal trends and adaptive
 perspectives. In: Ohtsuka R, Ulijaszek SJ (eds) Heal. Chang. Asia-Pacific Reg.
 Biocultural Epidemiol. Approaches. Cambridge University Press, Cambridge, NY,
 pp 147–191
- 468 3. McGarvey ST (2001) Cardiovascular disease (CVD) risk factors in Samoa and 469 American Samoa, 1990-95. Pac Health Dialog 8:157–62
- 470 4. Kannel WB, Castelli WP, Gordon T, McNamara PM (1971) Serum cholesterol,
 471 lipoproteins, and the risk of coronary heart disease. The Framingham study. Ann
 472 Intern Med 74:1–12
- 473 5. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR (1977) High
 474 density lipoprotein as a protective factor against coronary heart disease. The
 475 Framingham Study. Am J Med 62:707–14
- 476 6. Roeters van Lennep J, Westerveld HT, Erkelens DW, van der Wall EE (2002)
 477 Risk factors for coronary heart disease: implications of gender. Cardiovasc Res
 478 53:538–549
- 479
 47. Lange LA, Willer CJ, Rich SS (2015) Recent developments in genome and
 480 exome-wide analyses of plasma lipids. Curr Opin Lipidol 26:96–102
- 4818.Willer CJ, Schmidt EM, Sengupta S, et al (2013) Discovery and refinement of loci482associated with lipid levels. Nat Genet 45:1274–1283
- Burkhardt R, Kenny EE, Lowe JK, et al (2008) Common SNPs in HMGCR in
 micronesians and whites associated with LDL-cholesterol levels affect alternative
 splicing of exon13. Arterioscler Thromb Vasc Biol 28:2078–2084
- 486 10. Lowe JK, Maller JB, Pe'er I, et al (2009) Genome-wide association studies in an
 487 isolated founder population from the Pacific Island of Kosrae. PLoS Genet
 488 5:e1000365
- 489 11. Dumitrescu L, Carty CL, Taylor K, et al (2011) Genetic determinants of lipid traits
 490 in diverse populations from the population architecture using genomics and
 491 epidemiology (PAGE) study. PLoS Genet 7:e1002138
- 492 12. Åberg K, Dai F, Sun G, et al (2008) A genome-wide linkage scan identifies
 493 multiple chromosomal regions influencing serum lipid levels in the population on
 494 the Samoan islands. J Lipid Res 49:2169–2178
- 495 13. Minster RL, Hawley NL, Su C-T, et al (2016) A thrifty variant in CREBRF strongly
 496 influences body mass index in Samoans. Nat Genet 48:1049–1054
- 497 14. Kristiansson K, Naukkarinen J, Peltonen L (2008) Isolated populations and
 498 complex disease gene identification. Genome Biol 9:109
- Laurie CC, Doheny KF, Mirel DB, et al (2010) Quality control and quality
 assurance in genotypic data for genome-wide association studies. Genet
 Epidemiol 34:591–602

Deka R, Mc Garvey ST, Ferrell RE, Kamboh MI, Yu LM, Aston CE. Jin L.

503 Chakraborty R (1994) Genetic characterization of American and Western 504 Samoans. Hum Biol 66:805–22 505 17. McGarvey ST, Levinson PD, Bausser-Man L, Galanis DJ, Hornick CA (1993) 506 Population change in adult obesity and blood lipids in American Samoa from 507 1976–1978 to 1990. Am J Hum Biol 5:17–30 508 18. Chin-Hong P V, McGarvey ST (1996) Lifestyle incongruity and adult blood 509 pressure in Western Samoa. Psychosom Med 58:131-7 510 19. Galanis DJ, McGarvey ST, Quested C, Sio B, Afele-Fa'amuli SA (1999) Dietary 511 intake of modernizing Samoans: implications for risk of cardiovascular disease. J 512 Am Diet Assoc 99:184–90 513 Åberg K, Dai F, Sun G, et al (2009) Susceptibility Loci for Adiposity Phenotypes 20. 514 on 8p, 9p, and 16g in American Samoa and Samoa. Obesity 17:518-524 515 21. Dai F, Keighley ED, Sun G, et al (2007) Genome-wide scan for adiposity-related 516 phenotypes in adults from American Samoa. Int J Obes 31:1832-1842 517 22. Åberg K, Dai F, Viali S, Tuitele J, Sun G, Indugula SR, Deka R, Weeks DE, 518 McGarvey ST (2009) Suggestive linkage detected for blood pressure related traits 519 on 2q and 22q in the population on the Samoan islands. BMC Med Genet 10:107 520 23. Dai F, Sun G, Åberg K, et al (2008) A Whole Genome Linkage Scan Identifies 521 Multiple Chromosomal Regions Influencing Adiposity-Related Traits among Samoans. Ann Hum Genet 72:780-792 522 523 Chen W-M, Abecasis GR (2007) Family-Based Association Tests for 24. 524 Genomewide Association Scans. Am J Hum Genet 81:913–926 525 25. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 526 55:997-1004 527 26. Purcell S, Cherny SS, Sham PC (2003) Genetic Power Calculator: design of 528 linkage and association genetic mapping studies of complex traits. Bioinformatics 529 19:149-150 530 27. Carithers LJ, Ardlie K, Barcus M, et al (2015) A Novel Approach to High-Quality 531 Postmortem Tissue Procurement: The GTEx Project. Biopreserv Biobank 13:311-532 319 533 28. Segrè A V, Groop L, Mootha VK, Daly MJ, Altshuler D (2010) Common Inherited 534 Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 535 Diabetes or Related Glycemic Traits. PLoS Genet 6:e1001058 536 29. Lee PH, O'Dushlaine C, Thomas B, Purcell SM (2012) INRICH: interval-based 537 enrichment analysis for genome-wide association studies. Bioinformatics 538 28:1797-1799 539 30. Teslovich TM, Musunuru K, Smith A V., et al (2010) Biological, clinical and 540 population relevance of 95 loci for blood lipids. Nature 466:707–713 541 Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for 31. 542 genome-wide association analysis. Bioinformatics 23:1294–1296 543 32. R Core Team (2014) R: A language and environment for statistical computing. 544 33. Therneau T, Atkinson E, Sinnwell J, Schaid D, McDonnell S (2014) kinship2: 545 Pediaree functions. 546 34. Winkler TW, Day FR, Croteau-Chonka DC, et al (2014) Quality control and 547 conduct of genome-wide association meta-analyses. Nat Protoc 9:1192-1212

502

16.

- 548 35. Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26:2190–2191
- 550 36. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M,
 551 Abecasis GR, Willer CJ (2010) LocusZoom: regional visualization of genome-wide
 552 association scan results. Bioinformatics 26:2336–2337
- 37. Johansson Å, Marroni F, Hayward C, et al (2010) Linkage and Genome-wide
 Association Analysis of Obesity-related Phenotypes: Association of Weight With
 the MGAT1 Gene. Obesity 18:803–808
- 38. Jacobsson JA, Rask-Andersen M, Risérus U, et al (2012) Genetic variants near
 the MGAT1 gene are associated with body weight, BMI and fatty acid metabolism
 among adults and children. Int J Obes 36:119–129
- 39. Del-Aguila JL, Beitelshees AL, Cooper-DeHoff RM, Chapman AB, Gums JG,
 Bailey K, Gong Y, Turner ST, Johnson JA, Boerwinkle E (2014) Genome-wide
 association analyses suggest NELL1 influences adverse metabolic response to
 HCTZ in African Americans. Pharmacogenomics J 14:35–40
- 40. Yen C-LE, Stone SJ, Cases S, Zhou P, Farese R V. (2002) Identification of a
 gene encoding MGAT1, a monoacylglycerol acyltransferase. Proc Natl Acad Sci
 99:8512–8517
- 566 41. Turcot V, Lu Y, Highland HM, et al (2018) Protein-altering variants associated with
 567 body mass index implicate pathways that control energy intake and expenditure in
 568 obesity. Nat Genet 50:26–41
- 569 42. Pellinen T, Ivaska J (2006) Integrin traffic. J Cell Sci 119:3723–31
- 57043.Pellinen T, Tuomi S, Arjonen A, et al (2008) Integrin trafficking regulated by571Rab21 is necessary for cytokinesis. Dev Cell 15:371–85
- 572 573

bioRxiv preprint doi: https://doi.org/10.1101/411546; this version posted June 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

574 Supporting Information

575 **S1 Appendix. Supporting Information.**

576

577

578 Data Availability Statement

- 579 The discovery cohort data are available from dbGaP (accession number:
- 580 phs000914.v1.p1).

581

Chromosome

20

15

ê

5

4 genes

omitted

d 10

0

Position on chr19 (Mb)

45.4

Position on chr19 (Mb)

45.5

45.6

45.3